
Streamlining Local Search for Spatially Balanced Latin Squares

Casey Smith, Carla Gomes, and Cesar Fernandez
Computer Science Department

Cornell University
{casey,gomes}@cs.cornell.edu, cesar@eup.udl.es

Abstract

Streamlined constrained reasoning powerfully
boosts the performance of backtrack search meth-
ods for finding hard combinatorial objects. We use
so-called spatially balanced Latin squares to show
how streamlining can also be very effective for lo-
cal search: Our approach is much faster and gen-
erates considerably larger spatially balanced Latin
squares than previously reported approaches (up to
order 35; the previous best results could only gen-
erate solutions up to order 18). We also provide
a detailed characterization of our streamliner and
solution topology for small orders. We believe that
streamlined local search is a general technique suit-
able for solving a wide range of hard combinatorial
design problems.

1 Introduction
The idea underlying streamlining constraints[Gomes and
Sellmann, 2004] is simple but powerful: In order to increase
the effectiveness of propagation, “streamlining constraints”
partition the solution space into different portions with differ-
ent global properties. Since in general the streamlined con-
straints are not implied by the original problem constraints,
the resulting search and solution spaces are subsets of the
original spaces. Gomes and Sellmann showed the effective-
ness of streamlined constraints for solving hard combinato-
rial design problems, in particular spatially balanced Latin
squares (SBLS, defined in Section 2). Using streamlined
backtrack search methods, they solved considerably larger
SBLS problem instances than with local search: up to or-
der 18, while a local search method applied to the original
problem could only generate solutions up order 9.

This paper shows how streamlining can also be effective
for local search. We note that while the addition of streamlin-
ing constraints is straightforward in backtrack search meth-
ods, it is not always the case for local search methods, since
constraints are in general enforced via the objective function.
The key is to consider streamlining constraints that lead to an
alternate neighborhood representation. We applied stream-
lined local search to the problem of generating spatially bal-
anced Latin squares. Our streamliner defines a basic swap
neighborhood as a column permutation of the input Latin

square. This provides additional interesting structural prop-
erties, making our local search procedure scale up consider-
ably better than previously reported approaches. We solve
instances up through order 35; the previous best results could
only generate solutions up to order 18. Moreover, our stream-
liner provides useful intuitions on a construction for spatially
balanced Latin squares. We believe that streamlined local
search is a general technique suitable for finding objects with
intricate combinatorial constraints.

2 Spatially Balanced Latin Squares
A Latin Square of ordern is ann by n grid where each of
then2 cells in the grid is assigned one ofn symbols such that
each symbol appears exactly once in each column and each
row. Creating a Latin square is by no means difficult. We can
define acyclic constructionas an ordern Latin square where
the element in rowi and columnj has the value(i + j) mod
n (see Figure 1). The first row will have all the symbols in
order: [1 2 3 ...n]. Each subsequent row is the same as the
previous row with all the values shifted one location to the
left, wrapping the first element to the end. Thus, the second
row will be [2 3 ...n 1]; the third will be [3 ...n 1 2]; and so
on. Note that the columns follow the same pattern: the first
column is [1 2 3 ...n]T ; the second is [2 3 ...n 1]T ; and the
third is [3 ...n 1 2]T .

One challenge comes in generatingspatially balanced
Latin squares (SBLS) where the sum of the distances between
two symbols across all rows is constant for all pairs of sym-
bols. First, we definedi(j, k) to be the distance between sym-
bolsj andk in row i. This distance is calculated as the abso-
lute difference of the column indices of where symbolsj and
k appear in rowi. For example, if rowi were [3 5 1 2 4], then
di(5, 2) would be|2 − 4| = 2. Then we can define the total
distanced(j, k) to be

d(j, k) =
n∑

i=1

di(j, k). (1)

A SBLS requires that all pairs of symbols have the same total
distance:

∀i 6= j, k 6= l : d(i, j) = d(k, l). (2)

SBLS are useful for agronomic field experiment design[van
Es and van Es, 1993] and are compelling constraint satisfac-
tion problems because of their high degree of structure. As

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

1 4 5 3 2
2 5 1 4 3
3 1 2 5 4
4 2 3 1 5
5 3 4 2 1

(A) (B)

Figure 1: (A) A cyclic Latin square (order 5). (B) A SBLS where
∀j, k : d(j, k) = 10.

shown in[Gomeset al., 2004], d(j, k) = n(n+1)
3 for all j 6= k

in any SBLS, implying that no SBLS exist for ordersn such
thatn mod3 = 1.

3 Streamlined Local Search
Gomes and Sellmann showed that a standard local search ap-
proach performs remarkably poorly at finding SBLS. We hy-
pothesize that this is due to the enormity of the search space
and the global nature of the constraints. The search space
is so big and the solutions are so few that the odds of local
search finding a solution are very slim for all but the smallest
orders. If we can cleverly restrict the search space to a small
subspace which contains a higher density of solutions, we can
increase the odds that local search will find a solution.

Consider the subspace resulting from starting with a Latin
square and restricting the search space to be a column or-
der permutation of the original square. That is, take a Latin
square and swap entire intact columns to permute the order
in which the columns appear. Since this reordering of the
columns will never make the square non-Latin (all symbols
will appear in all rows and in all columns exactly once), we
can try permuting the column order to make the Latin square
spatially balanced. Note that the space of column permuta-
tions of a particular Latin square is vanishingly small com-
pared to the entire space of Latin squares. The goal is to find
an initial Latin square such that this small subspace is dense
with SBLS. Cyclically constructed Latin squares empirically
provide such a subspace.

If the initial Latin square is generated by the cyclic con-
struction, some structural properties can be exploited to speed
the search. First, observe that there will be at mostbn

2 c
unique values of the total distance among then(n−1)

2 pairs
of symbols. To see this, define

dmod(j, k) = min(|j − k|, |j − k + n|, |j − k − n|). (3)

Thus,dmod(j, k) is the distance between symbolsj andk in
symbol space, modulo the number of symbols (n). For ex-
ample, for an order 6 Latin square,dmod(2, 4) = 2 because
the shortest path from 2 to 4 is by counting 2 3 4, revealing a
distance of 2. Similarly,dmod(1, 5) = 2 because the shortest
path from 1 to 5 is by counting 5 6 1, revealing a distance of 2.
Examining the cyclic construction reveals that pairs of sym-
bols with identical values ofdmod(j, k) will have identical
values ofd(j, k), even if the column order is permuted. Thus
since there arebn

2 c different nonzero values ofdmod(j, k),
there are at mostbn

2 c different total distances between pairs
of symbols for any column order permutation of the cyclic

A B C D E
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

A E C D B
1 5 3 4 2
2 1 4 5 3
3 2 5 1 4
4 3 1 2 5
5 4 2 3 1

Col A B C D E
A - X Y Y X
B - - X Y Y
C - - - X Y
D - - - - X
E - - - - -

(A) (B) (C)

Figure 2: (A) A cyclic Latin square (order 5). (B) A column per-
mutation of the cyclic Latin square. Note that no matter how the
columns are reordered,
d(1, 2) = d(2, 3) = d(3, 4) = d(4, 5) = d(5, 1) =

|A − B| + |B − C| + |C − D| + |D − E| + |A − E| and
d(1, 3) = d(2, 4) = d(3, 5) = d(4, 1) = d(5, 2) =

|A − C| + |B − D| + |C − E| + |D − A| + |E − B|
(C) A matrix showing how the intra-column distances contribute to
the pair distances. The 10 pairs of symbols correspond to group X
((1,2), (2,3), (3,4), (4,5), (5,1)) and group Y ((1,3), (2,4), (3,5), (4,1),
(5,2)).

construction. As an example, if we check the total distance
between symbols 1 and 2, we do not need to check the dis-
tance between any other consecutive symbols, i.e., 2 and 3, 3
and 4, and so on because they will all have identical values
(see Figure 2). Next, note that since the columns always re-
main intact no matter how their order is permuted, we need
only store the first row as we search for SBLS. From the first
row, we can calculate thed(j, k) corresponding to each of the
bn

2 c possibly distinctd(j, k). We also observe that we can fix
the first column to be headed by symbol 1 without decreasing
our probability of finding a solution: there will be an equal
number of solutions with 1 heading the first column as with
any other number.

These observations naturally lead to a gradient descent al-
gorithm. First, we define theimbalanceof a square to be

imbalance=
∑
i<j

∣∣∣∣d(i, j) − n(n + 1)
3

∣∣∣∣ . (4)

That is, the imbalance is the sum over all pairs of how far from
ideal spacing the total spacing of the pair is. Starting with a
random permutation of the first row, we swap the location
of two symbols such that it decreases the imbalance of the
square. When we reach a local minimum, we randomize and
try again.

Algorithm 1 SBLS Streamlined Local Search
1: Generate a Latin Square of ordern by the cyclic con-

struction
2: Randomly permute the order of the columns
3: Select a column and try swapping it with every other col-

umn
4: Keep the swap which minimizes the imbalance
5: If stuck, then randomize the order of the columns
6: Repeat from step 3

Finally, we note that we can generate solutions which are
symmetric across the main diagonal. Since spatial balance is
defined as the sum of distances within rows, swapping intact

order 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27 29 30 32-35
CP 0.06 16 241
SS 0.05 0.88 0.91 9.84 531 5K
CS 0.02 14.4 107K

CCCP 4e-5 3e-4 1e-4 1e-3 1e-3 0.02 0.01 0.25 2.3 16 16 104 281 609 4K 43k≈160K ≈1.2M

Table 1: Solution times are given in seconds. CP, SS, and CS are the times to find the first solution via standard constraint programming,
symmetric streamlining, and composition streamlining as reported by Gomes and Sellmann[2004] as run on a 550 MHz Pentium III machine.
CCCP is the cyclic construction column permutation method presented here. Times given are the mean time to find a solution averaged across
several independent runs on a 1.0 GHz Pentium III machine. Note that although our processor was only twice as fast, our performance is
orders of magnitude better. Note that the largest solution from previous methods was only order 18, while our method can find solutions up
to order 35. Additionally, no previous method had found solutions for orders 15 and 17.

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

1 3 4 2 6 5
2 4 5 3 1 6
3 5 6 4 2 1
4 6 1 5 3 2
5 1 2 6 4 3
6 2 3 1 5 4

1 3 4 2 6 5
3 5 6 4 2 1
4 6 1 5 3 2
2 4 5 3 1 6
6 2 3 1 5 4
5 1 2 6 4 3

(A) (B) (C)

Figure 3: (A) A cyclic Latin square (order 6). (B) The same cyclic
Latin square with the columns permuted to form a SBLS. (C) The
same SBLS as in (B), but with the rows reordered the same as the
columns to make a symmetric SBLS.

rows will not affect the balancing. If we reorder the rows
in the same way as the columns, the solution will become
symmetric across the main diagonal and spatially balanced in
terms of both the intra-row and intra-column distances (see
Figure 3).

4 Empirical Results
The best performance on finding SBLS was reported by
Gomes and Sellmann[2004], so we compare our results to
theirs. Our streamlining is much simpler than theirs and per-
forms dramatically better. They could only generate solutions
up to order 18 (and were unable to find solutions for orders
15 and 17). We have generated SBLS for all possible orders
up through 35. Times in seconds are given in Table 1.

We also tried using our streamlining with complete back-
track search. While it improves performance over previous
methods, the local search method presented here performs
considerably better. In addition, we tried composing solutions
from smaller cyclic Latin squares using local search, but the
performance was slightly worse than the simple streamliner
presented here.

Although we have only discussed permuting the columns
of the cyclic construction, in principle, we could permute
the columns of any Latin square in an attempt to find SBLS.
However, most arbitrary random Latin squares (such as those
generated by Jacobson and Matthews[1996]) cannotbe per-
muted to be spatially balanced. This observation is remark-
able, given that cyclic constructions are much more imbal-
anced than an average random Latin square. For instance, the
imbalance of an order 30 cyclic Latin square is 46920 while
the imbalance of a typical order 30 random Latin square is

only around 12000.
Through exhaustive enumeration, we analyzed the solution

space of SBLS for small orders. Interestingly, we found that
for orders 6 and 8, all the SBLS can be generated by row per-
muting and/or one-to-one symbol remapping (that is change
all instances of symboli to symbolj, symbolk to symbol
l, and so on) the SBLS obtained as column permutations of
the cyclic construction. However, for higher orders, there ex-
ist some solutions which cannot be derived in that way. We
are currently studying the topology of the solution space for
higher orders trying to identify relationships among solutions.
We are also studying the matrix of distances (as in Figure 2).
We believe that the characterization of solution relationships
and the distance matrix provide valuable clues for the design
of a construction for generating SBLS of arbitrary size.

5 Conclusions
We describe a competitive streamlined local search approach
for generating SBLS. We believe that streamlined local search
is a general technique, effective for finding objects with intri-
cate combinatorial properties. We hope that this work will
inspire other researchers interested in solving hard combina-
torial design problems.

References
[Gomes and Sellmann, 2004] C. Gomes and M. Sellmann.

Streamlined constraint reasoning. InCP 2004, 2004.

[Gomeset al., 2004] C. Gomes, M. Sellmann, C. van Es, and
H. van Es. The challenge of generating spatially balanced
scientific experiment designs. InCPAIOR 2004, 2004.

[Jacobson and Matthews, 1996] Mark Jacobson and Peter
Matthews. Generating uniformly distributed random latin
squares.J. of Combinatorial Designs, 4(6):405–437, 1996.

[van Es and van Es, 1993] Harold van Es and Cindy van Es.
The spatial nature of randomization and its effects on the
outcome of field experiments.Agronomy Journal, 85:420–
428, 1993.

