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Abstract
Interactive tasks such as online configuration can
be modeled as constraint satisfaction problems.
These can be solved interactively by a user assign-
ing values to variables. Explanations for failure in
constraint programming tend to focus on conflict.
However, what is often desirable is an explanation
that iscorrectivein the sense that it provides the ba-
sis for moving forward in the problem-solving pro-
cess. This paper defines this notion ofcorrective
explanationand demonstrates that a greedy search
approach performs very well on a large real-world
configuration problem.

1 Introduction
To demonstrate the distinction between corrective explana-
tions and more traditional conflict-based explanations, con-
sider the example in Figure 1.

{r,b} {r,b}{r,b} {r, b} {r,b}

v1 v3v2 v4 v5

Figure 1: Example of corrective versus conflict-based explanations.

This figure presents assignments of colors to variables in
a coloring problem. We have assigned colors to the first 4
variables (highlighted in black), only two colors are available,
and we are running a forward checking algorithm, so we have
encountered a domain wipeout on variablev5 at this point.
We will say that variablesv3 and v4 form a “culprit set”.
The assignments to those variables account for the wipeout.
The variablesv3 andv4 do not provide a corrective explana-
tion because it is not possible by changing their instantiations
alone to restore any choices tov5. {v1, v4} is acorrective ex-
planation of inconsistency, as alternative assignments can be
found for the these variables that enables the user to assign at
least one more variable. Makingv1 b(lue) andv4 r(ed) allows
us to proceed to assign a value tov5, blue.
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A corrective explanation for value recoveryis useful when
the user would like to restore a value that was removed due
to some previous decision(s). Such an explanation identifies
modifications to the user’s decisions guaranteing that the de-
sired value is restored and can be selected consistently. A
corrective explanation is minimal if no (proper) subset is it-
self a corrective explanation. We define an optimal corrective
explanation as one of minimum cardinality.

2 Computing Corrective Explanations
Instead of using compilation methods[Amilhastre et al.,
2002] or standard model-based diagnosis techniques[Junker,
2004; Reiter, 1987], we advocate the use of a heuristic search
approach to find corrective explanations. While heuristic
search cannot guarantee that minimum length explanations
are found, near optimal explanations can often be found quite
efficiently. We generate corrective explanations by returning
any differences between the assignments made by the user
and the assignments in a solution found using carefully cho-
senvariable and value ordering heuristics. These heuristics
attempt to maximize the number of user assignments in such
a solution. Thevalue ordering heuristicfavors values chosen
by the user during search, by selecting those first whenever
possible, and uses standard heuristics for the remaining ones.
We partition the set of variables into a set of user-assigned
variables and a set of unassigned variables. User-assigned
variables are considered first, and within each subset of vari-
ables a particularvariable ordering heuristicis used. The
intuition here is that during search the user’s choices are al-
ways considered first, so they are more likely to participate in
the solution used to generate an explanation.

3 Experiments
We ran a suite of experiments based on the Renault Megane
Configuration benchmark[Amilhastre et al., 2002]. The
problem consists of 101 variables, domain sizes vary from
2 to 43, and there are 113 non-binary constraints. The num-
ber of solutions to the problem is in excess of1.4×1012. The
solver we used in our experiments was based on generalized
forward checking.

We studied threevariable orderingheuristics for gener-
ating corrective explanations using the approach described
above:minimum ratio of domain over forward degree(also
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(a) Average cost of inconsistency explanations.
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(b) Average cost of value recovery explanations.
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(c) Average length of inconsistency explanations.
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(d) Average length of value recovery explanations.

Figure 2: Results for finding explanations for the Renault Megane Configuration Benchmark.

referred to as minimum domain/degree),maximum degree to
the user’s assigned variablesandrandom. We used arandom
value ordering, since it seemed to perform best overall.

Based on the variable and value ordering heuristics, we
studied three different search techniques: 1) a branch-and-
bound search seeking to minimize explanation length; 2) a
greedy heuristic search for a solution that returns a single
explanation; 3) running multiple greedy heuristic searches
(10 in these experiments), providing multiple explanations,
of which the one of minimum length was returned. The sim-
ulated user chose variables randomly and values lexicograph-
ically. We considered both the task of generating corrective
explanations for inconsistency (over 800 configuration ses-
sions), and corrective explanations for value recovery (over
100 sessions) in which the user chose to restore an inconsis-
tent value with a probability of 0.1. We report averages at
intervals of 10 variables.

In Figure 2(a) and Figure 2(b) we see that minimum length
explanations tend to be very expensive to compute using a
branch-and-bound search, thus not a viable option in an inter-
active context. In Figure 2(c) and Figure 2(d) we plot average
explanation lengths. The greedy approaches, with the possi-
ble exception of that based on the random variable ordering,
find almost minimum length corrective explanations using a
fraction of the search cost of branch-and-bound.

The best approach of those studied was based on minimum
domain/degree. For the inconsistency explanations experi-
ment the average length of the explanations found was 2.15
variables, for the one solution version, and 1.60 variables
when we proposed the best of 10 solutions. This compares

with an average optimal explanation length of 1.32 variables.
The average search effort required to find a single explanation
was 2,142 constraint checks. For the value recovery experi-
ment, minimum domain/degree found explanations of length
8.22 and 7.16 for the one solution and best of 10 solutions, re-
spectively. The average optimal length was 7.03. The search
effort required to find a single explanation was 1,354 checks.

4 Future Work and Conclusion
The notion of corrective explanation is new in the domain
of constraint satisfaction, where existing work on explana-
tion is focused on conflict. Using a greedy search approach
with good variable and value ordering heuristics seems an at-
tractive option as it represents a good compromise between
search cost and explanation length. Building upon the work
of Junker[Junker, 2004] we plan to explore the potential for
a preference-oriented relaxation-focused corrective explana-
tion algorithm.
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