
Hypertree-decomposition via Branch-decomposition∗

Marko Samer
Institute of Information Systems (DBAI), Vienna University of Technology, Austria

samer@dbai.tuwien.ac.at

Abstract

Hypertree-decomposition is the most general ap-
proach in the literature for identifying tractable
computation problems encoded as hypergraphs.
We show how the heuristic branch-decomposition
approach for ordinary graphs of [Cook and Sey-
mour, 2003] can be used for the heuristic construc-
tion of hypertree-decompositions.

1 Introduction
Many NP-complete problems (e.g., the constraint satisfac-
tion problem CSP, the homomorphism problem HOM, the
Boolean conjunctive query problem BCQ, etc.) can be de-
scribed by hypergraphs in a natural way. It was shown by
[Gottlob et al., 2002] that in analogy to tree-width of graphs,
hypertree-width of hypergraphs is an appropriate measure for
the cyclicity and therefore the tractability of the correspond-
ing computation problems. In particular, they have shown
that NP-complete problems become polynomially solvable
and even highly parallelizable when restricted to instances
with bounded hypertree-width. Moreover, it was shown
by [Gottlob et al., 2000] that hypertree-decomposition and
the corresponding measure of hypertree-width generalizes all
other tractability measures for hypergraphs in the literature.

Recent research focuses on heuristic approaches for fast
hypertree-decomposition with small width. In this presenta-
tion, we show how the heuristic approach of [Cook and Sey-
mour, 2003] for branch-decomposition (of ordinary graphs)
can be used for heuristic hypertree-decomposition.

2 Preliminaries
A hypergraph H is a tuple (V , E), where V is a set of vertices
(variables) and E ⊆ ℘(V)\{∅} is a set of hyperedges. We
define var (H) = V and edges(H) = E . A hypertree for a
hypergraph H is a triple (T, χ, λ), where T = (V , E) is a tree
and χ : V → var (H) and λ : V → edges(H) are labeling
functions.

A hypertree-decomposition of a hypergraph H is a hyper-
tree (T, χ, λ) for H satisfying four conditions. Due to space
restrictions, we refer the interested reader to [Gottlob et al.,

∗This work was supported by the Austrian Science Fund (FWF)
project P17222-N04.

r

��

SS �
�
��

B
B
HH

r

r

r
r

r

r

r

r

��

SS

r

r

r

p p p p p p p p p p r�
�
��

B
B
HH

r

r

r

r

=⇒
v1

v2

Figure 1: Splitting a vertex

2002] for the formal definition of a hypertree-decomposition.
The width of a hypertree-decomposition (T, χ, λ) is given
by maxp∈vertices(T) |λ(p)|, and the hypertree-width of a
hypergraph is the minimum width over all its hypertree-
decompositions.

A branch-decomposition of a hypergraph H is a tuple
(T, τ), where T = (V , E) is a tree having |edges(H)| leaves
and in which every non-leaf vertex has degree three, and τ is
a bijection from the set of leaves of T to edges(H). The order
of an edge e ∈ E is the number of vertices v ∈ var(H) such
that there are leaves l1 and l2 of T in different components
of T when removing e with v ∈ τ(l1) ∩ τ(l2). The width
of a branch-decomposition (T, τ) is the maximum order of
the edges of T, and the branch-width of a hypergraph is the
minimum width over all its branch-decompositions.

3 The Branch-decomposition Heuristic
In this section, we summarize the basic steps of the heuris-
tic branch-decomposition approach of [Cook and Seymour,
2003]. Note that this approach was developed for ordinary
graphs. Its starting point is the construction of the initial data
structure which is a star as shown in Fig. 1. This is done in
such a way that for each edge in the graph there exists exactly
one edge in the star. This edge is then labeled with the set
of vertices of the corresponding edge in the graph (i.e., each
edge is labeled with exactly two vertices). Afterwards, the
vertices of the star are successively split (cf. Fig. 1) accord-
ing to the decomposition rules below. In each step, the two
vertices v1 and v2 resulting from the splitting are connected
by a new edge which is labeled by the intersection of the set of
vertices labeling the edges incident with v1 and the set of ver-
tices labeling the edges incident with v2. This process stops
when all non-leaf vertices have degree three; the resulting tree
is then a branch-decomposition of the underlying graph.

The decomposition rules can be divided into two classes:
(i) the application of “safe splits” and (ii) the application of
the Eigenvector heuristic [Alon, 1986]. Safe splits divide the

C

A B

C

D E

A

D

F

B

E

1

2 3

5 6

4

F

2 3

4

1

5 6

=⇒

Figure 2: A hypergraph and its dual hypergraph

graph in such a way that it remains extendible, i.e., there is
some way to (repeatedly) divide the subgraphs to obtain a
branch-decomposition of width equal to the branch-width of
the original graph. In other words, nothing bad can happen
when applying safe splits. There are three kinds of safe splits
presented by [Cook and Seymour, 2003]: (i) pushing, (ii) 2-
separations, and (iii) 3-separations. At each stage, these safe
splits are applied as long as possible. If none of them is ap-
plicable, the Eigenvector heuristic is used.

4 Application to Hypertree-decomposition
We will now show how the branch-decomposition heuris-
tic described in Section 3 can be used for hypertree-
decomposition. Recall that this heuristic was developed for
ordinary graphs and not for hypergraphs. Thus, our first
step is to show that the safe splits as well as the Eigenvec-
tor heuristic are also applicable to hypergraphs.

To this aim, recall that the new edge introduced at each
vertex splitting (cf. Fig. 1) is labeled with the intersection of
two sets of vertices as described above. In general, however,
this intersection may contain more than two vertices. Thus,
such newly introduced edges represent hyperedges, i.e., the
data structure underlying the original branch-decomposition
approach starts as an ordinary graph and evolves to a hyper-
graph during the decomposition process. This can be seen as
an intuitive justification for the applicability of the branch-
decomposition heuristic to hypergraphs. It is easy to verify
that this intuition holds indeed true.

Now, note that given a tree-decomposition1 of a hyper-
graph of width k, it is possible to construct a branch-
decomposition of width at most k + 1, and given a branch-
decomposition of a hypergraph of width k, it is possible
to construct a tree-decomposition of width at most 3k/2
[Robertson and Seymour, 1991]. Thus, having small tree-
width is equivalent to having small branch-width.

Hence, a simple approach to obtain a hypertree-
decomposition via branch-decomposition is to (i) construct
a branch-decomposition of the given hypergraph by using
the above heuristic, (ii) transform this branch-decomposition
into a tree-decomposition, and, in analogy to [McMahan,
2004], (iii) apply set covering heuristics in order to obtain
a hypertree-decomposition. In particular, set covering is used
to obtain appropriate λ-labels based on the χ-labels given by
the tree-decomposition.

1Intuitively, a tree-decomposition is a hypertree-decomposition
without the labeling function λ.

Another approach we investigate is dual to the above one
in the sense that we obtain a hypertree where the λ-labels are
given and appropriate χ-labels have to be set. To this aim,
let us first introduce the dual hypergraph of a hypergraph
as exemplified in Fig. 2. The dual hypergraph is simply ob-
tained by swapping the roles of hyperedges and vertices. Our
procedure is then to (i) construct a branch-decomposition of
the dual hypergraph by using the above heuristic, (ii) trans-
form this branch-decomposition into a tree-decomposition,
and (iii) interpret the labels of this tree-decomposition as λ-
labels of a hypertree and set the χ-labels appropriately in
a straight-forward way. The resulting hypertree is then a
hypertree-decomposition of the original hypergraph.

The attentive reader may have noticed that there are two
problems with the latter approach: First, the branch-width
and therefore also the hypertree-width is at least the cardinal-
ity of the largest edge in the dual hypergraph which is equal to
the maximum number of hyperedges having a common vertex
in the original hypergraph. Second, since the λ-labels satisfy
the conditions of a tree-decomposition by construction, the
hypertree-width may be larger than necessary. However, by
introducing heuristic pre- and post-processing steps, we are
able to overcome both problems.

5 Conclusion
We have tested our approach on hypergraphs represent-
ing adder and bridge circuits connected in a line. For all
instances of such adder and bridge hypergraphs, we ob-
tained a hypertree-decomposition of almost optimal width
within a few seconds. Natural future work will be a full
implementation of our approach, the investigation of fur-
ther improvements, and a systematic comparison with other
hypertree-decomposition heuristics. Moreover, an implemen-
tation of our second approach in such a way that the tree-
decomposition of the dual hypergraph is directly constructed
(e.g., by bucket elimination) without the intermediate-step of
a branch-decomposition seems to be promising.

References
[Alon, 1986] N. Alon. Eigenvalues and expanders. Combi-

natorica, 6(2):83–96, 1986.
[Cook and Seymour, 2003] W. Cook and P. Seymour. Tour

merging via branch-decomposition. INFORMS Journal on
Computing, 15(3):233–248, 2003.

[Gottlob et al., 2000] G. Gottlob, N. Leone, and F. Scarcello.
A comparison of structural CSP decomposition methods.
Artificial Intelligence, 124(2):243–282, 2000.

[Gottlob et al., 2002] G. Gottlob, N. Leone, and F. Scarcello.
Hypertree decompositions and tractable queries. Journal
of Computer and System Sciences, 64(3):579–627, 2002.

[McMahan, 2004] B. McMahan. Bucket eliminiation and
hypertree decompositions. Implementation report, Insti-
tute of Information Systems (DBAI), TU Vienna, 2004.

[Robertson and Seymour, 1991] N. Robertson and P. Sey-
mour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Se-
ries B, 52:153–190, 1991.

