
Arc Consistency during Search

Chavalit Likitvivatanavong

School of Computing

National University of Singapore

Yuanlin Zhang

Scott Shannon

Dept. of Computer Science

Texas Tech University, USA

James Bowen

Eugene C. Freuder

Cork Constraint Computation Centre

University College Cork, Ireland

Abstract

Enforcing arc consistency (AC) during search has
proven to be a very effective method in solving
Constraint Satisfaction Problems and it has been
widely-used in many Constraint Programming sys-
tems. Although much effort has been made to de-
sign efficient standalone AC algorithms, there is
no systematic study on how to efficiently enforce
AC during search, as far as we know. The signif-
icance of the latter is clear given the fact that AC
will be enforced millions of times in solving hard
problems. In this paper, we propose a framework
for enforcing AC during search (ACS) and com-
plexity measurements of ACS algorithms. Based
on this framework, several ACS algorithms are de-
signed to take advantage of the residual data left in
the data structures by the previous invocation(s) of
ACS. The algorithms vary in the worst-case time
and space complexity and other complexity mea-
surements. Empirical study shows that some of
the new ACS algorithms perform better than the
conventional implementation of AC algorithms in
a search procedure.

1 Introduction and background

Enforcing arc consistency (AC) on constraint satisfaction
problems (CSP) during search has been proven very success-
ful in the last decade [Sabin and Freuder, 1994; Mackworth,
1977] As AC can be enforced millions of times in solving
hard instances, the need for efficient AC algorithms is obvi-
ous. Given the numerous attempts to optimize standalone AC
algorithms, further improvement on their performance be-
comes very challenging. In this paper, in order to improve
the overall efficiency of a search procedure employing arc
consistency, we focus on how to efficiently enforce AC dur-
ing search (ACS), rather than on standalone AC algorithms.

In this paper, we abstract ACS into a separate module that
maintains AC on a changing CSP problem P with four meth-
ods. Several complexity measurements are then proposed to
evaluate the theoretical efficiency of ACS algorithms in term
of these methods. A key method is ACS.try(x = a), where
x = a is an assignment. It checks whether P ∪ {x = a} can
be made arc consistent. Whenever a search procedure makes

an assignment, it will call ACS.try() with that assignment as
the argument and make further decision based on the return
value of try(). With the explicit abstraction of ACS, we notice
that after one invocation of an ACS method, say ACS.try(),
there are residual data left in the structures of ACS. We will
explore how to make use of these residual data to design new
ACS algorithms with the new measurements in mind. Empir-
ical study is also carried out to benchmark the new ACS al-
gorithms and those designed using conventional techniques.
One of the new ACS algorithms is very simple but shows a
clear performance advantage (clock time) over the rest. Nec-
essary background is reviewed below.

A binary constraint satisfaction problem (CSP) is a triple
(V, D, C) where V is a finite set of variables, D ={Dx | x ∈
V and Dx is the finite domain of x}, and C is a finite set
of binary constraints over the variables of V . As usual, we
assume there is at most one constraint on a pair of variables.
We use n, e, and d to denote the number of variables, the
number of constraints, and the maximum domain size of a
CSP problem.

Given a constraint cxy, a value b ∈ Dy is a support of
a ∈ Dx if (a, b) ∈ cxy , and a constraint check involves deter-
mining whether (u, v) ∈ cxy for some u ∈ Dx and v ∈ Dy.
A constraint cxy is arc consistent if each value of Dx has a
support in Dy and every value of Dy has a support in Dx. A
CSP problem is arc consistent (AC) if all its constraints are
arc consistent. To enforce arc consistency on a CSP problem
is to remove from the domains the values that have no sup-
port. A CSP is arc inconsistent if a domain becomes empty
when AC is enforced on the problem.

We use D0
x to denote the initial domain of x before the

search starts while Dx the current domain at a moment during
AC or search. A value u is present in (or absent from, respec-
tively) Dx if u ∈ Dx (u /∈ Dx respectively). For each domain
Dx ∈ D, we introduce two dummy values head and tail. We
assume there is a total ordering on Dx ∪ {head, tail} where
head is the first, i.e., smallest, value, and tail the last (largest)
value. For any a from D0

x, succ(a, Dx) (pred(a,Dx) respec-
tively) is the first (last respectively) value of Dx∪ {head, tail}
that is greater (smaller respectively) than a.

2 Enforcing arc consistency during search

We take a CSP solver as an iterative interaction between a
search procedure and an ACS algorithm. The ACS algorithm

IJCAI-07
137

can be abstracted into one data component and four methods:
a CSP problem P , init(P1), try(x = a), backjump(x = a),
and addInfer(x �= a), where P1 is another CSP problem, x ∈
P.V , and a ∈ P.Dx. Throughout the paper, P.V , P.Dx(x ∈
P.V), and P.C denote the set of variables, the domain of x,
and the set of constraints of P .

ACS.P is accessible (read only) to a caller. When the con-
text is clear, we will simply use P , instead of ACS.P .

ACS.init(P1) sets P to be P1 and creates and initializes the
internal data structures of ACS. It returns false if P is arc in-
consistent, and true otherwise. ACS.try(x = a) enforces arc
consistency on P1 = P ∪ {x = a}. If the new problem P1

is arc consistent, it sets P to be P1 and returns true. Other-
wise, x = a is discarded, the problem P remains unchanged,
and try() returns false. In general, the method can accept any
type of constraints, e.g., x ≥ a. ACS.addInfer(x �= a) en-
forces arc consistency on P1 = P ∪ {x �= a}. If the new
problem P1 is arc consistent, it sets P to be P1 and returns
true. Otherwise, addInfer() returns false. When MAC infers
that x can not take value a, it calls ACS.addInfer(x �= a).
In general, any constraint can be added as long as it is in-
ferred from the current assignments by the search procedure.
ACS.backjump(x = a) discards from P all constraints added,
by ACS.try() or ACS.addInfer(), to P since (including) the
addition of x = a. The consequences of those constraints
caused by arc consistency processing are also retracted. This
method does not return a value. We ignore the prefix ACS of
a method if it is clear from the context.

A search procedure usually does not invoke the ACS meth-
ods in an arbitrary order. The following concept character-
izes a rather typical way for a search procedure to use ACS
methods. Given a problem P , a canonical invocation se-
quence (CIS) of ACS methods is a sequence of methods m1,
m2, . . ., mk satisfying the following properties: 1) m1 is
init(P1) and for any i (2 ≤ i ≤ k), mi ∈ {try(), addIn-
fer(), backjump()}; 2) m1 returns true if k ≥ 2; 3) for any
try(x = a) and addInfer(x �= a) ∈ {m2, . . ., mk}, x ∈
ACS.P.V and a ∈ Dx at the moment of invocation; 4) for
any mi=backjump(y = a) where 2 ≤ i ≤ k, mi−1 must
be an invocation of try() or addInfer() that returns false, and
there exists mj such that 2 ≤ j < i − 1 and mj=try(y = a)
and there is no backjump(y = a) between mj and mi; 5) for
any mi=addInfer() where 2 ≤ i ≤ k, if it returns false, mi+1

must be backjump(). Note that an arbitrary canonical invo-
cation sequence might not be a sequence generated by any
meaningful search procedure.

Example Algorithm 1 (line 1–15) illustrates how MAC
[Sabin and Freuder, 1994] can be designed using ACS.

2.1 Template implementation of ACS methods

To facilitate the presentation of our ACS algorithms, we list
a template implementation for each ACS method in Algo-
rithm 1. Since try() could change the internal data structures
and the domains of the problem P , it simply backups the cur-
rent state of data structures with timestamp(x, a) (line 18) be-
fore it enforces arc consistency (line 19–21). An alternative is
to “backup the changes” which is not discussed here because
it does not affect any complexity measures of ACS algorithms
(except possibly the clock time). ACS-X.propagate() follows

Algorithm 1: MAC and template ACS methods

———————————–MAC algorithm———————————–

MAC(P)

if (not ACS.init(P)) then return no solution1
create an empty stack s; // no assignments is made yet2
freevariables← P.V3
while (freevariables �= ∅) do4

Select a variable xi from freevariables and a value a for xi5
if (ACS.try(xi = a)) then6

s.push((xi, a))7
freevariables← freevariables−{xi}8

else9
while (not ACS.addInfer(xi �= a)) do10

if (s is not empty) then (xi, a) ← s.pop()11
else return no solution12
ACS.backjump(xi = a)13
freevariables← freevariables∪{xi};14

return the assignments15
———————————–Template ACS methods———————————–

ACS-X.init(P1)

P ← P1, initialize the internal data structures of ACS-X16
return AC(P) // AC() can be any standalone AC algorithm17

ACS-X.try(x = a)

backup(timestamp (x, a))18
delete all values except a from Dx19
Q ←{(y, x) | cyx ∈ P.C }20
if (propagate(Q)) then return true21
else ACS-X.restore(timestamp (x, a)), return false22

ACS-X.addInfer(x �= a)

delete a from Dx , Q ← {(y, x) | cyx ∈ P.C}, return propagate(Q)23
ACS-X.backjump(x = a)

restore(timestamp (x, a))24
ACS-X.backup(timestamp (x, a))

backup the internal data structures of ACS-X, following timestamp (x, a)25
backup the current domains, following timestamp (x, a)26

ACS-X.restore(timestamp (x, a))

restore the internal data structures of ACS-X, following timestamp (x, a)27
restore the domains of P , following timestamp (x, a)28

ACS-X.propagate(Q)

while Q �= ∅ do29
select and delete an arc (x, y) from Q30
if revise(x, y) then31

if Dx = ∅ then return false32
Q ← Q ∪ {(w, x) | Cwx ∈ P.C, w �= y}33

return true34
ACS-X.revise(x, y)

delete ← false35
foreach a ∈ DX do36

if not hasSupport(x, a, y) then37
delete ← true, delete a from DX38

return delete39
ACS-X.hasSupport(x, a, y)

if (∃b ∈ Dy such that (a, b) ∈ cxy) then return true40
else return false41

that of AC-3 [Mackworth, 1977]. ACS-X.addInfer(x �= a)
(line 23) does not call backup() because x �= a is an infer-
ence from the current assignments and thus no new backup is
necessary.

2.2 Complexity of ACS algorithms

We present several types of the time and space complexi-
ties for ACS algorithms. The node-forward time complex-
ity of an ACS algorithm is the worst-case time complexity of
ACS.try(x = a) where x ∈ P.V and a ∈ Dx. An incremen-
tal sequence is a consecutive invocations of ACS.try() where
each invocation returns true and no two invocations involve
the the same variable (in the argument). The path-forward
time complexity of an ACS is the worst-case time complexity
of any incremental sequence with any k ≤ n (the size of P.V)
invocations. Node-forward space complexity of an ACS algo-
rithm is the worst case space complexity of the internal data
structures (excluding those for the representation of the prob-
lem P) for ACS.try(x = a). Path-forward space complexity

IJCAI-07
138

of an ACS algorithm is the worst case space complexity of
the internal data structures for any incremental sequence with
n invocations.

In empirical studies, the number of constraint checks is a
standard cost measurement for constraint processing. We de-
fine for ACS two types of redundant checks. Given a CIS
m1, m2, ..., mk and two present values a ∈ Dx and b ∈ Dy

at mt(2 ≤ t ≤ k), a check cxy(a, b) at mt is a negative repeat
(positive repeat respectively) iff 1) (a, b) /∈ cxy ((a, b) ∈ cxy

respectively), 2) cxy(a, b) was performed at ms(1 ≤ s < t),
and 3) b is present from ms to mt.

3 ACS in folklore

Traditionally, ACS is simply taken as an implementation of
standard AC algorithms in a search procedure. Let us first
consider an algorithm ACS-3 employing AC-3. It is shown
in Algorithm 2 where only methods different from those in
Algorithm 1 are listed.

Algorithm 2: ACS-3 and ACS-3.1record

————————————-ACS-3———————————

ACS-3.init(P1)

P ← P1, initialize the internal data structures of ACS-X1
return AC-3(P)2

ACS-3.backup(timestamp (x, a))

backup the current domains, following timestamp (x, a)3
ACS-3.restore(P, timestamp (x, a))

restore the domains, following timestamp (x, a)4
ACS-3.hasSupport(x, a, y)

b ← head5
while b ← succ(b, Dy) and b �= tail do6

if (a, b) ∈ Cxy then return true

return false7
————————————-ACS-3.1record———————————

ACS-3.1record.init(P1)

P ← P18
∀cxy ∈ P.C and ∀a ∈ Dx , initialize last (x, a, y)9
return AC-3.1(P)10

ACS-3.1record.backup(timestamp (x, a))

∀cxy ∈ P, a ∈ Dx , backup last (x, a, y), following timestamp (x, a)11
backup the current domains, following timestamp (x, a)12

ACS-3.1record.restore(timestamp (x, a))

restore the data structure last (), following timestamp (x, a)13
restore the domains, following timestamp (x, a)14

ACS-3.1record.hasSupport(x,a, y)

b ← last(x, a, y) ; if b ∈ Dy then return true15
while b ← succ(b, Dy) and b �= tail do16

if (a, b) ∈ cxy then { last(x, a, y) ← b ; return true }17

return false18

Proposition 1 ACS-3 is correct with respect to any CIS.
Node-forward and path-forward complexity of ACS-3 are
both O(ed3) while node-forward and path-forward space
complexity are O(ed). It can not avoid any positive or nega-
tive repeats.

It is well known that variable-based AC-3 can be imple-
mented with space O(n). The same is also true for ACS-3.

We next introduce ACS-3.1record, an algorithm that em-
ploys AC-3.1 [Bessiere et al., 2005]. It is listed in Algo-
rithm 2 in which methods that are same as the template ACS
methods are omitted. AC-3.1 improves upon AC-3 simply
by using a data structure last(x, a, y) to remember the first
support of a of x in Dy in the latest revision of cxy. When
cxy needs to be revised again, for each value a of x, AC-3.1
starts the search of support of a from last(x, a, y). last(x, a, y)

(a) (b)

.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
......
........

..
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
......
........

...
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
......
........

...
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

............
............
...........
...........
............
............
...........
............
..........

..

...........................
............................

...........................
..

..............
..............

...............
...............

..............
..............

..............

...

..
..

..........
..........

..........

....................

....................

..........

..........
..........

..........
..........

.......

....................

....................

............
...........
............
............
............
............
...........
............
.........

.........................

..........
.......

..........a1

a

a2

b1 c

d

b2
b3
b4

y zx

c1

d1

.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
......
........

..
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
......
........

...
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

..

..........

..........
..........

....................

....................

....................

....................

.......................
......................

.......................
.......................

.........

a

a2

b1
b2
b3
b4

yx

a1

Figure 1: Example

satisfies the following two invariants: support invariant —
(a, last(x, a, y)) ∈ cxy, and safety invariant — there exists
no support of a in Dy that comes before last(x, a, y). The
function hasSupport() (line 15–18) follows the same way as
AC-3.1 to find a support. Note that in restore(), the removed
values are restored in the original ordering of the domains,
which is critical for the correctness of ACS-3.1record.

Theorem 1 ACS-3.1record is correct with respect to any
CIS. Node-forward and path-forward time complexity of
ACS-3.1record are both O(ed2) while node-forward and
path-forward space complexity are O(ed) and O(ned) re-
spectively. It can neither fully avoid negative nor positive
repeats.

The node-forward space complexity of ACS-3.1record can
be improved to O(edmin(n, d)) [van Dongen, 2003].

Example In this example we focus on how a support is
found in a CIS of ACS-3.1record methods. Consider the
following CIS: mi = try(z = c) (returning false) and mi+1

= try(z = d). Assume before mi, P is arc consistent and
contains some constraints and domains shown in Figure 1(a)
where only the supports of a, c, and d are explicitly drawn.
Assume last(x, a, y)=b1 before mi. During mi, we need to
find a new support for a ∈ Dx because b1 is deleted due
to the propagation of z = c. Assume last(x, a, y) was up-
dated by ACS-3.1record to the support b4 before mi returns
false. Since P ∪{z = c} is arc inconsistent, last(x, a, y) is
restored to be b1 by mi. In mi+1, a new support is needed
for a ∈ Dx since b1 is deleted due to the propagation of
z = d. ACS-3.1record needs to check b2 and b3 before it
finds the support b4. Value b2 is present from mi to mi+1,
and (a, b2) ∈ cxy was checked in both mi and mi+1. The
constraint check (a, b2) ∈ cxy is a negative repeat at mi+1.

4 Exploiting residual data

A key feature of ACS-3 and ACS-3.1record is that they are
faithful to the respective AC algorithms. We will focus on
ACS and investigate new ways to make use of the fact that
the methods of an ACS algorithm are usually invoked many
times (millions of times to solve a hard problem) by a search
procedure.

4.1 ACS-residue

In this section, we design a new algorithm ACS-residue, listed
in Algorithm 3, that extends the ideas behind AC-3 and AC-
3.1. Like ACS-3.1record, ACS-residue needs a data struc-
ture last(x, a, y) for every cxy ∈ C and a ∈ Dx. Af-
ter ACS-residue.init(P1), last(x, a, y) is initialized to be the

IJCAI-07
139

first support of a with respect to cxy. At every invocation
of ACS-residue.try() or ACS-residue.addInfer(), when find-
ing a support for a value a of Dx with respect to cxy , ACS-
residue.hasSupport(x, a, y) first checks (line 3) if last(x, a, y)
is still present. If it is, a support is found. Otherwise, it
searches (line 3–5) the domain of y from scratch as AC-
3 does. If a new support is found, it will be used to up-
date last(x, a, y) (line 5). The method is called ACS-residue
because ACS-residue.try() or ACS-residue.addInfer() simply
reuses the data left in the last() structure by the previous invo-
cations of try() or addInfer(). Unlike ACS-3.1record, ACS-
residue does not maintain last() in backup() and restore().

Algorithm 3: ACS-residue

————————————-ACS-residue———————————

ACS-residue.init(P1) {same as ACS-3.1record.init(P1)}
ACS-residue.backup(timestamp (x, a))

backup the current domains, following timestamp (x, a)1
ACS-residue.restore(timestamp (x, a))

restore the domains of P , following timestamp (x, a)2
ACS-residue.hasSupport(x,a, y)

if last(x, a, y) ∈ Dy then return true else b ← head3
while b ← succ(b, Dy) and b �= tail do4

if (a, b) ∈ cxy then { last(x, a, y) ← b ; return true }5

return false6
————————————-ACS-resOpt———————————

ACS-resOpt.init(P1)

P ← P17
∀cxy ∈ P.C and ∀a ∈ Dx, initialize last (x, a, y) and stop (x, a, y)8
return AC-3.1(P)9

ACS-resOpt.backup(timestamp (x, a))

backup the current domains of P , following timestamp (x, a)10
ACS-resOpt.restore(timestamp (x, a))

restore the domains, following timestamp (x, a)11
ACS-resOpt.try(x = a)

∀cxy ∈ P.C and ∀a ∈ Dx, stop(x, a, y) ← last(x, a, y)12
backup(timestamp (x, a))13
delete all the values except a from Dx, Q ←{(y, x) | cyx ∈ P.C }14
if propagate(Q) then return true15
else {restore(timestamp (x, a)), return false }16

ACS-resOpt.addInfer(x �= a)

∀cxy ∈ P.C and ∀a ∈ Dx, stop(x, a, y) ← last(x, a, y)17
delete a from Dx , Q ← {(y, x) | cyx ∈ P.C }18
return propagate(Q)19

ACS-resOpt.hasSupport(x,a, y)

b ← last(x, a, y) ; if b ∈ Dy then return true20

while b ← cirSucc(b,D0

y) and b ∈ Dy and b �= stop (x,a,y) do21
if (a, b) ∈ cxy then last(x, a, y) ← b; return true22

return false23

Theorem 2 ACS-residue is correct with respect to any CIS.
Node-forward and path-forward time complexity of ACS-
residue are O(ed3) and O(ed3) respectively while node-
forward and path-forward space complexity are both O(ed).
It fully avoids positive repeats but avoids only some negative
repeats.

Compared with ACS-3.1record, ACS-residue has a better
space complexity but a worse time complexity. ACS-residue
does not need to backup its internal data structures.

Example Consider the example in the previous section.
Before mi, i.e., ACS-residue.try(z = c), the problem is arc
consistent and last(x, a, y)=b1. During mi, assume ACS-
residue updates last(x, a, y) to be b4 before it returns false.
After mi, only the deleted values are restored to the domains
but nothing is done to last() structure and thus last(x, a, y)
is still b4 (b4 is a residue in last()). In mi+1, i.e., ACS-
residue.try(z = d), when hasSupport() tries to find a support
for a of Dx, it checks first last(x, a, y). b4 is present and thus

a support of a. In contrast, ACS-3.1record.try(z = d) looks
for a support for a from b1 ∈ Dy. Through this example, it is
clear that ACS-residue can save some constraint checks that
ACS-3.1record can not save (the converse is also true obvi-
ously).

4.2 ACS-resOpt

ACS-residue’s node-forward complexity is not optimal. We
propose another algorithm, ACS-resOpt (listed in Algo-
rithm 3), that has optimal node-forward complexity while
using the residues in last(). The idea is to remember the
residues in last(x, a, y) by stop(x, a, y) (line 12 and line 17)
at the beginning of try() and ACS-resOpt.addInfer(). Then
when hasSupport(x, a, y) looks for a support for a ∈ Dx and
last(x, a, y)(=b) is not present, it looks for a new support af-
ter b (line 21), instead of the beginning of the domain. The
search could go through the tail and back to the head and con-
tinue until encounter stop(x, a, y). For simplicity, in line 21
of hasSupport(), the initial domain of the problem P is used:
cirSucc(a, D0

y) = succ(head,D0
y) if succ(a, D0

y) = tail; other-
wise cirSucc(a, D0

y) = succ(a, D0
y). In our experiment how-

ever, we implement hasSupport() using the current domain.

Theorem 3 ACS-resOpt is correct with respect to any CIS.
Node-forward and path-forward time complexity are O(ed2)
and O(ed3) respectively while node-forward and path-
forward space complexity are both O(ed). It fully avoids
positive repeats but avoids only some negative repeats.

Example Consider the constraint cxy in Figure 1(b) be-
fore ACS-resOpt.try(). The supports of a are drawn explicitly
in the graph. Assume last(x, a, y) = b2 before try(). ACS-
resOpt.try() will first set stop(x, a, y)=b2. Assume in the
following constraint propagation b2 is deleted due to other
constraints on y. ACS-resOpt.hasSupport(x, a, y) will search
a support for a after b2 and find the new support b4. As-
sume b4 is later deleted by constraint propagation. ACS-
resOpt.hasSupport(x, a, y) will start from b4, go through the
tail and back to the head, and finally stop at b2 because
stop(x, a, y)=b2. No support is found for a and it will be
deleted from the current domain.

5 ACS with adaptive domain ordering

To explore the theoretical efficiency limits of ACS, we pro-
pose the algorithm ACS-ADO with optimal node-forward and
path-forward time complexity. ACS-ADO employs an adap-
tive domain ordering: a deleted value is simply restored to
the end of its domain in restore(), while in ACS-3.1record,
it is restored in regard of the total ordering on the initial do-
main. As a result, when finding a support by using last(), it is
sufficient for hasSupport() to search to the end of the domain
(rather than going back to the head of the domain as done by
ACS-resOpt).

ACS-ADO, listed in Algorithm 4, needs the data structures
lastp(x,a, y), buf(a, y) for every cxy ∈ P.C and a ∈ Dx.
The content of lastp(x,a, y) and buf(a, y) is a pointer p to a
supporting node that has two components p↑.bag and p↑.for.
If buf(a, y)=p, p↑.for is a and p↑.bag is the set { b ∈ Dy |
lastp(y, b, x)↑.for=a}. lastp(x, b, y)↑.for is a value of Dy.

IJCAI-07
140

Algorithm 4: ACS-ADO

ACS-ADO.init(P1)

∀cxy ∈ P.C and ∀a ∈ Dx , last (x, a, y) ← head1
∀cxy ∈ P.C and ∀a ∈ Dx ∪ {tail} lastp (x, a, y) ← NULL2
flag ← AC-3.1(P) // AC-3.1 will populate last3
foreach cxy ∈ P.C and each a ∈ Dx do4

b ← last (x, a, y)5
if buf (b, x) = NULL then buf (b, x) ← createNode (b)6
add a to buf (b, x)↑.bag, lastp (x, a, y) ← buf (b, x)7

return flag8
ACS-ADO.backup(P, timestamp (x, a))

backup the current domains, following timestamp (x, a)9
ACS-ADO.restore(P, timestamp (x, a))

foreach variable y ∈ P.V do10
restore the deleted values to the end of Dy , following timestamp (x, a)11
let v be the first restored value12
foreach cxy ∈ P.C do13

swap buf (v, x) and buf (tail, x)14
swap buf (v, x)↑.for and buf (v,tail)↑.for

ACS-ADO.remove(b, y)

c ← succ (b, Dy)15
if |buf (b, x)↑.bag| > |buf (c, x)↑.bag| then16

swap buf (b, x) and buf (c, x), swap buf (b, x)↑.for and buf (b, x)↑.for

foreach v ∈ buf (b, x)↑.bag do update (v, c, x, y, b)17
delete b from Dy18

ACS-ADO.hasSupport(x, a, y)

b ← lastp (x, a, y)↑.for19
if (a, b) ∈ cxy then return true else b1 ← b20
while b ← succ(b, Dy) and b �= tail do21

if (a, b) ∈ cxy then {update (a, b, x, y, b1), return true }22

update (a, tail, x, y, b1), return false23
ACS-ADO.createNode(b)

create a supporting node p such that p↑.bag ← {}, p↑.for ← b24
return p25

ACS-ADO.update(a, b, x, y, b1)

delete a from buf (b1, x)↑.bag26
if buf (b, x) = NULL then buf (b, x) ← createNode (b)27
add a to buf (b, x)↑.bag, lastp (x, a, y) ← buf (b, x)28

ACS-ADO maintains on lastp(x,a, y) the safety invariant, i.e.,
there is no support of a before the value lastp(x, a, y)↑.for

in Dy , and the presence invariant, i.e., lastp(x, a, y)↑.for is
present in Dy or the tail of Dy . It also maintains the cor-
respondence invariant, i.e., lastp(x, a, y)↑.for=b if and only if
a ∈ buf(b,x)↑.

With the safety and presence invariants on lastp(), to
find a support of a ∈ Dx with respect to cxy , ACS-
ADO.hasSupport(x, a, y) starts from lastp(x,a, y)↑.for(line
19) and stops by the tail of Dy (line 21). When a new support
is found, lastp(x,a, y) is updated (line 22) by update that
guarantees the correspondence invariant (line 26–28). ACS-
ADO.hasSupport assures the safety invariant on lastp. When
removing a value, say b of Dy , ACS-ADO.remove(b, y) finds
the first present value c after b (line 15) and makes buf(b, x)

point to the node with smaller bag (line 16). It then updates
(line 17) lastp(x, a, y) for all a ∈ buf(b,x)↑.bag. In this way,
we always update the lastp() structures for a smaller number
of values. When restoring deleted values, for each variable
y, ACS-ADO.restore(timestamp(x, a)) restores all the deleted
values after timestamp(x, a) to the end of Dy (line 11). Note
that tail is greater than any values in Dy . Since there might
be some values whose lastp(x,a, y)↑.for is tail of Dy , we need
to swap the supporting nodes in buf(v, x) and buf(tail, x) (line
13–14).

Example Figure 2(a) shows the data structures of the val-
ues of Dx with respect to cxy . The nodes with 1 to 4 and
a to d represent values of Dy and Dx. The value of a node
disconnected from the linked list is not in the current domain.
The nodes with area labelled by “bag” are supporting nodes.

y

x

2 3

dcba tail

tail

head

head

bagbagbag

1 4

bag bag bag bagbag

bag

lastp lastp lastp lastp

lastp lastp lastp lastp

bag y

x

2 3

dbca tail

tail

head

head

bag bag bag bag bag

bagbagbagbagbag

4 1

lastp lastp lastp lastp

lastp lastp lastp lastp

y

21 3 4

dcba tail

tail

head

head

bag bag bag bag bag

bagbagbagbag

x

bag

lastp lastp lastp lastp

lastplastplastplastp

y

21 3 4

dcba tail

tail

head

head

lastp lastp lastp lastp

lastplastplastplastp

bagbagbagbagbag

bag bag bag bag bagx

p1 p2 p3 p4 p5 p4 p2 p3 p1 p5

p2p1 p3 p4 p5 p5p3p2p1 p4

(a) (b)

(c) (d)

Figure 2: Examples for remove() and restore()

The arrow from a supporting node, say p1, to the value node
1 means p1↑.for=1, and the arrow from a value node, say 1, to
the supporting node p1 implies buf(1, x)=p1. An arrow from
the lastp area of a value node, say a, to a supporting node p1

implies lastp(x, a, y)↑.for=p1. An arrow from the bag area of
a supporting node, say p1, to a value node, say a, implies that
a ∈ p1↑.bag. Note that the details of lastp (buf respectively)
structures of the values of Dy (Dx respectively) are omitted.

Assume value 1 is removed. Since buf(1, x)↑.bag is larger
than that of value 2 that is the first present successor of 1,
the method remove() swaps buf(1, x) and buf(2, x) and swap
buf(1, x)↑.for and buf(2, x)↑.for. Now a and b are pointing to
value 2 through p1. Then c of p2↑.bag is made to point p1.
Figure 2(b) shows structures after the removal of 1.

Consider another data structures shown in Figure 2(c). As-
sume 1 needs to be restored to Dy. Since 1 is the first restored
value, all values pointing to tail should now point to 1. The
method restore() simply swaps buf(1, x) and buf(tail, x) and
swaps buf(1, x)↑.for and buf(tail,x)↑.for (Figure 2(d)). In con-
stant time, all the values previously pointing to tail are now
pointing to 1 through the supporting node p5. �

Proposition 2 Consider any incremental sequence with n
invocations, The cumulated worst-case time complexity of
ACS-ADO.remove() in the sequence is O(ed lg d).

Theorem 4 ACS-ADO is correct with respect to any CIS.
Node-forward and path-forward time complexity are O(ed2)
while node-forward and path-forward space complexity are
O(ed). ACS-ADO fully avoids negative repeats but does not
avoid any positive repeats.

6 Experiments

The new ACS algorithms are benchmarked on random bi-
nary constraint problems and Radio Link Frequency Assign-
ment Problems (RLFAPs). The sample results on problems
(n = 50, e = 125) at phase transition area are shown in Fig-
ure 3 where the constraint checks are the average of 50 in-
stances and the time is total amount for those instances. The
experiments were carried out on a DELL PowerEdge 1850
(two 3.6GHz Intel Xeon CPUs) with Linux 2.4.21. We use
dom/deg variable ordering and lexicographical value order-
ing. The constraint check in our experiment is very cheap.

IJCAI-07
141

ACS-ADO
ACS-residue
ACS-resOpt

ACS-3.1record
ACS-3

Performance of ACS Algorithms in the Number of Constraint Checks

Domain Size

N
u

m
b

e
r

o
f

C
o

n
s
tr

a
in

t
C

h
e
c
k

s

30252015105

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

ACS-ADO
ACS-residue
ACS-resOpt

ACS-3.1record
ACS-3

Performance of ACS Algorithms in Seconds

Domain Size

S
e
c
o

n
d

s

30252015105

60

50

40

30

20

10

0

Figure 3: Experiments on random problems

In terms of constraint checks, ACS-3 and ACS-ADO
are significantly worse than the rest. However, the differ-
ence among ACS-3.1record, ACS-resOpt, and ACS-residue
is marginal. This shows the considerable savings led by the
reuse of residual data given the fact that the node-forward
complexity of ACS-residue is not optimal. However, ACS-
resOpt is only slightly better than AC-residue although it im-
proves the node-forward complexity of the latter to be op-
timal. ACS-ADO has the best theoretical time complexity
among the new algorithms, but it has the worst experimen-
tal performance. One explanation is that it loses the benefit
of residual support due to that fact that lastp(x, a, y)↑.for is
guaranteed to be present but might not be a support of a. In
summary, the use of residues bring much more savings than
other complexity improvements of the new algorithms.

Since conducting roughly the same amount of constraint
checks, the great simplicity of ACS-residue makes it a clear
winner over other algorithm in terms of clock time. The
performance of ACS3-resOpt is very close to that of AC-
3.1record. Since ACS-ADO uses a rather heavy data struc-
ture, its running time becomes the worst.

The above observations also hold on RLFAP problems (see
the table below). (ACS-resOpt uses less number of checks
than ACS-3.1record but is the slowest because it conducts
more domain checks than the others.)

RLFAP ACS-3 ACS-3.1record ACS-resOpt ACS-residue ACS-ADO

124.5M 22.7M 20.8M 23.1M 85.6M
scen11

3.265s 3.394s 4.961s 1.934s 3.456s

7 Related works and conclusions

We are not aware of any other work that has made a clear dif-
ference between standalone AC and AC during search. How-
ever, there does exist a number of works that began to look at
specific algorithms to enforce AC in the context of a search
procedure. Lecoutre and Hemery (2006) confirmed the ef-
fectiveness of ACS-residue in random problems and several
other real life problems and extend it by multidirectionality
of constraints. The work by Regin (2005) focuses specifically
on reducing the space cost to embed an AC-6 based algorithm
to MAC while keeping its complexity the same as that of stan-
dalone optimal AC algorithms on any branch of a search tree.
However, experimental data has not been published for this
algorithm.

In this paper we propose to study ACS as a whole rather
than just an embedding of AC algorithm into a search pro-
cedure. Some complexity measurements are also proposed to
distinguish new ACS algorithms (e.g., ACS-residue and ACS-
resOpt) although an implementation of ACS using optimal

AC algorithm with backup/restore mechanism, e.g., ACS-
3.1record, can always achieve the best node and path time
complexity.

A new perspective brought by ACS is that we have more
data to (re)use and we do not have to follow exactly AC
algorithms when designing ACS algorithms. For example,
ACS-residue uses ideas from both AC-3 and AC-3.1 but also
shows clear difference from either of them. The simplicity
and efficiency of ACS-residue vs. other theoretically more ef-
ficient algorithms reminds of a situation that occurred around
1990 when it was found AC-3 empirically outperformed AC-
4 [Wallace, 1993] but finally the ideas behind them led to
better AC algorithms. We expect that the effort on improv-
ing theoretical complexity of ACS algorithms will eventually
contribute to empirically more efficient algorithms.

The success of ACS-residue and our extensive empirical
study suggest a few directions for the study of ACS algo-
rithms. 1) We need extensive theoretical and empirical study
on possible combinations of the new ACS algorithms and tra-
ditional filtering algorithms including AC-6/7. We have com-
bined for example residue and ADO, which significantly im-
proved the performance of ADO. 2) We notice in our experi-
ments that the optimal complexity of ACS-3.1record does not
show significant gain over ACS-residue even in terms of the
number of constraint checks while efforts to improve ACS-
residue (e.g., ACS-resOpt) gain very little. This phenomenon
is worth of studying to boost the performance of ACS algo-
rithms. 3) The ACS perspective provides fresh opportunities
to reconsider the numerous existing filtering algorithms (in-
cluding singleton arc consistency and global constraints) in
the context of search.

8 Acknowledgements

This material is based in part upon works supported by the
Science Foundation Ireland under Grant 00/PI.1/C075 and by
NASA under Grant NASA-NNG05GP48G.

References
[Bessiere et al., 2005] C. Bessiere, J.C. Regin, R.H.C. Yap, and

Y. Zhang. An optimal coarse-grained arc consistency algorithm.
Artificial Intelligence, 165(2):165–185, 2005.

[Lecoutre and Hemery, 2006] Christophe Lecoutre and Fred
Hemery. A study of residual supports in arc consistency.
Manuscript, 2006.

[Mackworth, 1977] A. K. Mackworth. Consistency in networks of
relations. Artificial Intelligence, 8(1):118–126, 1977.

[Régin, 2005] Jean-Charles Régin. Maintaining arc consistency al-
gorithms during the search without additional space cost. In Pro-
ceedings of CP-05, pages 520–533, 2005.

[Sabin and Freuder, 1994] D. Sabin and E. Freuder. Contradicting
conventional wisdom in constraint satisfaction. In Proceedings
of PPCP-94, pages 10–20, 1994.

[van Dongen, 2003] M. R. C. van Dongen. To avoid repeating
checks does not always save time. In Proceedings of AICS’2003,
Dublin, Ireland, 2003.

[Wallace, 1993] Richard J. Wallace. Why AC-3 is almost always
better than AC-4 for establishing arc consistency in CSPs. In Pro-
ceedings of IJCAI-93, pages 239–247, Chambery, France, 1993.

IJCAI-07
142

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

