PC-DPOP: A New Partial Centralization Algorithm for Distributed Optimization

Adrian Petcu and Boi Faltings
Ecole Polytechnique Fédérale de Lausanne
email: {adrian.petcu, boi.faltings } @epfl.ch

Abstract

Fully decentralized algorithms for distributed
constraint optimization often require excessive
amounts of communication when applied to
complex problems. The OptAPO algorithm
of [Mailler and Lesser, 2004] uses a strategy of
partial centralization to mitigate this problem.

We introduce PC-DPOP, a new partial
centralization technique, based on the DPOP
algorithm of [Petcu and Faltings, 2005]. PC-
DPOP provides better control over what parts
of the problem are centralized and allows this
centralization to be optimal with respect to the
chosen communication structure.

Unlike OptAPO, PC-DPOP allows for a
priory, exact predictions about privacy loss,
communication, memory and computational
requirements on all nodes and links in the network.
Upper bounds on communication and memory
requirements can be specified.

We also report strong efficiency gains over
OptAPO in experiments on three problem domains.

1 Introduction

Constraint satisfaction and optimization are powerful
paradigms that model a large range of tasks like scheduling,
planning, optimal process control, etc. Traditionally, such
problems were gathered into a single place, and a centralized
algorithm was applied in order to find a solution. However,
problems are sometimes naturally distributed, so Distributed
Constraint Satisfaction (DisCSP) was formalized by Yokoo
et al. in [Yokoo et al., 1992]. Here, the problem is divided
between a set of agents, which have to communicate among
themselves to solve it. To address distributed optimization,
complete algorithms like ADOPT, OptAPO and DPOP have
been recently introduced.

ADOPT [Modi er al, 2003] is a backtracking based
bound propagation mechanism. It operates completely
decentralized, and asynchronously. Its downside is that it
may require a very large number of small messages, thus
producing important communication overheads.

OptAPO is a hybrid between decentralized and centralized
methods. It operates as a cooperative mediation process,

Roger Mailler
Al Center, SRI International
email: mailler@ai.sri.com

where agents designated as mediators centralize parts
of the problem in dynamic and asynchronous mediation
sessions. Message complexity is significantly smaller than
ADOPT’s. However, it is possible that several mediators
solve overlapping problems, thus needlessly duplicating
effort. Furthermore, the asynchronous and dynamic nature
of the mediation sessions make it impossible to predict what
will be centralized where, how much of the problem will be
eventually centralized, or how big a computational burden the
mediators have to carry. It has been suggested in [Davin and
Modi, 2005] that often a handful of nodes centralize most of
the problem, and therefore carry out most of the computation.

DPOP [Petcu and Faltings, 2005] is a complete algorithm
based on dynamic programming which generates only a
linear number of messages. However, DPOP may produce
large messages and require large amounts of memory, up
to space exponential in the induced width of the problem.
Therefore, DPOP may be infeasible for problems with high
induced width.

We present PC-DPOP, a new hybrid algorithm that is
controlled by a parameter k£ which characterizes the size of
the largest message, and the amount of available memory.
The algorithm proceeds as normal DPOP, except in the dense
parts of the problem (width greater than k). These are
clustered and centralized in the root of the cluster, which
solves them with a centralized algorithm. Communication
requirements over any link in the network are limited thus to
exp(k). The linear number of messages is preserved.

The rest of this paper is structured as follows: Section 2
formally describes the optimization problem, and introduces
the DPOP and OptAPO algorithms. Section 3 introduces the
PC-DPOP hybrid algorithm, which is evaluated empirically
in Section 4. Section 5 relates PC-DPOP to existing work.
Section 6 briefly discusses privacy, and Section 7 concludes.

2 Preliminaries

Definition 1 A discrete distributed constraint optimization
problem (DCOP) is a tuple < X, D, R > such that:

o X ={Xy,....,X,} is a set of variables
e D ={dy,...,d,} is a set of finite variable domains

o R ={ri,...,rm} is a set of relations, where a relation
r; is any function with the scope (X, -, Xi,.), 1 :
diy x .. x d;,, — R, which denotes how much utility is

I[JCAI-07

167

assigned to each possible combination of values of the
involved variables. Negative amounts mean costs. |

In a DCOP, each variable and constraint is owned by an
agent. A simplifying assumption [Yokoo et al, 1992] is
that each agent controls a virtual agent for each one of the
variables X; that it owns. To simplify the notation, we use
X; to denote either the variable itself, or its (virtual) agent.

This is a multiagent instance of the valued CSP framework
as defined in [Schiex er al., 1995]. The goal is to find a
complete instantiation X for the variables X; that maximizes
the sum of utilities of all individual relations.

We assume here only unary and binary relations. However,
DPOP and PC-DPOP can easily extend to non-binary
constraints ([Petcu et al., 2006]).

2.1 Depth-First Search Trees (DFS)
PC-DPOP works on a DFS traversal of the problem graph.

Definition 2 (DFS tree) A DFS arrangement of a graph G is
a rooted tree with the same nodes and edges as G and the
property that adjacent nodes from the original graph fall in
the same branch of the tree (e.g. Xo and X11 in Figure I).

Figure 1 shows an example DFS tree that we shall refer to
in the rest of this paper. We distinguish between tree edges,
shown as solid lines (e.g. X; — X5), and back edges, shown
as dashed lines (e.g. X12 — X3, X4 — Xp).

Definition 3 (DFS concepts) Given a node X;, we define:

e parent P; / children C;: these are the obvious
definitions (Py = Xo, C1 = { X2, X5}).
pseudo-parents PP; are X;’s ancestors directly
connected to X; through back-edges (PPs = {Xo}).

pseudo-children PC; are X;’s descendants directly
connected to X; through back-edges (PCy = {X4}).

Sep; is the separator of X, ancestors of X; which are
directly connected with X; or with descendants of X;
(e.g. Sepg = {Xo, Xs}, Sepe = {Xo, X1}). Removing
the nodes in Sep; completely disconnects the subtree
rooted at X; from the rest of the problem.

2.2 Optimal Asynchronous Partial Overlay

Optimal Asynchronous Partial Overlay (OptAPO [Mailler
and Lesser, 2005]) is a sound and optimal algorithm for
solving DCOPs that uses dynamic, partial centralization
(DPC). Conceptually, DPC is a technique that discovers
difficult portions of a shared problem through trial and error
and centralizes these sub-problems into a mediating agent
in order to take advantage of a fast, centralized solver.
Overall, the protocol exhibits an early, very parallel hill
climbing behavior which progressively transitions into a more
deliberate, controlled search for an optimal solution. In the
limit, depending on the difficulty of the problem and the
tightness of the interdependences between the variables, one
or more agents may end up centralizing the entire problem in
order to guarantee that an optimal solution has been found.

"Hard constraints (that explicitly forbid/enforce certain value
combinations) can be simulated with soft constraints by assigning
—oo to disallowed tuples, and O to allowed tuples. Maximizing
utility thus avoids assigning such value combinations to variables.

2.3 DPOP: dynamic programming optimization
DPOP is a distributed version of the bucket elimination
scheme from [Dechter, 2003], which works on a DFS. DPOP
has 3 phases.

Phase 1 - a DFS traversal of the graph is done using a
distributed DFS algorithm like in [Petcu et al., 2006]. The
outcome of this step is that all nodes consistently label each
other as parent/child or pseudoparent/pseudochild, and edges
are identified as tree/back edges. This can be achieved for any
graph with a linear number of messages.

Phase 2 - UTIL propagation is a bottom-up process,
which starts from the leaves and propagates upwards only
through tree edges. The agents send UTIL messages to
their parents. The subtree of a node X; can influence
the rest of the problem only through X;’s separator, Sep;.
Therefore, a message contains the optimal utility obtained in
the subtree for each instantiation of Sep;. Thus, messages
are exponential in the separator size (bounded by the induced
width).

Phase 3 - VALUE propagation top-down, initiated by the
root, when phase 2 has finished. Each node determines its
optimal value based on the messages from phase 2 and the
VALUE message it has received from its parent. Then, it
sends this value to its children through VALUE messages.

3 PC-DPOP(k) - partial centralization hybrid

To overcome the space problems of DPOP, we introduce the
control parameter k that bounds the message dimensionality.
This parameter should be chosen s.t. the available memory at
each node and the capacity of its link with its parent is greater
than d*, where d is the maximal domain size.

As with DPOP, PC-DPOP also has 3 phases: a DFS
construction phase, an UTIL phase, and a VALUE phase.

3.1 PC-DPOP - UTIL Phase

This is where the algorithm is different from DPOP. The
propagation proceeds as in DPOP where possible, and reverts
to partial centralization where the width exceeds k:

1. the UTIL propagation starts bottom-up exactly like in
DPOP, and proceeds as long as the dimensionality of the
outgoing UTIL messages is below the threshold k.

as soon as a node’s outgoing UTIL message has
more than k dimensions, centralization begins (see
Section 3.1). The node does not compute its UTIL
message, but sends to its parent a Relation message that
contains the set of relations (arity at most k) that the
node would have used as an input for computing the
UTIL message. It annotates this message with its ID.

. Upon receiving such a Relation message, a node tests
to see if its separator is smaller than k. The separator
is determined as the intersection between the nodes on
the root path of the current node and the set of nodes
encountered as dimensions in the messages received
from its children.

e If this is the case, the node becomes a cluster
root, reconstructs the subproblem from the
incoming Relation messages and then solves it

I[JCAI-07

168

Original problem DFS from X,
- 0

DFS arrangement

02 centralized in X9

W
s

centralize in X,

R derived by

11-13

X13, not original!

Figure 1: A problem graph (a) and a DFS tree (b). In low-width areas the normal UTIL propagation is performed. In high
width areas (shaded clusters Cy, Cy and Cs in (b)) bounded UTIL propagation is used. All messages are of size at most d*.
Clusters are centralized and solved in the cluster roots (the bold nodes X5, X9, X14).

(see Section 3.1). Then it continues the UTIL
propagation as in DPOP.

Later on, during the VALUE phase, when the
node receives the VALUE message from its parent,
it retrieves the solution from its local cache and
informs nodes in the cluster of their optimal values
via VALUE messages.

e Otherwise, it cannot become cluster root and has to
pass on to its parent all the relevant relations (the
ones received from its children and its own), that it
would otherwise use to compute its UTIL message.
For details, see Section 3.1.

PC-DPOP - Centralization

This process occurs in high-width areas of the problem (e.g.
the shaded areas in Figure 1). It is initiated by any node
that cannot compute and send its UTIL messages because
that would exceed the dimensionality limit imposed by k.
Any such node produces the union of the relations and UTIL
messages received from children, and its own relations with
its parent/pseudoparents. All these relations can be sent to
its parent in a Relation message, annotated by appending the
node’s ID to the path.

On one hand, this ensures the dimensionality limit k is
observed, as no relation with arity larger than £ is produced
or sent over the network. On the other hand, it will allow
the cluster root to reconstruct the subproblem that has to
be centralized, and enable the use of structure sensitive
algorithms like DPOP, AOBB, etc.

Alternatively, to save bandwidth, avoid overload on cluster
root nodes, and also improve privacy, a node can selectively
join subsets of these relations/UTIL messages, s.t. the
dimensionality of each of the resulting relations is less than k.

The resulting set of relations is then packaged as a Relation
message, annotated with the node’s ID, and sent to the parent
(see Section 3.1). This happens as follows:

1. node X; receives all UTIL/Relation messages from its
children, if any

2. X; forms the union U; of all relations in the
UTIL/Relation messages and the relations it has with its
parent and pseudoparents

3. X, matches pairs of relations in U; s.t. by joining them
the resulting relation will have k dimensions or less (the
dimensionality of the resulting relation is the union of
the dimensions of the inputs). If the join was successful,
remove both inputs from U;, and add the result instead.
Try until no more joins are possible between relations in
U;. This process is linear in the size of U;.

4. The resulting U; set is sent to X;’s parent in a Relation
message

This process proceeds bottom-up until a node X, with a
separator smaller than k is reached. X, declares itself a
cluster root and executes the procedures from Section 3.1.

The result of this phase is that minimal, difficult (high-
width) areas of the problem are identified in a distributed
fashion. In these areas the algorithm reverts to partial
centralization, by having nodes send to their parents not high
dimensional UTIL messages, but lower arity inputs that could
be used to generate those UTIL messages.

Subproblem reconstruction

Let us assume a cluster root node X, has received a set of
relations R¢, from its children. Each relation r; € R¢; has a
set of variables that it involves (scope(r;)), and the path that

I[JCAI-07

169

it traveled through until it reached X;. X creates an internal
copy of all the nodes found in the scopes of the relations
received. Then, X; reconstructs the subtree by placing each
internal variable X, in its position as follows:

e if X is an ancestor of X, then it is identified as such,
because X; knows the path from root to itself.

if X}, is a child of X;, then it is identified as such.

otherwise, it is a descendant of X,;. In this case X;
deduces its place in the subtree by analyzing backwards
the path recorded in the relations involving Xj. For
example, in Figure 1, Xy receives r{,, rii and r¥,, all
annotated with the path X2 — X771 — X309 — Xo. Xio is
already a child of Xy, so it is then easy to see that X;
is X10’s child and X5 is X711’s child. Thus, the whole
branch Xg — X719 — X171 — X2 is reconstructed.

It is interesting to note that this technique allows for
identifying different branches as well. Consider again Xg
that also receives 775, 19 and 13, all annotated with the path
X3 — X11 — X109 — Xg. Following the same reasoning as
before, Xg can infer that X3 is also a child of X1, like X15.
Therefore, X1 and X3 lie in different branches.

This makes it possible for a cluster node to reconstruct
the subproblem while preserving structural information. This
is important because it enables the use of high-performance
optimization algorithms that also take advantage of problem
structure. Examples include AOBB [Marinescu and Dechter,
20051, a centralized DPOP [Petcu and Faltings, 20051, etc.

Solving centralized subproblems

The centralized solving occurs in the roots of the clusters
determined by the high-width areas. In the example of
Figure 1, such a cluster is the shaded area containing
X9, X10, X11, X12, X13.

The root of the cluster (e.g. Xg) maintains a cache table
that has as many locations as there are possible assignments
for its separator (in this case d* = d? locations). As
a normal node in DPOP, the root also creates a table for
the outgoing UTIL message, with as many dimensions as
the size of the separator. Each location in the cache table
directly corresponds to a location in the UTIL message that
is associated with a certain instantiation of the separator. The
cache table stores the best assignments of the variables in the
centralized subproblem that correspond to each instantiation
of the separator.

Then the process proceeds as follows:

e for each instantiation of Sep;, the cluster root solves the
corresponding centralized subproblem. The resulting
utility and optimal solution are stored in the location
of the UTIL message (cache table location, respectively)
that correspond to this instantiation.

when all Sep; instantiations have been tried, the UTIL
message for the parent contains the optimal utilities for
each instantiation of the separator (exactly as in DPOP),
and the cache table contains the corresponding solutions
of the centralized subproblem that yield these optimal
utilities.

o the cluster root sends its UTIL message to its parent, and
the process continues just like in normal DPOP.

There are multiple possibilities for choosing an
optimization algorithm for solving subproblems: a
centralized version of DPOP [Petcu and Faltings, 2005],
AOBB [Marinescu and Dechter, 2005], etc.

Algorithm 1: PC-DPOP - partial centralization DPOP.
PC-DPOP(X, D, R, k): each agent X; does:

UTIL propagation protocol

wait for UT1L/Relation messages from all children
2 if Sep; < k (can send outgoing UTIL?‘) then

3 if incoming are all UTIL (normal DPOP node) then
‘ compute UTTLY* as in DPOP and send it to P;

4 else (this means X; is the root of a cluster)

5 reconstruct subproblem from received relations

6 solve subproblem for each s € (Sep;) and store

utility in UTTLY and solution in local cache

7 | send UTILY to P;

8 else (this means X; is part of a cluster)

9 Join subsets of incoming UTIL/Relation and relations

with (p)parent with same dimension s.t. for each join,
dim(join) < k

10 send joins to P;

VALUE propagation(X; gets Sep; < Sep; from F;)

1 if X; is cluster root then

12 find in cache Sol* that corresponds to Sep;
13 assign self according to Sol*
14 send Sol* to nodes in my cluster via VALUE msgs

15 else continue VALUE phase as in DPOP

3.2 PC-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded
inference must be applied due to excessive width. We will
describe in the following the processing to be done in these
areas; outside of these, the original VALUE propagation from
DPOP applies.

The VALUE message that the root X; of a cluster receives
from its parent contains the optimal assignment of all the
variables in the separator Sep; of X; (and its cluster). Then
X, can simply retrieve from its cache table the optimal
assignment corresponding to this particular instantiation of
the separator. This assignment contains its own value, and
the values of all the nodes in the cluster. X; can thus inform
all the nodes in the cluster what their optimal values are (via
VALUE messages). Subsequently, the VALUE propagation
proceeds as in DPOP.

3.3 PC-DPOP - Complexity

In low-width areas of the problem, PC-DPOP behaves exactly
as DPOP: it generates a linear number of messages that are
at most d¥ in size. In areas where the width exceeds %, the
clusters are formed.

I[JCAI-07

170

Theorem 1 PC — DPOP(k) requires communication
O(exp(k). Memory requirements vary from O(exp(k)) to
O(exp(w)) depending on the algorithm chosen for solving
centralized subproblems (w is the width of the graph).

PROOF. Section 3.1 shows that whenever the separator of a
node is larger than k, that node is included in a cluster. It also
shows that within a cluster, UTIL messages with more than
k dimensions are never computed or stored, but their input
components sent out instead. It can be shown recursively that
these components have always less than k& dimensions, which
proves the first part of the claim.

Assuming that w > k, memory requirements are at least
O(exp(k)). This can easily be seen in the roots of the
clusters: they have to store the UTIL messages and the cache
tables, both of which are O(exp(Sep = k)).

Within a cluster root, the least memory expensive
algorithm would be a search algorithm (e.g. AOBB(1)) that
uses linear memory. The exponential size of the cache table
and UTIL message dominates this, so memory overall is
O(exp(k)).

The most memory intensive option would be to use a
centralized version of DPOP, that is proved to be exponential
in the induced width of the subtree induced by the cluster.
Overall, this means memory is exponential in the maximal
width of any cluster, which is the overall induced width.

O

4 Experimental evaluation

We performed experiments on 3 different problem domains:
distributed sensor networks (DSN), graph coloring2 (GO),
and meeting scheduling (MS). Our versions of OptAPO and
PC-DPOP used different centralized solvers, so in the interest
of fairness, we did not compare their runtimes. Instead, we
compared the effectiveness of the centralization protocols
themselves, using 2 metrics: communication required (see
Figure 3), and amount of centralization (see Figure 2).
Figures 2 and 3 present the results on the GC problems.

The bound k has to be at least as large as the maximal
arity of the constraints in the problem; since these problems
contain only binary constraints, we ran PC-DPOP(k) with &
between 2 and the width of the problem. As expected, the
larger the bound k, the less centralization occurs. However,
message size and memory requirements increase.

DSN The DSN instances are very sparse, and the induced
width is 2, so PC — DPOP(k > 2) always runs as DPOP:
no centralization, message size is d?2 = 25. In contrast,
in OptAPO almost all agents centralize some part of the
problem. Additionally, in the larger instances some agents
centralize up to half the problem.

Meeting scheduling we generated a set of relatively large
distributed meeting scheduling problems. The model is as
in [Maheswaran et al., 2004]. Briefly, an optimal schedule
has to be found for a set of meetings between a set of agents.
The problems were large: 10 to 100 agents, and 5 to 60
meetings, yielding large problems with 16 to 196 variables.

’DSN and GC instances taken from [Maheswaran ef al., 2004].

(a) maximal size of a centralized problem vs. total problem size

;
PC-DPOP(2)
PC-DPOP(3)
1 H PC-DPOP(4)

PC-DPOP(5)=DPOP
OptAPO

Centralization (max subproblem size in #vars)
o}

9 9.5 10 10.5 11 11.5 12
Number of variables (agents)

(b) how many agents centralize subproblems vs. total problem size

T T T T L ——
PC-DPOP(2) -
11k PC-DPOP(3)
PC-DPOP(4)
PC-DPOP(5)=DPOP
i OptARG-

of agents which centralize subproblems

1
9 9.5 10 10.5 11 11.5 12

Number of variables (agents)

Figure 2: Graph coloring: Centralization. (a) In OptAPO
there is always an agent which centralizes all the problem.
(b) In OptAPO all agents centralize some subproblem.

(b) how many agents centralize subproblems vs. total problem size
10000

T
PC-DPOP(2)
PC-DPOP(3) --
PC-DPOP(4)

PC-DPOP(5)=DPOP

OptARG

1000 E

of messages (log scale)

10 1 1 1 1 1
9 9.5 10 10.5 1 11.5 12

Number of variables (agents)

(b) how many agents centralize subproblems vs. total problem size
1e+06

PC-DPOP(2) —

PC-DPOP(3)

PC-DPOP(4)

PC-DPOP(5)=DPOP -
AP

100000 | OptAPO

10000 E

1000 E

Total message size in bytes (log scale)

100 1 1 1 1 1
9 9.5 10 10.5 11 11.5 12

Number of variables (agents)

Figure 3: Graph coloring: message exchange. (a) All PC-
DPOP variants use a linear # of messages. ; (b) Total
information exchange (bytes) is much lower for PC-DPOPs.

I[JCAI-07

The larger problems were also denser, therefore even more
difficult (induced width from 2 to 5).

OptAPO managed to terminate successfully only on the
smallest instances (16 variables), and timeout on all larger
instances. We believe this is due to OptAPO’s excessive
centralization, which overloads its centralized solver. Indeed,
OptAPO centralized almost all the problem in at least one
node, consistent with [Davin and Modi, 2005].

In contrast, PC-DPOP managed to keep the centralized
subproblems to a minimum, therefore successfully
terminating on even the most difficult instances. PC-
DPOP(2) (smallest memory usage) centralized at most 10%
of the problem in a single node, and PC-DPOP(4) (maximal
k) centralized at most 5% in a single node. PC-DPOP(5) is
equivalent to DPOP on these problems (no centralization).

Overall, our results show that both OptAPO and PC-DPOP
centralize more in dense problems; however, PC-DPOP’s
structure-based strategy performs much better.

5 Related Work

Tree clustering methods (e.g. [Kask et al., 2005]) have been
proposed for a long time for time-space tradeoffs. PC-
DPOP uses the concept loosely and in many parts of the
problem transparently. Specifically, in areas where the width
is low, there is no clustering involved, the nodes following
the regular DPOP protocols. In high-width areas, PC-DPOP
creates clusters based on the context size of the outgoing
UTIL messages and bounds the sizes of the clusters to a
minimum using the specified separator size.

6 A Note on Privacy

[Maheswaran et al., 2006] show that in some settings and
according to some metrics (complete) centralization is not
worse (privacy-wise) than some distributed algorithms.

Even though the nodes in a cluster send relations to the
cluster root, these relations may very well be the result of
aggregations, and not the original relations. For example, in
Figure 1, X3 sends Xy (via X717 and X1¢) 3 relations: 13,
r19 and r},. Notice that r}1 that is sent to Xy like this is not
the real r;3, but the result of the aggregation resulting from
the partial join performed with the UTIL message that X3
has received from X;4. Therefore, inferring true valuations
may be impossible even in this scenario.

7 Conclusions and future work

We have presented an optimal, hybrid algorithm that uses
a customizable message size and amount of memory.
PC-DPOP allows for a priory, exact predictions about
privacy loss, communication, memory and computational
requirements on all nodes and links in the network.

The algorithm explores loose parts of the problem
without any centralization (like DPOP), and only small,
tightly connected clusters are centralized and solved by the
respective cluster roots. This means that the privacy concerns
associated with a centralized approach can be avoided in most
parts of the problem. We will investigate more thoroughly the
privacy loss of this approach in further work.

Experimental results show that PC-DPOP is particularly
efficient for large optimization problems of low width.
The intuition that dense problems tend to require more
centralization is confirmed by experiments.

References

[Davin and Modi, 2005] John Davin and Pragnesh Jay Modi.
Impact of problem centralization in distributed constraint
optimization algorithms. In AAMAS °05: Proceedings of the
Sfourth international joint conference on Autonomous agents and
multiagent systems, pages 1057-1063, New York, NY, USA,
2005. ACM Press.

[Dechter, 2003] Rina Dechter.
Kaufmann, 2003.

[Kask et al., 2005] Kalev Kask, Rina Dechter, and Javier Larrosa.
Unifying cluster-tree decompositions for automated reasoning in
graphical models. Artificial Intelligence, 2005.

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind Tambe,
Emma Bowring, Jonathan P. Pearce, and Pradeep Varakantham.
Taking DCOP to the real world: Efficient complete solutions for
distributed multi-event scheduling. In AAMAS-04, 2004.

[Maheswaran et al., 2006] R.T. Maheswaran, J.P. Pearce,
E. Bowring, P. Varakantham, and M Tambe. Privacy loss
in distributed constraint reasoning: A quantitative framework for
analysis and its applications. JAAMAS, 2006.

[Mailler and Lesser, 2004] Roger Mailler and Victor Lesser.
Solving distributed constraint optimization problems using
cooperative mediation. Proceedings of Third International Joint
Conference on Autonomous Agents and MultiAgent Systems

(AAMAS 2004), 2004.

[Mailler and Lesser, 2005] Roger Mailler and Victor Lesser.
Asynchronous partial overlay: A new algorithm for solving
distributed constraint satisfaction problems. Journal of Artificial
Intelligence Research (JAIR), 2005. to appear.

[Marinescu and Dechter, 2005] Radu Marinescu and Rina Dechter.
AND/OR branch-and-bound for graphical models. In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, Aug 2005.

[Modi et al., 2003] P. J. Modi, W. M. Shen, and M. Tambe.
An asynchronous complete method for distributed constraint
optimization. In Proc. AAMAS, 2003.

[Petcu and Faltings, 2005] Adrian Petcu and Boi Faltings. DPOP:
A scalable method for multiagent constraint optimization. In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, Aug 2005.

[Petcu er al., 2006] Adrian Petcu, Boi Faltings, and David Parkes.
M-DPOP: Faithful Distributed Implementation of Efficient
Social Choice Problems. In Proceedings of the International

Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS-06), Hakodate, Japan, May 2006.

[Schiex et al., 1995] Thomas Schiex, Hélene Fargier, and Gerard
Verfaillie. Valued constraint satisfaction problems: Hard and
easy problems. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, 1JCAI-95, Montreal,
Canada, 1995.

[Yokoo et al., 1992] Makoto Yokoo, Edmund H. Durfee, Toru
Ishida, and Kazuhiro Kuwabara. Distributed constraint
satisfaction for formalizing distributed problem solving. In
International Conference on Distributed Computing Systems,

pages 614-621, 1992.

Constraint Processing. Morgan

I[JCAI-07

172

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

