Fault-Tolerant Context-Based I nterpretation of Mathematical For mulas

Helmut Horacek and M agdalena Wolska

Fachrichtung Informatik

Fachrichtung Computerlinguistik

Universitat des Saarlandes, Postfach 15 11 50, D-66041 Saarbriicken, Germany
{horacek@ags,magda@coli}.uni-sh.de

Abstract

We present a fault-tolerant formula interpreter that
aims at finding plausibly intended, formally correct
and contextually meaningful specifications from
user statements containing formal inaccuracies.

1 Motivation

Strong efforts are invested in supporting scientific publica-
tion environments in formal areas such as mathematics, with
powerful tools, including semantically-informed editors and
proof-checkers. Similarly, several research activities aim at
teaching reasoning and problem-solving skills in tutorial sys-
tems. In both settings, effective communication is frequently
hindered by sloppiness and low-level errors in specifying for-
mulas on behalf of the user, resp. student. Hence, not only di-
agnosing errors in formulas, but also building hypotheses for
correcting errors is an important issue, a difficult subproblem
in mathematical knowledge management according to [2].

2 Our Working Context

Our interest in fault-tolerant formula interpretation originates
from work on a tutorial system which teaches proving math-
ematical theorems [1]. In this context, a corpus of written
interactions with a simulated computer-based tutor in the do-
main of naive set theory has been collected [5]. In this cor-
pus, lengthy clarification subdialogs are often carried out to
resolve low-level issues, which one wants to avoid since they
distract the student from the higher-level tutorial goal.

In Table 1, we present examples of flawed formulas from
the corpus. In (1), a segmentation error is shown: not only
a space between the operator symbol P and identifier C, but
also parentheses are missing. (2) is an example of a typing
error, where an operator symbol p has been used in place of
the identifier b. In (3), the types of arguments of the main
operator are invalid. (4) shows a well-formed formula but it
is not relevant in the context of the task: a stronger assertion
about an intersection rather than union of the sets on the right-
hand side of the equation is required™. In (5), similarly to (4),
a weaker operator of set inclusion (C) rather than equality
is correct. Finally, (6) and (7) are examples of commonly
confused relations of subset and membership.

Thisisthe only kind of error which we do not address here.

Table 1: Examples of flawed formulas from the corpus

Example Formula Error Category
1) ((uc)n(BUuCQC))=PCU(ANB) 3
2 Na) € Planb) 2
3 ()%A z C K(A) 2
4 uC)m(BuC)):P(AUC)uP(BUC) 1
®) ((NB)UC) = P(4NE)UP(C) 1
6) (AnB)C P(ANB) 1
7) IfACK(B)thenAgB 2

In the context of the tutorial system mentioned above, the
proof development environment QMEGA [3] is used to check
validity of (possibly ambiguous) proof-step interpretations
and consistency with the proof context. Communication with
QMEGA is mediated by a proof manager whose task is to
build and maintain a representation of the constructed proof.
The proof manager also maintains a discourse memory of
identifiers, operators, and their properties (e.g., type, arity).

3 Error Categoriesand Correction Attempts

Finding purposeful changes in a formula that aim at building
a corrected and possibly intended version of that formula is
substantially guided by its correctness state. We distinguish
three categories of errors: 1) logical, 2) type, and 3) structural
errors. A formula analyzer may find it impossible to build a
formula analysis tree on the basis of the defined constructors
(category 3), or to resolve a type mismatch in an analysis tree
built successfully (category 2). Only for correctly analyzed
formulas, consulting the proof manager yields a distinction
between a formula expressing a wrong (category 1) or a cor-
rect statement. In case of an error, attempts are undertaken
to remedy the error by applying local and contextually justi-
fied modifications to the formula. In order to obtain mean-
ingful changes, we associate a set of replacement rules with
each error category, aiming to achieve an improvement of at
least one category level. Each of these rules is justified by
evidence about the plausibility of the given error occurring in
the domain, the nature of the task, and user capabilities. Some
rules developed on the basis of errors observed in the corpus,
their associated error categories, and examples are illustrated
in Table 2. Testing applications of these rules is distributed
between formula analysis and formula modifying algorithms.

Table 2: Replacement rules attempting to remedy errors

Replacement Rules Error Categories Examples

dual operator 1 N& U, Cced, CeD
stronger/weaker operator 1 D&D,Co=, D=
confused operator 1,2 Cee, K& P
confused identifi er 12 asbpesbpesa
delete character 2 PC= P,PC=C
insert blank or brackets 3 PC=PC,PC= P(C)

4 The Enhanced Formula Analysis

Formula analysis is part of an input interpretation component
whose task is to produce a representation that can be fur-
ther analysed by the proof manager. The formula modifica-
tion procedure presented here extends the method of parsing
mathematical expressions embedded within natural language
text [4]. Extended formula analysis consists of: (1) identifica-
tion of mathematical expressions within the word-tokenized
text; (2) verification of the identified sequence as to syntactic
validity and correction, in case of a parentheses mismatch or
further tokenization needed; 2 (3) parsing of the expression.

1. The mathematical expression tagger uses a list of op-
eration and identifier symbols. Identification of mathe-
matical expressions is based on: single character tokens
(including parenthesis), multiple-character tokens con-
sisting only of known relevant characters, mathematical
symbol unicodes, and new-line characters. Multiple-
character candidate tokens are further segmented into
operators and identifiers by inserting the missing spaces.

2. Once a candidate string is identified, “chains” of formu-
las are separated into individual segments, and paren-
theses match is verified. Missing parentheses are in-
serted while obeying to the following preferences: (i)
provide parentheses for operators that require bracketed
arguments, (ii) avoid redundant parentheses (i.e. double
parentheses around the same substring).

3. Syntactically correct candidate strings are parsed by a
tree-building algorithm accessing standard requisite in-
formation (e.g. list of operators and their precedence).

The output is a set of formula trees with nodes marked as
to type compatibility and bracketing where applicable.

5 TheFormula Modifying Algorithm

The algorithm incrementally generates formula modifications
in a best-first fashion and tests their impact on resolving the
original error, within specified resource limitations, that is, a
maximum number of modified formulas and a time limit:

1. If the formula analyzer has produced a set of interpreta-
tions by applying rules addressing syntactic errors, these
modifications are taken as successors of the original for-
mula. Otherwise, successors are generated for the for-
mula considered best by applying replacement rules in
the category associated with the error reported for the
original formula, unless the error is already resolved.

2This implements replacement rules of category 3. Parentheses
correction may yield multiple plausible interpretations. From this
stage on, further processing is applied to al the interpretations.

2. If resources are not exceeded, the most promising suc-
cessor of a formula generated so far is promoted into the
new best one, and its correctness state is assessed by the
proof manager, continuing at step 1. Otherwise, an or-
dered list of modified formulas examined is returned.

Preferred orderings among created formulas are estab-
lished by the error-related category and a similarity-assessing
function, the former dominating the latter. The assessment
function combines the number of replacement rules applied
and the differences to the structurally most similar formula
in the context, which comprises the set of formulas consist-
ing of the goal expression, the previous proof step and possi-
ble follow-up steps. This function is approximated by simply
adding the number of rule applications to the number of op-
erators and variables appearing in both formulas compared,
multiple occurrences counted according to their frequency.

6 Preliminary Results

Finally, we give analyses of some examples from Table 1.
For utterance (1), we get two interpretations, depending on
whether the formula analyzer separates PC and inserts paren-
theses (2 alternatives), or whether it reports a type error,
flagging PC. In the latter case, replacing PC by any type
compatible identifier yields an error of category 1. The
same holds for the parenthesis insertion with narrower scope,
P(C), but the other alternative, P(C U (A N B)) yields no
error and wins. Example (2) is relatively simple, since only
replacing the occurrence of p, flagged as a type clash, is to be
changed. Only replacements by « and b yield no error, b win-
ning over a since it gets a better context agreement score. In
utterance (5), many rules are applicable. Changing variables
gives lower agreement scores than changing an operator to
its dual counterpart, but all these choices remain within error
category 1. Only replacing “=" by “2” resolves the error.

In the future, we intend to look into other subdomains of
mathematics and to incorporate results of formula modifica-
tions in tutorial strategies, e.g., asking for clarification, of-
fering a small set of modified formulas. Similar interactions
could be also tailored for scientific publication environments.

References

[1] C. Benzm-uller et al. Tutorial Dialogs on Mathematical
Proofs. In Proc. of IJCAI Workshop on Knowledge Rep-
resentation and Automated Reasoning for E-Learning
Systems, pages 12-22, Acapulco, Mexico, 2003.

[2] B.Buchbergerand K. Nakagawa. Mathematical Knowl-

edge Editor: A Research Plan. SFB Report 2004-40,
Johannes Kepler University Linz, 2004.

[3] J. Siekmann et al. Proof Development with OMEGA. In
Proc. of CADE-02, pages 144-149, Copenhagen, Den-
mark, 2002.

[4] M.Wolskaand I. Kruijff-Korbayova. Analysis of Mixed
Natural and Symbolic Language Input in Mathematical
Dialogs. In Proc. of ACL-04, pages 24-32, 2004.

[6] M. Wolska et al. An Annotated Corpus of Tutorial Di-
alogs on Mathematical Theorem Proving. In Proc. of
LREC-04, pages 1007-1010, Lisbon, Portugal, 2004.

