Entailment Semantics for Rules with Priorities

David Billington
Institute for Integrated and Intelligent Systems
School of Information and Communication Technology
Nathan campus, Griffith University
Brisbane, Queensland 4111, Australia.
d.billington@griffith.edu.au

Abstract

We define a new general rule-based non-
monotonic framework which allows an external
acyclic priority relation between rules to be inter-
preted in several ways. Several entailment seman-
tics are defined via a constructive digraph, with one
being given a declarative fixed-point characterisa-
tion as well. Each of these semantics satisfies
Principle 1 of [Brewka and Eiter 1999]. The
framework encompasses Default Logic [Reiter
1980], ground Answer Set Programming (ASP)
[Baral 2003], and Defeasible Logic [Nute 1994].
Default Logic is provided with a new semantics
which is ambiguity blocking, rather than the usual
ambiguity propagating semantics. Also Reiter-
extensions are given a new fixed-point characteri-
sation; and Lukaszewicz’s [1990] m-extensions are
given a much simpler construction and fixed-point
characterisation.

1

A characteristic of an intelligent system is its ability to rea-
son with limited information. Non-monotonic reasoning
systems represent and reason with limited information
where the limitation is not quantified. Some of the most
natural and successful non-monotonic reasoning systems are
based on the idea of a rule. Three such systems are Default
Logic [Reiter 1980], Answer Set Programming (ASP) [Ba-
ral 2003], and Defeasible Logic [Nute 1994].

After considering these systems we shall develop a gen-
eral rule-based non-monotonic framework, called a plausi-
ble theory, which encompasses these three systems. Plausi-
ble theories allow an external acyclic priority relation be-
tween rules to be interpreted in several ways. Several en-
tailment semantics for plausible theories will be defined via
a constructive digraph, with one being given a declarative
fixed-point characterisation as well. (An entailment seman-
tics defines the set of all sentences that follow from, or are
entailed by, a plausible theory.) Each of these semantics
satisfies Principle 1 of [Brewka and Eiter 1999].

Default Logic is provided with a new semantics which is
ambiguity blocking, rather than the usual ambiguity propa-
gating semantics. So for ambiguity blockers, there is now a

Introduction

Default Logic which gets the "right" answer for Example
4.1. Also Reiter-extensions are given a new fixed-point
characterisation; and Lukaszewicz’s [1990] m-extensions
are given a much simpler construction and fixed-point char-
acterisation.

The unifying framework facilitates comparison of the
systems encompassed. The constructive semantics facili-
tates understanding, and hand calculation of small examples.

In this paper we shall concentrate on the relationship be-
tween plausible theories and the Default Logics of Reiter
[1980] and Lukaszewicz [1990]. The relationship with
other Default Logics, ASP, Defeasible Logic, and Argumen-
tation systems [Dung 1995] is a subject for other papers.

Now let us look at the above systems to see the variety of
rules that have been considered.

Reiter’s Default Logic considers a rule to be a default. A
(closed) default, d, can be written as d = (p(d) : J(d) / c(d)),
where p(d), the pre-requisite of d, and c(d), the consequent
of d, are closed formulas, and J(d), the set of justifications
of d, is a non-empty finite set of closed formulas. Intui-
tively the meaning of d is that if p(d) is accepted and each
element of J(d) is consistent with what is currently accepted,
then accept c(d).

An ASP rule has the form

lyor...or ly < li4y, ..., I,,, nOtL4q, ..., nOtL,
where the /; are literals. Intuitively the meaning of such a
rule is that if /iy, ..., [,, are accepted and /.4, ..., [, can be
safely assumed to be false then accept at least one of [, ...
ly. A program is a finite set of ASP rules.

Nute's Defeasible Logic has three kinds of rules. The
strict rule, », has the form A(r) — ¢(r); the defeasible rule,
7, has the form A(r) = c(r); and the defeater rule, 7, has the
form A(r) ~ c(r); where A(r), the set of antecedents of 7, is
a finite set of ground literals and c¢(r), the consequent of , is
a ground literal. Strict rules are like classical material im-
plication. Intuitively defeasible rules mean that if A(r) is
true then usually c(7) is true. Defeater rules have the intui-
tive meaning that if A(r) is true then it is too risky to sup-
pose —c(r) is true.

All of the above rules have a set of antecedents and a
consequent. However defaults and some ASP rules have an
additional consistency checking part which we shall call a
set of guards.

>

I[JCAI-07

256



It is very useful to be able to specify a priority between
rules. Defeasible Logic has always had this ability. More
recently preferences between defaults and between ASP
rules have been considered. See [Delgrande et al 2004] for
a survey of the area and a classification of priorities. Ac-
cording to this classification our priority relation is acyclic,
between rules, and external.

The rest of the paper has the following organisation. The
next section formally defines a system of rules, called a
plausible theory, which encompasses Default Logic, ground
ASP programs, and Defeasible Logic. Section 3 discusses
semantics, proposes several constructive ways of defining
what a plausible theory entails, and then shows that a prin-
ciple concerning priorities is satisfied. Each construction
forms a directed graph called an applicative digraph. An
example illustrating ambiguity blocking and propagating is
given in Section 4. Section 5 concerns the relationship be-
tween applicative digraphs and Default Logic. In particular
Reiter's extensions and Lukaszewicz’s [1990] m-extensions
are characterised. Section 6 considers a fixed-point charac-
terisation of the leaves of an applicative digraph. The con-
clusions form Section 7.

2 Plausible Theories

We set the scene by defining some notation. The empty set
is denoted by {}, and N denotes the set of non-negative in-
tegers. Let Snt be the set of sentences (closed formulas) of a
countable first-order language. Then Swuf is countable. If
SC Snt then define the set, Cn(S), of semantic conse-
quences of Sby Cn(S)= {s € Snt: SF s}.

Definition 2.1 (rule). A rule, r, is a 4-tuple
(A(r), G(r), arrow(r), c(r)), where
A(r), the set of antecedents of r, is a finite set of sentences,
G(r), the set of guards of r, is a finite set of sentences,
arrow(r) € {=, ~}, and
c(r), the consequent of r, is a sentence.
Rules which use the = arrow are called defeasible rules and
are written as A(r):G(r) = c(r).
Rules which use the ~> arrow are called warning rules and
are written as A(r):G(r) ~ c(r).

Intuitively the defeasible rule, », means that if each ele-
ment of A(r) is accepted and each element of G(r) is consis-
tent with what is currently accepted, then c(r) should be
accepted. In other words, r provides sufficient evidence so
that one should behave as if ¢(r) is true, even though it may
turn out that c(r) is false.

So the default (p(d) : J(d)/ c(d)) can be regarded as the
defeasible rule {p(d)}:J(d) = c(d). The ground ASP rule

lyor...orly < [y, ..., I, nOtL4q, ..., nOtL,
can be regarded as the defeasible rule

{lk+1, cees lm}l{—'lm+1, ceey —'l,,} = [0 V..V lk.
And Nute's defeasible rule A(r) = c(r) can be regarded as
our defeasible rule A(r):{c(r)} = c(r).

Intuitively the warning rule, », warns that if each element
of A(r) is accepted and each element of G(r) is consistent
with what is currently accepted, then accepting —c(7) is too
risky. That is, » provides enough evidence for c(r) to pre-

vent acceptance of —¢(r), but not sufficient evidence to ac-
cept c(r). Warning rules are only used to stop other rules
being applied. They never contribute their consequent to
what is currently accepted. The defeater rule A(r) ~ c(r)
can be regarded as the warning rule A(7):{c(r)} ~> c(r).

Recall that a default, d, is normal iff J(d) = {c(d)}. So
we have the following definition.

Definition 2.2 (normal rule). A rule r is normal iff
G(r) = {c(r)}. If r is normal then we often abbreviate
A(r):G(r) = c(r) by A(r) = c(r), and A(r):G(r) ~ c(r) by
A(r) ~ c(r).

Let R be any set of rules. We denote the set of defeasible
rules in R by R, and the set of warning rules in R by R,.
The set of consequents of R is denoted by c(R); that is
c(R)={c(r):r€R}. To aid readability we sometimes
write c[R] for c¢(R). The set of all guards in rules in R is
denoted by G(R); that is G(R) = U{G(r) : r ER}.

A binary relation, >, on any set R is cyclic iff there exists
a sequence, (r, 7, ..., ") Where n=1, of elements of R
such that r,>r,>...>r,>r;. A relation is acyclic iff it is
not cyclic. Acyclicity is about the weakest property that an
ordering relation can have. Acyclicity implies irreflexivity
and asymmetry (and hence antisymmetry); however we do
not require transitivity.

Let > be an acyclic binary relation on a set of rules R.
We read r>r' asr has a higher priority than r', or r is su-
perior to r'. We say r is maximal in R iff for all ' in R,
not(r' > r).

Definition 2.3 (plausible theory). A plausible theory is a
triple IT=(4x, R,>) such that PT1, PT2, and PT3 all hold.
(PT1) Ax is a satisfiable set of sentences.

(PT2) R is a set of rules.

(PT3) > is an acyclic binary relation on R.

IT1 = (Ax, R, >) is a normal plausible theory iff every rule in
R is normal.

The sentences in Ax are called axioms and they character-
ise the aspects of the situation which are certain. R is count-
able because Sut is countable.

3 Entailment Semantics

Let us start by considering what properties a semantics for a
plausible theory might have. Predicate logic has two parts,
a proof mechanism and a semantics. The semantics inter-
prets the syntax used by the proof mechanism, and it also
provides a way of assuring us that the proof mechanism
cannot prove things we don’t want (soundness).

In this paper we are concerned with the semantics of
plausible theories, rather than any proof mechanisms.

Applicative digraphs (defined below) provide an interpre-
tation of the rules and symbols used in a plausible theory.
As the name “applicative” suggests, we interpret rules as
things which can be applied. The way they are applied and
the restrictions on their application give an interpretation to
the syntactic components of the rules.

The way a semantics assures us that the proof mechanism
is sound is to define a set, say Sem(P), of sentences that fol-

I[JCAI-07

257



low from the premisses P and then insist that every sentence
that is proved must be in Sem(P). In predicate logic Sem(P)
is Cn(P). An entailment semantics for P is the set of all
sentences which follow from, or are entailed by, P. For
predicate logic this is generally agreed to be Cn(P). An
entailment semantics for a plausible theory IT is the set, say
Sem(IT), of all sentences which follow from, or are entailed
by, IT. Since entailment is an intuitive notion, the definition
of Sem(IT) needs to be as close to our intuitions as possible.

There are different well-informed intuitions about what
should follow from a plausible theory, for instance the am-
biguity propagating intuition differs from the ambiguity
blocking intuition (see example 4.1). To accommodate this
we shall define a family of applicative digraphs.

Applicative digraphs enable Sem(IT) to be constructed; so
no guessing is needed.

3.1 Applicative Digraphs

An applicative digraph displays the order in which rules are
applied. Each node is the set of rules applied so far, hence
each node is a subset of R. Before applicative digraphs can
be defined we need the following concepts. Suppose
I1=(4x, R, >) is a plausible theory, r € R, and N CR.

Definition 3.1 (B(N), the belief set of N).
B(N) = Cn(4x U c(N)).

B(N) is the set of beliefs sanctioned by 4x and N. At each
node NC R there are 3 levels of belief. The set of strong-
est beliefs is Cn(A4x). This is the set of known facts, indis-
putably true statements. It is the same at each node. B(N,)
is the set of all beliefs which are strong enough to behave as
if they are true. Even though we know that some may occa-
sionally be false. The set of weakest beliefs at N is B(N).
This is the set of all beliefs which are strong enough to pre-
vent belief in any statement which is inconsistent with B(N).

Definition 3.2 (Ap(», N), r is applicable at N; Ap(N)).
Ap(r, N) iff A(r) € B(N,).
Ap(N) iff for all 7 in N, Ap(r, N).

The fundamental idea is that if every antecedent of a rule
is in B(N,) then its consequent can be added to B(N). This is
what applying 7 to B(N) means. However we do not apply a
rule which will conflict with our current set of weakest be-
liefs; so we need the idea of a set of rules being consistent.

Definition 3.3 (Cs(N), N is consistent).
Cs(N) iff AxUc(N) is satisfiable and
for all g in G(N), AxUc(N)U{g} is satisfiable.

Definition 3.4 (El(r, N), r is eligible at N).
El(r, N) iff Ap(r, N) and Cs(NU{r}).

El(r, N) is a useful summary term.

According to Delgrande and Schaub [2000] priorities
may be prescriptive (dictating the order in which rules are
applied, which has a local perspective) or descriptive (de-
scribing the preferred results of applying rules, which re-
quires a global perspective).

A local perspective on > is given by Pr(r, N), which
means that maximal rules are applied before non-maximal
rules, and that higher priority rules are applied before lower
priority rules.

Definition 3.5 (Pr(r, N), r has priority at N).
Pr(r, N) iff either » is maximal in R;
or 7 is not maximal in R and for each s in R—(NU{r}),
if El(s, N) then not(s > r) and s is not maximal in R.

Before we can define a global perspective on > we need
the idea of a set, M, of rules being compatible; which
roughly means that M could be a subset of a node.

Definition 3.6 (Cp(M), M is compatible).
Cp(M) iff there exists N such that

MC NCR and Ap(N) and Cs(N).
Cp(ry, ..., r,) means Cp({ry, ..., "n}).

We can now define what it means for a set N of rules to
be desirable. Roughly, if r& N and r is applicable at N
and 7 is superior to a rule in NV then r is incompatible with a
higher priority rule already in N.

Definition 3.7 (Ds(N), N is desirable; Ds(r, N)).
r> N iff there exists 7' in N such that »>r".
Ds(N) iff for all 7 in R—N, if Cp(r), Ap(r, N), and r> N
then there exists 7' in N such that »'>r and not Cp(#', r).
Ds(r, N) iff Ds(NU{r}).

If two rules could both be applied at a node, but the ap-
plication of either rule prevents the application of the other
rule, then we may not want to apply either rule. That is we
may not want to choose between conflicting rules, unless
one is preferred over the other. Of course if it does not mat-
ter which of two rules is applied first then we can apply ei-
ther. This is the notion of partner rules. Roughly, two rules
are partners at node N means that if either rule could be ap-
plied to a potential descendant Q of N, then both rules could
be applied to Q.

Definition 3.8 (Pa(r, r', N), r and »' are partners at N).
Pa(r, 7', N) iff El(r, N), El(7', N), and for each Q such that
NC Q CRand Cs(Q) and 4p(Q),
if Cs(QU{r}) or Cs(QU{r"}) then Cs(QU{r, r'}).

There are many ways to decide if rule r is preferred over
rule s. The simplest is if »>s. However a more general
notion of "defeat by a partner" is more useful. Basically if
and s conflict but a partner of » has a higher priority than s
then we prefer  over s. This leads to the idea of there being
a winner at a node.

Definition 3.9 (Wn(r, N), r is a winner at N).
Wn(r, N) iff El(r, N), Pr(r, N), and for each s in R—(NU{r}),
if El(s, N) and not Cs(NU{r, s}) then
there exists 7' in R—N such that
El(r', N) and Pa(r, r', N) and r'>s.

Depending on one's intuition one may use Pr, Wn, Ds, or
none of them at each node. Hence the following definition.

I[JCAI-07

258



Definition 3.10 (0(r, N)).
0(r, N) is true.

If every rule that can be applied to B(N,) is in N then we
say N is full. There are several notions of fullness.

Definition 3.11 (Full(I, N), N is I-full).
Suppose I € {0, Pr, Wn, Ds}. Full(I, N) iff for each r in R,
if El(r, N) and I(r, N) then »r € N.

Excluding infinite nodes, an applicative digraph is a tree
in which some non-sibling nodes which are the same dis-
tance from the root maybe coalesced. We shall therefore
use tree nomenclature to describe parts of these digraphs.
The node M is called a parent of the node N, and N is called
a child of M, iff there is an arc from M to N. A node which
has no children is called a /eaf. A path starting at the root is
called a branch.

Every finite non-empty node has at least one parent, but
infinite nodes have no parents and no children.

Definition 3.12 (4pp(/, IT)). For each I in
{0, Pr, Wn, Ds}, the I-applicative digraph, App(l, IT), of a
plausible theory IT= (4x, R, >) is defined as follows.
The empty set, {}, is the roof node of App(/, I1).
For each finite node N of App(Z, IT) and each r in R,
NU{r} is a child of N iff r & N, El(r, N), and I(r, N).
If NU{r} is a child of N then the arc from N to NU{r} is
labelled with r.
Every finite node of App(Z, IT) and every arc in App(I, IT)
comes from the above construction.
Suppose Ny = {} and (N, r1, Ny, 12, N>, ...) is an infinite
path in App(l, IT) and N =U{N;:iEN}. Then N is a node
in App(, IT) iff Full(I, N).

The purpose of an applicative digraph is to construct all
its desirable leaves. It is the belief set of the defeasible rules
in a desirable leaf that we want. There are now two choices.
The credulous position is to regard each such belief set as
entailed by I1. The sceptical position is to regard only the
intersection of all such belief sets as entailed by I1.

Definition 3.13 (Sem(l, IT)).
For each 7 in {0, Pr, Wn, Ds}, the I-semantics of 11,
Sem(l, T1), is defined by
Sem(1, IT) = N{B(N,) : N is a leaf of App(I, IT) and Ds(N)}.

3.2 Principles for Priorities on Rules

Brewka and Eiter [1999] present two principles which they
said should be satisfied by any system of prioritised defea-
sible rules. Delgrande et al [2004] show that descriptive
priorities do not satisfy the second principle, but they agree
that the first principle is widely accepted. We shall re-cast
the first principle so that it is simpler and more general.

Principle 1.
Let r and r, be two rules and suppose N is a set of rules. If
ry is preferred over r, then NU{r,} should not be preferred
over NU{r}.

It can be shown that if NU{r;} is a node in an applicative
digraph then not Ds(NU{r,}). So the above definition of

desirable leaves satisfies Principle 1. A reasonable alterna-
tive to Ds(N) is Pr(N), where

Pr(N) iff for all » in N, Pr(r, N-{r}).
But if NU{r;} is a node in an applicative digraph then not
Pr(r,, N). So Principle 1 holds if Pr(N) replaces Ds(N).

4 Example

In this example and elsewhere if the set of antecedents of a
rule is a singleton set we shall often omit its set braces.

We say K(N) is a kernel of B(N) iff
(1) K@) <C B(N), and
(i) Cn(K(N)) = B(N), and
(iii) if SCK(N) and S = K(N) then Cn(S) = B(N).

When drawing applicative digraphs for given examples it is
useful to write K(N) underneath each node N.

In the following example, rather than drawing an applica-
tive digraph with kernels, which takes a lot of space, we
shall list its arcs using the following linear notation. The arc
labelled r from node N with kernel K(N) to node NU{r}
with kernel K(NU{r}) is denoted by

[N, K(N)]--r-->[NU{r}, K(NU{r})].

Example 4.1 (Ambiguity Propagating or Blocking)

This example is designed to show the difference between
the ambiguity propagating intuition and the ambiguity
blocking intuition. Consider the following five statements,
and determine whether e is likely or not. Each defeasible
rule is followed by its symbolic form in brackets.

(1) a, b, and c are facts.

(2) If a then usually e. [a=>¢]
(3) If b then usually d. [b=d]
(4) If ¢ then usually not d. [c = =d]
(5) If d then usually not e. [d= -¢]

A plausible theory describing this situation is II
(Ax,R,>) where Ax = {a,b,c}, R= {a=e, b=d,
¢ = -d, d= -e}, and > is empty. For easy reference, let
rrbe a=e rbe b=d r3;be c=-d, and r, be
d= -e.

Intuitively, given Ax, r, is evidence for d and r; is equal
evidence for =d. So d and -d are ambiguous, and hence
neither should follow from II. r; is evidence for e. The
only evidence against e is 74, but 74 is weakened by the am-
biguity of d. If you think that it is too risky to allow e to
follow from IT then e will be ambiguous and so the ambigu-
ity of d has propagated along r4 to e. On the other hand if
you think that r, has been sufficiently weakened to allow e
to follow from IT then e will not be ambiguous and so the
ambiguity of d has been blocked from propagating along r;.
Both ambiguity blocking and ambiguity propagating intui-
tions are common, and so a semantics should allow for both.

A linear representation of App(0, IT), with kernels, is:

[{}9 {Cl,b,C}]--l”l-->[{l"1}, {aabacae}]
[{rl}a {aabacae}]"rr'>[ {1”1,1”2}, {aabacadae}]
[{ri}, {a.b.c.e}]--rs-->[{ri,rs}, {a,b,c,—-d,e}]
[{}9 {aabac}]"rr'>[ {1”2}, {aabacad}]
[{1”2}, {a,b,c,d}]--rl-->[ {1”1,1”2}, {aabacadae}]
[{r2}, {a,b,c,d}]--r4-->[ {ra,ra}, {aabacada_'e}]

I[JCAI-07

259



[{}, {a.b,c}]--r3-->[{rs}, {aabaca_'d}]
[{rs}, {Cl,b,C,—'d}]--l’l-->[{1”1,1”3}, {a,b,c,—-d,e}]

So Sem(0, IT)
= N{B(N,) : N is aleaf of App(0, IT) and Ds(N)}
= Cn({a,b,c,~d,e}) N Cn({a,b,c,e,d}) N Cn({a,b,c,d,—~e})
= Cn({a,b,c,dve}).
This agrees with the ambiguity propagating intuition.

A linear representation of App(Wn, IT), with kernels, is:
[{}9 {Cl,b,C}]--l"l-->[{l"1}, {aabacae}]

So Sem(Wn, II)
= N{B(N,) : N is a leaf of App(Wn, II) and Ds(N)}
= Cn({a,b,c,e}).
This agrees with the ambiguity blocking intuition.
EndExample4.1

5 Default Logic

Since plausible theories encompass Default Logic, it is in-
teresting to see how applicative digraphs relate to various
default logics. We shall consider Reiter’s [1980] Default
Logic, and Lukaszewicz’s [1990] modified Default Logic.

(4x, D) is a default theory iff Ax is a set of sentences
(Ax € Snf) and D is a set of defaults. Recall a default, dis a
triple (p(d) : J(d) / ¢(d)), where p(d) and c(d) are sentences,
and J(d) is a non-empty finite set of sentences. Since the
first-order language we are working in is countable, Snf is
countable. Since J(d) is finite, D is countable.

Definition 5.1 (II(A), plausible theory generated from A).
If A=(A4x, D) is a default theory and Ax is satisfiable then
define T1(A) as follows.

If d=(p(d) : J(d) / c(d)) then p(d) = {p(d)}:/(d) = c(d).
Define II(A) = (4x, R, >), where
R={p(d):dE D}, and > is empty.

If TI(A) = (4x,R,>) then R=R,; and R, is empty.
Since > is empty every node of App(0, TI(A)) is desirable.

5.1 Reiter’s extensions

Reiter's entailment semantics for a default theory is ex-
pressed via extensions which are usually defined as fixed
points of the following function ®.

Definition 5.2 (®, Reiter-extension).
Let A =(A4x, D) be a default theory. If F'is a set of sen-
tences define ®(F) to be the smallest (under C) set satisfy-
ing E1, E2, and E3.
El) Ax C O(F).
E2) Cn(®(F)) = ®(F).
E3) If d€ D and p(d) € ®(F) and for allj in J(d), -j € F
then c(d) € O(F).
A set, E, of sentences is a Reiter-extension of A iff

®(E) = E.

Not every leaf of App(0, [1(A)) corresponds to a Reiter-
extension. We now characterise those that do.

Definition 5.3 (Reiter-full, Reiter-leaf).
If N is a set of rules then N is Reiter-full iff for all r in R,
if Ap(r, N) and for all g in G(r) {g} UB(N) is satisfiable
then r € N.

Let A =(A4x, D) be a default theory, and TI(A) = (4x, R, >).
A node, N, of App(0, TI(A)) is a Reiter-leaf of App(0, TI(A))
iff N is Reiter-full.

It can be shown that every Reiter-leaf of App(0, TI(A)) is
indeed a leaf of App(0, TI(A)). The relationship between the
Reiter-extensions of A and the Reiter-leaves of App(0, I1(A))
is given in the following theorem.

Theorem 1

Let A= (4x, D) be a default theory and Ax be satisfiable.
Then E is an Reiter-extension of A iff there is a Reiter-leaf,
N, of App(0, TI(A)) such that E = B(N).

5.2 Lukaszewicz’s modified extensions

Pages 202 to 225 of [Lukaszewicz 1990] define and develop
a default logic which has a modified definition of extension,
called an m-extension. After a double fixed-point definition
(page 204) of an m-extension, Lukaszewicz characterises m-
extensions as (essentially) leaves of a digraph (page 218).

Definition 5.4 (I'y, I';, m-extension).
Let A =(A4x, D) be a default theory. If S and U are any sets
of sentences define I'y(S, U) and T'5(S, U) to be the smallest
(under C) sets satisfying ME1, ME2, and ME3.
ME1) Ax S Ty(S, U).
ME2) Cn(T'\(S, U)) =TS, U).
ME3) If d€D and p(d) €T((S, U) and

for allj in U U J(d), SU{j, c(d)} is satisfiable

then c(d) €T (S, U) and J(d) C T5(S, U).
A set, E, of sentences is an m-extension of A iff there is a set
Fsuchthat E=T(E, F) and F=T,(E, F).

The relationship between the m-extensions of A and the
leaves of App(0, TI(A)) is given in the following theorem.

Theorem 2

Let A= (4x, D) be a default theory and Ax be satisfiable.
Then E is an m-extension of A iff there is a leaf, N, of
App(0, TI(A)) such that E = B(N).

6 Fixed Points

We analyse the function ®(.) of Section 5.1 so that we may
get a similar function for plausible theories.

O(F) cannot be constructed from F. So Reiter [1980,
Theorem 2.1] defined the constructive function ®(.,.) as
follows. Suppose F and G are any sets of sentences. Define
D(G, F) =

{dED: p(d) € Cn(G), & for allj in J(d), —j & F}.
Define ®(F), i) as follows.
O(F, 0) = Ax.
O(F, i+1) = Cu[D(F, i)] U c[D(D(F, i), F)].
Then ®(F)=U{®(F,i):icEN}.

To find extensions we still have to guess F and then using
O(F, i) check if ®(F)=F. So guidance in guessing F and a
simpler constructive function would be a help in finding
extensions. An equivalent version of ®(.,.) is ®'(,,.), de-
fined as follows.

D'(F, 0) = Cn(Ax).
D'(F, i+1) = Cn(4x U c[D(D'(F, i), F)]).

I[JCAI-07

260



It can be shown that for each i in N,
D(F, i) C D'(F, i) = Cn[P(F, i)] € D(F, i+1).

Hence U{®'(F,i):iE€ N} =U{D(F, i) :iE N} =D(F).
Each ®'(F, i) is semantically closed, whereas ®(F), i) is
not. Also ®'(F, i) is simpler than ®(F, i) because Ax is used
instead of ®'(F, /). Moreover now we can see that it is not

necessary to construct a set of sentences, we only need to
construct a set of defaults, say N, and then form

Cn(Ax U c[N]) at the end of the construction, rather than at
each stage of the construction. This greatly simplifies the
constructive function.

This idea focuses attention on D(G, F). The defining
condition of D(G, F) has two parts: an applicability condi-
tion concerning the previously constructed stage, and a con-
sistency condition concerning the F we guessed. The first
part is essential, but the second part does not have to be
checked at each stage, we can just make sure that our initial
guess is consistent. This provides guidance in guessing F'
and makes the constructive function much simpler.

Applying these ideas to the general setting of plausible
theories yields the following definition.

Definition 6.1 (2(7), (7, i)).
Suppose IT= (4x, R, >) is a plausible theory. If S and T are
any subsets of R and i € N then define
2(T)=N{S:If r € T and Ap(r, S) then r € S}.
2(T,0)={}.
(T, i+1)={reT:Ap(r, X(T, i))}.

The following two theorems relate Z(7) to 2(7, i), and the
fixed points of 3(.) to 0-applicative digraphs.

Theorem 3
Suppose IT=(4x, R, >) is a plausible theory, and 7T C R.
(1) Foralliin N,
T CXT,i+1) CU{Z(T,):ieN}CT.
2) XD =U{X(T,i):ieN} CT.

Theorem 4

Suppose II=(4x,R,>) is a plausible theory, and
NCR. Then N is a leaf of App(0, IT) iff Z(N)=N and
Cs(N) and Full(0, N).

Corollary §
Suppose A = (A4x, D) is a default theory, Ax is satisfiable,
II(A) = (4x, R, >),and NCR.
(1) E is a Reiter-extension of A iff
2(N) =N, Cs(N), N is Reiter-full, and E = B(N).
(2) E is an m-extension of A iff
2(N) =N, Cs(N), Full(0, N), and E = B(N).

7 Conclusions

Theorem 3 shows that the fixed points of 2(.) can be con-
structed. Theorem 4 gives a declarative characterisation of
the desirable leaves of App(0, IT). It also shows that the
desired sets of rules are fixed points of 2(.), and gives guid-
ance in guessing which sets of rules to check for being fixed
points of Z(.).

Theorem 1 gives a constructive characterisation of Reiter-
extensions, which is different from, but similar to, the one

on page 34 of [Antoniou 1997]. Corollary 5(1) gives a new
fixed-point characterisation of Reiter-extensions.

Theorem 2 gives a constructive characterisation of m-
extensions. Corollary 5(2) gives a fixed-point characterisa-
tion of m-extensions. Both these characterisations are much
simpler than the ones given in [Lukaszewicz 1990].

If A= (4x,D) is a default theory then the leaves of
App(Wn, TI(A)) provides Default Logic with a new seman-
tics which is ambiguity blocking, rather than the usual am-
biguity propagating semantics.

An entailment semantics tries to capture the notion of
"what follows from". But this depends on human intuition,
which is different for different people. This is why several
applicative digraphs have been defined. Other useful ones
can be defined, but the aim was to provide an adaptable
framework rather than a comprehensive one.

As indicated in the introduction, much work remains to
be done to relate plausible theories and applicative digraphs
to other systems of defeasible rules.

Acknowledgments

I would like to thank Torsten Schaub and Tim Cleaver for
helpful discussions and comments.

References

[Antoniou, 1997] Grigoris Antoniou. Nonmonotonic Rea-
soning. MIT Press, Cambridge, Massachusetts, 1997.

[Baral, 2003] Chitta Baral. Knowledge Representation, Rea-
soning and Declarative Problem Solving. Cambridge
University Press, 2003.

[Brewka and Eiter, 1999] Gerhard Brewka and Thomas
Eiter. Preferred Answer Sets for Extended Logic Pro-
grams. Artificial Intelligence, 109:297-356, 1999.

[Delgrande and Schaub, 2000] James Delgrande and Tor-
sten Schaub. Expressing Preferences in Default Logic.
Artificial Intelligence, 123(1-2):41-87, 2000.

[Delgrande et al, 2004] James Delgrande, Torsten Schaub,
Hans Tompits, and Kewen Wang. A Classification and
Survey of Preference Handling Approaches in Non-

monotonic Reasoning. Computational Intelligence,
20(2):308-334,2004.

[Dung, 1995] Phan Minh Dung. On the Acceptability of
Arguments and Its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming, and n-person games.
Artificial Intelligence, 77(2):321-357, 1995.

[Lukaszewicz, 1990] Witold Lukaszewicz. Non-Monotonic
Reasoning Formalization of Commonsense Reasoning.
Ellis Horwood, 1990.

[Nute, 1994] Donald Nute. Defeasible Logic. In D.Gabbay,
C.Hogger, and J.Robinson, eds Handbook of Logic in
Artificial Intelligence and Logic Programming, 3:353-
395, Oxford University Press, 1994.

[Reiter, 1980] Raymond Reiter. A Logic for Default Rea-
soning. Artificial Intelligence, 13:81-132, 1980.

I[JCAI-07

261




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


