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Abstract

Subsets of the Negation Normal Form formulas
(NNFs) of propositional logic have received much
attention in Al and proved as valuable representa-
tion languages for Boolean functions. In this pa-
per, we present a new framework, called VNNF,
for the representation of a much more general class
of functions than just Boolean ones. This frame-
work supports a larger family of queries and trans-
formations than in the NNF case, including opti-
mization ones. As such, it encompasses a number
of existing settings, e.g. NNFs, semiring CSPs,
mixed CSPs, SLDDs, ADD, AADDs. We show
how the properties imposed on NNFs to define
more “tractable” fragments (decomposability, de-
terminism, decision, read-once) can be extended to
VNNFs, giving rise to subsets for which a number
of queries and transformations can be achieved in
polynomial time.

1 Introduction

For the past few years, several frameworks specializing the
standard propositional one have been developed. Such frame-
works are centered on fragments which are proper subsets of
a full propositional language. Among them is the influential
DNNF fragment [Darwiche, 2001], and its subsets d-DNNF,
FBDD and OBDD, which have been successfully applied to a
number of Al tasks, including diagnosis, reasoning under un-
certainty, and planning. The success of such languages comes
from the fact that they support a number of queries and trans-
formations in polynomial time and are quite spatially suc-
cinct. The sources of their efficiency have been identified
as formal properties on the corresponding structures, e.g. de-
composability for DNNF, while d-DNNF asks also for deter-
minism [Darwiche and Marquis, 2002].

On the other hand, in the recent years, many algebraic
frameworks generalizing the standard CSP one have been
pointed out; among them are VCSP [Schiex et al., 1995], val-
uation algebra [Shenoy and Shafer, 1988; Kohlas and Shenoy,
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2000] and semiring CSP [Bistarelli er al., 1995]; PFU [Pralet
et al., 2006]. In such frameworks, satisfaction is a more grad-
ual notion than in the standard CSP one; valuations range
over some ordered scale (which can e.g. be interpreted as
a utility/uncertainty scale) and can be aggregated using some
operators. These frameworks consider a number of queries
which extend the ones considered in the standard framework
(mainly, the consistency query); especially, optimization is an
important query in such settings.

At the intersection of those two research lines are a few ap-
proaches, where DAGs are used to represent functions rang-
ing over an ordered scale. Let us mention SLDD [Wilson,
2005], AADD [Sanner and McAllester, 2005], ADD [Bahar
et al., 1993], and arithmetic circuits [Darwiche, 2002].

This work can be viewed as a further, yet more system-
atic attempt to bridge the gap between both research streams.
We present a general framework, called VNNF (for “Valued
NNFs”), suited for the representation of a much more gen-
eral class of functions than just Boolean ones. This frame-
work supports a larger family of queries and transformations
than in the NNF case, including variable elimination, suited
to optimization issues and encompasses a number of existing
representation settings, e.g. NNF, semiring CSP, mixed CSP,
SLDD, ADD, and AADD. We show how the properties im-
posed on NNFs to define “tractable” fragments (decompos-
ability, determinism, decision, read-once) can be extended to
give rise to subsets of VNNF, for which a number of queries
and transformations can be achieved in polynomial time.

2 The VNNF Framework

The VNNF framework gathers the family of VNNF lan-
guages, and the queries and transformations they support.
Each VNNF language allows the representation of some func-
tions ranging over an ordered scale; such a language is fully
characterized by a representation context (£, X, F) consist-
ing of a valuation structure &, a set X of variables and a set
F' of primitive or “local” functions (the word is taken from
[Pralet er al., 2006] where local functions represent prefer-
ences or plausibility degrees over assignments). Let us first
make precise the notion of valuation structure:

Definition 1 (valuation structure) A valuation structure is a
triple € = (E, =, OP) where:

o (E,») is a set ordered by a relation = (which is thus
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reflexive, antisymmetric and transitive) and such that
has a greatest element T and a least element 1 ;

e OP is a subset of OPg, the set of all binary operators
® on E such that each ® is associative, commutative,
monotonic (Ya,b,c € F, ifa > bthena®c >~ b® c)
and has a neutral element eg,.

When FE is totally ordered by >, elements of OFg are
generally called uninorms. When L (resp. T) is the neu-
tral element of ®, ® is usually called a t-conorm (resp. a
t-norm) on /. We shall use the same terminology here, ne-
glecting the fact that E is not necessarily totally ordered.
For instance, t-conorms on £ = [0, 1] include the operations
max(a,b), a + b — a.b, min(a + b, 1). T-norms include the
operations min(a, b), a.b. Max and ) are also t-conorms on
E =RtU{+o0}. Y isauninormon £ = RU{+00, —cc}.

We assume that O P contains the following operators A and
V, which can be viewed as generalizations of the well-known
Boolean connectives:

aNT=TAa=a, aNb=Lifa,b#T
aV1l=1Va=a, aVb=Tifa,b# L.

When > is a total order, min and max are alternative gener-
alizations of the Boolean connectives. Interestingly, A and V
are admissible in any valuation structure (hence our assump-
tion is harmless), while min and max are admissible in any
valuation structure with a totally ordered domain:

Proposition 1 ' Let £ be any valuation structure. OPc con-
tains N (resp. /) which is a t-norm (resp. a t-conorm) on E.
Furthermore, if = is a total order, O Pg contains min (resp.
max) which is a t-norm (resp. a t-conorm) on E.

The last two elements of a representation context are much
simpler notions:

e X = {x1,...,x,} is a finite set of variables ranging
on finite domains. dom(x) denotes the domain of vari-
able z € X. When Y C X, we note dom(Y)
II,cydom(x) and call Y-assignments the elements § €
dom(Y). If Y and Z are disjoint subsets of X, then §/+ 2
is the Y U Z-assignment obtained by ordering the values
given in the two tuples in an increasing way w.r.t. the
indexes of the associated variables.

F is a set of functions f ranging over E (the “local
functions”). When f is a function from Y C X to F,
scope(f) =Y is called the scope of f. Constant func-
tions are identified with elements of F without loss of
generality. We assume that F' contains all functions f
such that card(scope(f)) < 1, i.e. F' contains all "liter-
als” (cf. Section 5.3) and constants from F.

Let f € F such that scope(f) =Y. Let Zst. Y C Z C
X and Z'be any Z-assignment. We consider that f (%) is equal
to f () where § is the Y-assignment which coincides with Z
for every variable from Y.

Now, let f, f' € F;let ® € OP and x € X let Z be any
Z-assignment s.t. Z C scope(f). We shall use the following
notations:

"Due to space reasons, proofs are omitted.

e f= denotes the restriction (or conditioning) of f by 2,
i.e. the function given by scope(fz) = scope(f) \ Z
and for any scope( fz)-assignment t, fz(t) = f(Z + ).
Clearly enough, the conditioning of f by 2 where Z is
any subset of X (and not necessarily of scope(f)) can
also be defined, and considered equal to f; where 4/ is
the Z N scope( f)-assignment which coincides with 2’ for
every variable from Z N scope(f).

f® [ is the ®-combination of f and f’,i.e. the function
given by scope(f ® f') = scope(f) U scope(f') and for
any scope(f®[')-assignment £, fo f'(t) = f(E)@f' (D).
fiz,) is the [x, ®]-projection of f (or ®-elimination of
variable ), i.e. the function given by scope(fiz,g)) =
scope(f) \ {x} and for any scope( f|; ))-assignment ,
fiz.®) ({) = ®f€dom(m) ff(t—)

We shall typically consider tractable representation contexts:

Definition 2 (tractable representation context) A  repre-
sentation context (£,X,F) where & = (E,=,OP) is
tractable iff each element of F U OP is in linear time,* and
this is also the case for the characteristic function of >.

If a function f is in linear time, then every conditioning
of f and every ®-combination of f with another linear time
function are in linear time as well, provided that & is in linear
time. and any 2, fz € F)). We are now ready to define in a
formal way the family of VNNF languages:

Definition 3 (VNNF) Given a representation context
(€, X, F) where & = (E,=,OP), VNNF is the set of all
finite, rooted directed acyclic graphs (DAGs) where each
internal node is labeled by the name of an operator of OP
and can have many arbitrarily children and where each leaf
node is labeled by the name of an element of F' and by a
Z-assignment where Z C X.

It is important to observe that such DAGs are not concerned
by the representation of local functions (or operators): they
are just given by their names, and can be represented as data
structures or algorithms, but outside the DAG.

Each leaf node N of a VNNF ¢ labeled by f and 2’ actually
represents fz: Z grounds some of the variables of scope(f).
Let vars(N) = scope(f) \ Z denote the set of free vari-
ables of the function associated to /N. For any internal node
M, let op(M) denote the label of M, and Children(M) the
set of its children. The set of free variables occurring in the
VNNF ¢ rooted at node M is thus vars(¢) = vars(M) =
Unechitaren(ary vars(N). ¢ is said to be grounded when

vars(¢) = 0.
Definition 4 (semantics of a VNNF) Let ¢ be a VNNF w.r.t.

(€,X,F). The semantics val(¢) of ¢ is the function from
scope(val(¢)) = vars(¢) to E recursively defined by:

If ¢ is a leaf node labeled by f € F and a Z-assignment
Z, then val(¢) = fz;
Otherwise ¢ = Q(¢1, . ..
... @val(¢n).

%A function is said to be polytime (resp. in linear time) when
there exists a polynomial (resp. linear) time algorithm computing it.

, &n), and val (@) = val(¢1)®
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A VNNEF is thus simply the structured representation of a
function (val(¢)) that does not necessarily belong to the set
of primitives F'. Importantly if (£, X, F') is tractable, then
val(®) is a polytime function.

Obviously, a given function over a valuation structure can
be represented by many distinct but equivalent VNNFs. Since
VNNFs are defined as DAGs, subformulas that would have
several occurrences in tree-like representations do not need to
be duplicated. But they can. It is always possible to simplify
a VNNF by merging identical subgraphs. This reduction does
not change the semantics and can be achieved by an algorithm
similar to the one used for OBDDs. However, it does not
lead to a canonical form in the general case (i.e., we do not
necessarily have val(¢) = val(y) only if the reduced form
of ¢ coincides with the reducd form of ).

Let us now “quantify” VNNFs. In classical logic, two
quantifiers are used: 3 and V. In the VNNF framework, every
operator of OP can be used as a quantifier:

Definition 5 (Q-VNNF) A (prenex) quantified VNNF (Q-
VNNF) is a sentence of the form ® = ®@iz;,,... ®; x;, ¢
where ¢ is a VNNF, each variable x;; belongs to X 3 and
each ®; belongs to OP (i € 1...j). ®1%;,,... ®; Ty IS
called the prefix of ® and ¢ its matrix.

The semantics of ®, denoted val(®) is the function from
scope(val(®)) = vars(¢) \ {xi,, ...,z } to E recursively
defined as follows:

o [fthe prefix of @ is empty, then val(®) = val(g).

o Otherwise, ® is of the form QyV and
Ual(q)) = ®g’€d0m(y) Ua’l(\:[l)?j

Clearly enough, quantified VNNFs are convenient for rep-
resenting at the syntactic level projections of functions. When
Tiy, - -, T;; are pairwise distinct, P is said to be polite. When
vars(¢) € {w4,...,x;;}, the Q-VNNF @ is said to be
closed. Its semantics is an element of EZ. Computing it is
what is called the evaluation of a (closed) Q-VNNF.

3 Generality of the VNNF Framework

Let us now show how the VNNF framework encompasses
various representation settings pointed out so far.

Negation Normal Forms (NNFs) The propositional lan-
guage NNF (Negation Normal Form formulas) is a well-
known fragment for representing Boolean functions. For re-
covering it as a VNNF language, it is enough to set £ =
{0,1}, =issuch that 1 > 0, dom(x) = E foreachz € X, F'
is the set of all Boolean functions of arity at most 1 (such
functions can be represented by literals and Boolean con-
stants), OP = {min, max} (min nodes correspond to con-
junctions of formulas and max nodes to disjunctions). Then
val(@)(Z) is simply the truth value taken by the boolean func-
tion which is the semantics of ¢ when applied to Z. Quanti-
fied Boolean formulas in negation normal form are also easily
recovered as Q-VNNFs: min x (resp. max x) stands for the
universal (resp. existential quantification) on variable x.

MY = {y1,...,y} € X and ® € OP, then we abbrevi-
ate ®y1 ... ® yr by ®Y; this is harmless since each ® € OP is
associative and commutative.

CSPs Recovering the standard CSP framework is also easy,
considering the same valuation structure as for the NNF
framework. No restriction is put on X (it can be any set of
discrete variables), but for getting a CSP as a VNNF language
we must add some restrictions on VNNF formulas. First of
all, the root node has to be a min node. In general CSPs, each
child of the root is a local function f : scope(f) — {0,1}.
In table-defined CSPs, each child of the root is a max node,
whose children are themselves min nodes connecting func-
tions of the form x == aq, that take value 1 if satisfied and
value O otherwise. Quantified CSPs can also be viewed as
specific Q-VNNFs, where min x (resp. max z) stands for the
universal (resp. existential quantification) on variable x.

Semiring CSPs and valuation algebras FE is equipped
with two operators: OP = {V,®} and > is defined by a = b
iff a Vb = a. It is moreover assumed that (E, =, V, ®) is
a commutative semiring and V is idempotent. In a semir-
ing CSP viewed as a VNNF, the root node of the DAG is a ®
node and each of its children is a local function. Interestingly,
the definition of quantified semiring CSPs follows from our
framework. In particular, if > is complete, then computing
the best value of a semiring CSP ¢ is equivalent to compute
max X ¢ (note that min can also be added to O P and used as
a quantifier). Valuation algebras [Shenoy and Shafer, 1988;
Kohlas and Shenoy, 2000] can be more general than VNNF
since valuations can bear on subsets of assignment, e.g. for
representing commonality functions. When restricted to the
distributional case they can be recovered in way similar to the
one used for semiring CSPs.

Other frameworks for decision making under uncertainty
The VNNF framework subsumes many of the constraint-
based frameworks for decision making under uncertainty,
e.g. mixed CSPs (they can be represented by disjunctions
of a conjunction of constraints C;, ¢ € 1...n representing
what is satisfying and, with a disjunction of constraints K,
1 € 1...m representing the knowledge about the state vari-
ables) and possibilistic mixed CSPs (each such CSP can be
represented by a VNNF whose root is labeled by max and has
two children: a min-rooted VNNF and a max-rooted one).
Stochastic or more generally expected utility CSP networks
can be represented as well by products between a VNNF ¢,
representing the probability density over the state variables
(e.g. a bayesian net) and a semiring CSP ¢,, over £ = [0, 1]
synthesizing the utility function. Denoting X the set of deci-
sion variables and Y the set of state variables, maximizing
expected utility amounts to compute max X Y Y, . ¢s.
In the qualitative cases (mixed and possibilistic) a standard
quantifying sequence is rather max X minY. PFU generic
networks [Pralet et al., 2006]) are not stricto sensu subsumed
by the VNNF framework, since they may involve a non-
commutative combination of utility degrees and plausibility
degrees. Nevertheless, non-commutativity is not a compul-
sory condition and most of the practical instances of PFU
consider a commutative aggregator. Arithmetic circuits, as
considered in [Darwiche, 2002], for the factored representa-
tion of belief networks can also be recovered as VNNFs.

Finally, we shall see in Section 5.3 that VNNFs also en-
compass decision diagrams like AADDs (and thus ADDs)
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and SLDDs.

4 Queries and Transformations

The VNNF framework includes a number of algorithms for
answering queries about functions represented as VNNFs,
and related functions which can be characterized via the ap-
plication of transformations on functions represented by VN-
NFs. A fundamental difference between the NNF setting and
the VNNF one is that in the VNNF framework, the under-
lying valuation structure does not necessarily reduce to the
Boolean one. Especially, since £/ may contain more than two
elements, the equivalences a > L iffa = T and a < T iff
a = L do not hold anymore. In the NNF framework, the key
queries include consistency (CO), validity (VA), and model
counting (CT), while the key transformations are condition-
ing (CD), conjunction (AC), disjunction (VC) and forgetting
(FO). Let us explain how to state related queries and transfor-
mations in the VNNF framework, and point out some addi-
tional ones which make sense in this more general setting.

Full consistency/validity If we consider T as the norm, we
get very strong notions of consistency/validity: ¢ is fully con-
sistent iff there exists & s.t. val(¢)(Z) = T and ¢ is fully
valid iff for each Z, val(¢)(Z) = T.

Partial consistency/validity On the contrary, one may con-
sider every value of I except _L as the norm, and this leads to
the following notions of partial consistency and partial valid-
ity: ¢ is partially consistent iff there exists Z s.t. val(¢$)(Z) =
1| and ¢ is partially valid iff for each ¥, val(¢)(Z) = L.

Optimal satisfaction More interesting in practice is the no-
tion of optimal satisfaction, that looks for best assignments;
this query is typically useful when VNNFs encode prefer-
ences or plausibility degrees and calls for optimization: given
a VNNF ¢, find # and a € F such that val(¢)(Z) = a and
such that there is no ¢ such that val(¢)(y) = a. We thus
search for a non-dominated solution. When > is a total order,
this is equivalent to classical maximization. The associated
decision problem (deciding whether a value is optimal) con-
sists in determining whether, given a € E and a VNNF ¢, a
is the value taken by ¢ for some non-dominated solution.

Counting extends easily from NNF to VNNF: Givena € E
and a VNNF ¢, how many & are such that val(¢)(Z) = a?

Evaluation of a quantified form The extended notion of
quantification naturally leads to the problem of evaluating
a (closed and polite) Q-VNNF. As a decision problem, this
can be written as determining whether val(®) > a. This
query is of great importance in many settings: in the NNF
one, this query generalizes the famous PSPACE-complete
problem called QBF. Quantification also makes sense when
E # {0,1}. When * is a total order, evaluating a Q-VNNF
is a way to achieve optimization (find the best value of ¢
amounts to evaluating max X ¢). The relationship between
optimization and quantified forms is less obvious when par-
tial orders are considered (the identification of an operator en-
coding non-domination is not an easy problem and may have
no solution; for instance, computing a non-dominated value
for a semiring CSP represented by a VNNF ¢ is not equiva-
lent to evaluate the quantified one VX ¢).

We have obtained the following complexity results for
VNNF assuming that the underlying representation context
is tractable (which is a reasonable assumption that we make
from now on up to the end of the paper):

Proposition 2
e Partial and full consistency are NP-complete.
e Partial and full validity are CONP-complete.

e Optimization is NP-hard

Optimal value is DP-complete.
Counting is #P-hard.
Evaluation of a closed Q-VNNF is PSPACE-complete.

Observe that, though VNNF is a much more general frame-
work than the NNF one, the generalization does not lead to a
complexity shift w.r.t. the basic queries under consideration
in [Darwiche and Marquis, 2002]. Note that we could also de-
fine notions of full entailment and full equivalence and show
the corresponding decision problems CONP-complete.

Let us now focus on transformations. Three transfor-
mations are mainly to be considered; conditioning (com-
pute a VNNF representing val(¢)z), ®-combination (com-
pute a VNNF representing val(¢1) @val(¢2)) and ®-variable
elimination (compute a VNNF representing val(¢)}y,] =
val(®y¢), or more generally val(QY ¢)).

The case of ®-combination is obvious since ¢; ® ¢4 is a
VNNF and represents val(¢1) @ val(¢2). If the representa-
tion context is tractable, then each ®-combination is in linear
time. If ¢ is a VNNF, then a VNNF representing val(¢)z can
also be obtained in linear time in the size of ¢. It is enough to
revise the assignment associated to ¢:

Definition 6 (conditioning a VNNF) Given a VNNF ¢, we
denote ¢z the VNNF obtained by replacing in the label of
each leaf, the Y -assignment ij by ijo Z, the Y U Z-assignment
which coincides with § on each variable from Y and with 7
on each variable from Z \'Y.

It can be easily checked that ¢z represents the restriction
of val(¢) by 2, i.e. that val(¢z) = val(¢)z. That is why we
call ¢ the conditioning of ¢ by 2.

®-variable elimination generalizes the transformation
known as forgetting in the NNF case. In contrast to the pre-
vious transformations, it can be very expensive: at each elim-
ination step, the size of the current VNNF ¢ may increase
in a non-constant way (the size of ®fe dom () ¢z can be
|dom(x)| larger than the size of ¢). Thus, applying the def-
inition directly would lead to an exponentially larger VNNF,
unless a bounded number of variables has to be eliminated.

5 Determinism, Decomposability, Decision
and Read-Once

The previous sections have shown the VNNF framework
quite general. However, every query under consideration, if
it is no more difficult than in the Boolean case, is intractable
under the standard assumptions of complexity theory. An im-
portant issue is thus to define restrictions on the VNNF lan-
guages allowing efficient queries and transformations.
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In the NNF framework, a few properties, namely decom-
posability, determinism, decision and read-once are sufficient
to achieve many of them in polynomial time. We shall see that
a third one is valuable in the VNNF framework, namely dis-
tributivity. The key point is that it enables efficient ®-variable
elimination, which is an important transformation for several
issues, including the optimization one.

5.1 Distributivity and decomposability

The space explosion inherent to a direct application of ®-
variable elimination in the general case does not necessarily
occur; especially, it can be limited when some of the chil-
dren of ¢ do not depend on the variable x to be eliminated.
Thus, in the DNNF case, at most one child of each A node
may depend on the variable to be forgotten. Actually, in ad-
dition to independence, a further property is implicitly used
in the NNF framework for ensuring polytime forgetting, and
it has to be made explicit in order to be extended to VNNF:
the distributivity of A over V. The impact of distributivity
on variable elimination in valuation algebras is known for a
while (see e.g. [Shenoy and Shafer, 1988]) and requiring it is
not so demanding in many representation contexts.

Definition 7 (®-distributivity) A VNNF ¢ ensures -
distributivity iff for any ©® labelling an internal node in ¢,
© distributes over ®@: Va,b,c € E : a ® (b ® ¢
(a®b)®(a®c).

Proposition 3

o Any VNNF w.r.t. any representation context ensures -
distributivity for @ =V and for @ = /.
e Any VNNF w.r.t. any representation context where > is
a total order ensures Q-distributivity for ® = max and
for ® = min.
We are now ready to define the fragment of ®-
decomposable VNNFs:

Definition 8 (®-decomposability) Let ¢ be a VNNF:

e A node N of ¢ is simply decomposable iff for each
Ni,N; € Children(N), vars(N;) Nvars(N;) = 0
when i # j.

e A node N of ¢ is ®-decomposable iff it is simply decom-
posable and op(N) is distributive over .

e ¢ is ®-decomposable iff each of its (internal) nodes N
is ®-decomposable when op(N) # ®. ®-DVNNF is the
class of all the ®-decomposable VNNFs.

As to ®-decomposability, the main result is:

Proposition 4 ®-DVNNF is linearly closed for ®-variable
elimination, i.e., there exists a linear time algorithm for com-
puting a @-DVNNF equivalent to QY ¢ when ¢ € Q-DVNNF
andY C X.

This generalizes the result of tractability of DNNF for the
forgetting operation. It moreover implies that the optimiza-
tion of any VNNF the nodes of which are either max nodes
or decomposable nodes is tractable.

Proposition 5 The restrictions of full consistency, partial
consistency and optimisation on max-DVNNF are in P.

5.2 Determinism

A second important property in the NNF framework is de-
terminism. More than a property of logical exclusion, it is
linked to the existence of a neutral element for ®:

Definition 9 (determinism) An internal node N in a VNNF
¢ is deterministic iff for each § € dom(vars(N)), there is at
most one M € Children(N) such that val(y)(%) # €op(n)»
where 1 is the VNNF rooted at M.

Definition 10 (d-DVNNF) d-DVNNF is the class of all VN-
NFs in which each internal node is either simply decompos-
able or deterministic.

As to d-DVNNEF, the main result is:

Proposition 6 The restrictions of full validity and partial
validity on d-DVNNF are in P. If ¢ is a d-DVNNF, then
counting can be achieved in time O(|E| + |¢]).

5.3 Decision diagrams

Let us now focus on other properties that prove useful for
defining another interesting fragment of VNNF: the set of all
decision diagrams. We first need a number of definitions:

Definition 11 (literals) A literal on x € X is a function f
whose scope is {x}. Lx is the set of all the literals that can
be built on variables from X.

By extension, we shall also call literals the leaves labeled
by literals.

Definition 12 (assignment nodes) An assignment node N
onx € X ina VNNF ¢ is a node of the form | ® o, where l is
a literal on x and ® is a t-norm on E.

Two assignment nodes N1 and No on x € X are exclusive
iff their respective literals fi and fo are exclusive, i.e., VI €
dom(x), either f1(Z) = L or fo(Z) = L.

In any assignment node IV of the form | ® « where [ is a
literal on x one may assume without loss of generality that o
is not a literal (a literal f can always be replaced by the as-
signment node fAT). Then dvar(N) can denote the variable
x and tail(N) the formula « in a non-ambiguous way.

Definition 13 (decision nodes) A decision node N on x in a
VNNF ¢ is a node of the form N1 ® ... ® N, where all the
N, are assignment nodes on the same variable x and ® is a
t-conorm on E. N is exclusive iff its assignment nodes are
pairwise exclusive.

Definition 14 (linear node) A node N is linear iff at most
one of its children is not grounded.

Note that leaves are linear nodes. We are now ready to
define the language of decision diagrams:

Definition 15 (decision diagrams) A decision diagram is a
VNNF in which each internal node is either an exclusive de-
cision node or a linear node.

Two particular subclasses of decision diagrams are worth-
while noticing, the read-once ones and the ordered ones:

Definition 16 (read-once and ordered decision diagrams)

e A decision diagram ¢ is read-once iff for any assignment
node N in ¢, dvar(N) does not occur in tail(N).
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e A decision diagram ¢ is ordered w.r.t. a strict order < on
X iff for every pair of decision nodes M and N in ¢, if
M is an ancestor of N in ¢, then dvar(M) < dvar(N).

The second property obviously implies the first one. Inter-
estingly, AADDs and SLDDs are specific decision diagrams:

AADD For recovering algebraic decision diagrams, let us
set E = RU {—o0, —o0}, ==>, OP = {min, maz,+,.},
Ve € X,dom(zx) = {0,1}, F = Lx. The decision
nodes of such decision diagrams are of the form N, =
maz(min(fu, cn + bn.Np), min(fi,c; + bi.Ny)), where:

o fn (resp. fp) is the literal on x that valuates to —oo for
x = 0 (resp. z = 1) and to +oo for x = 1 (resp. x = 0);

e ¢y, by, ¢y, by are constants of F;
e N, and N, are either decision nodes or constant nodes.

The root of an AADD is a linear formula ¢+b.Nj,. The reader
can check that min( fr, cp, + bp-Ny) and min(f;, ¢; + b Ny)
are exclusive assignment nodes whose tails are linear ones.

SLDD A SLDD is an ordered decision diagram built on
some set E' ordered by some > and equipped with two oper-
ators ¢ and ®, where ® is a t-norm and @ is a t-conorm. It is
moreover required that ® distributes over @: (F, L, T, @, ®)
is a commutative semiring. For recovering SLDD, it is suf-
ficient to set I to the subset of literals of Ly ranging over
{L, T}

and to consider ordered decision diagrams whose decision
nodes are of the form N = V(A(l1,¢1 @ N1), ..., A(lg, e @
Ni)), where the ¢; are constants of E.

SLDDs and AADDs are obviously read-once. This is im-
portant enough, since one can prove that the read-once prop-
erty on decision diagrams ensure that they are not only de-
composable but also deterministic:

Proposition 7 Read-once decision diagrams are d-DVNNFs.
As a consequence of Propositions 5, 6 and 7, we get:

Proposition 8 The restrictions of full and partial consis-
tency, optimization, full and partial validity on read-once
(and thus on ordered) decision diagrams are in P. Counting
can be achieved in time O(|E| + |¢)).

Now, it can be shown that the ®-elimination of a variable x
can be performed in an efficient way on a decision diagram ¢
for which distributivity w.r.t. ® is ensured, provided that x is
final in ¢ (i.e., for any assignment node N on x in ¢, tail(N)
is grounded).

Definition 17 (distributive Q-VNNF) A Q-VNNF is said to
be distributive iff each operator of its matrix distributes over
each operator of its prefix.

For instance, when F is totally ordered, any quantified de-
cision diagram (e.g. a quantified AADD or a quantified ADD)
is distributive for a prefix composed of existential (max) and
universal (min) quantifiers.

Proposition 9 Ler < be the total ordering on X defined by
the prefix of a (closed and polite) Q-VNNF ®, i.e. z;;, <
con <z iff © = @124y, ..., ®j4;¢. The evaluation prob-
lem for a distributive, closed and polite Q-VNNF the matrix
of which is a decision diagram ordered by < is in P.

6 Conclusion

In this paper, we have presented a new framework, VNNF,
which encompasses many representation settings pointed out
so far. We have shown how some properties imposed on
NNFs to define more “tractable” fragments (namely, decom-
posability, determinism, decision, read-once) can be extended
to VNNFs.

This work calls for a number of perspectives. The more im-
mediate ones are of algorithmic nature: we need algorithms
for compiling VNNFs into ®-DVNNFs, d-DVNNFs, or (or-
dered) decision diagrams. From a more theoretical (but not
less important) point of view, a number of issues need to be
addressed as well, including the succinctness one (how do the
VNNF fragments w.r.t. a given representation context relate
w.r.t. spatial efficiency?) and the canonicity one (under which
requirements can we guarantee that two VNNFs represent the
same function iff they are identical?).
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