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Abstract

Nonmonotonic causal logic, invented by McCain
and Turner, is a formalism well suited for repre-
senting knowledge about actions, and the definite
fragment of that formalism has been implemented
in the reasoning and planning system called CCalc.
A 1997 theorem due to McCain shows how to trans-
late definite causal theories into logic programming
under the answer set semantics, and thus opens the
possibility of using answer set programming for the
implementation of such theories. In this paper we
propose a generalization of McCain’s theorem that
extends it in two directions. First, it is applicable to
arbitrary causal theories, not only definite. Second,
it covers causal theories of a more general kind,
which can describe non-Boolean fluents.

1 Introduction

Causal logic [McCain and Turner, 1997] is a formalism for
knowledge representation, especially suited for representing
effects of actions. Causal theories are syntactically simple but
also very general: they consist of causal rules of the form

F ⇐ G (1)

where F and G are propositional formulas. Intuitively,
rule (1) says that there is a cause for F to be true if G is
true. For instance, the causal rule

pt+1 ⇐ at (2)

can be used to describe the effect of an action a on a Boolean
fluent p: if a is executed at time t then there is a cause for p to
hold at time t+1. Other important concepts in commonsense
reasoning can be easily expressed by rules of this kind too.
For instance, a rule of the form

F ⇐ F

(“if F is true then there is a cause for this”) expresses, in-
tuitively, that F is true by default. In particular, the causal
rule

pt ⇐ pt (3)
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says that Boolean fluent p is normally true. The frame prob-
lem [McCarthy and Hayes, 1969] is solved in causal logic
using the rules

pt+1 ⇐ pt ∧ pt+1

¬pt+1 ⇐ ¬pt ∧ ¬pt+1.
(4)

These rules express inertia: if a fluent p is true (false) at time
t then normally it remains true (false) at time t + 1.

The equivalence of two fluents or actions can be expressed
by equivalences in the head. For instance, to express that two
actions constants a and a′ are synonymous, we can use causal
rule

at ≡ a′
t ⇐ �. (5)

Rules of those kind are used to semantically characterize
the relationship between modules in the Modular Action De-
scription language MAD [Lifschitz and Ren, 2006]. For in-
stance, [Erdoğan and Lifschitz, 2006; Erdoğan et al., 2007]

use an equivalence of this kind to state that pushing the box
in the Monkey and Bananas domain is a specialization of a
more general action “move”.

The language of causal theories has been extended
in [Giunchiglia et al., 2004] to handle multi-valued constants,
in which a constant may assume values different from true
and false. For instance, we can express the fact that object
x is in location l with loc(x) = l. One advantage of us-
ing loc(x) = l instead of the Boolean fluent loc(x, l) is that
loc(x) = l implicitly expresses the commonsense fact that
every object is exactly in one position.

In many useful causal rules, such as (2)–(4), the formula
before the “⇐” is a Boolean literal, a non-Boolean atom
(such as loc(x) = l) or ⊥. Rules of this kinds are called
definite. Such rules are important because a causal theory
consisting of definite rules can be converted into an equiva-
lent set of propositional formulas [McCain and Turner, 1997;
Giunchiglia et al., 2004], so that its models can be computed
using a satisfiability solver. That translation is used in an im-
plementation of the definite fragment of causal logic, called
the Causal Calculator, or CCALC.1 The Causal Calculator
has been applied to several problems in the theory of com-
monsense reasoning [Lifschitz et al., 2000; Lifschitz, 2000;
Akman et al., 2004; Campbell and Lifschitz, 2003; Lee and
Lifschitz, 2006].

1
http://www.cs.utexas.edu/˜tag/ccalc/ .

IJCAI-07
366



On the other hand, a rule of the form (5) is not definite, so
that the method of computing models described above is not
applicable in the presence of such rules.

Another method of computing the models of a causal the-
ory uses converting it into a logic program under the an-
swer set semantics [Gelfond and Lifschitz, 1988; 1991]. This
translation, discovered by McCain [1997], is modular (i.e.,
can be applied to a causal theory rule-by-rule). It converts,
for instance, causal rule (3) into

pt ← not ¬pt,

which is the usual way of expressing that pt is true by default
in logic programs [Gelfond and Lifschitz, 1991, Section 3].
Answer set solvers — systems that find the answer sets for
logic programs — can then be used to find the models of def-
inite causal theories [Doğandağ et al., 2001]. On the other
hand, this translation is only applicable to Boolean causal the-
ories consisting of definite rules.

In this paper we propose a translation that is more general
than McCain’s: it is applicable to arbitrary causal theories,
including multi-valued theories containing nondefinite rules.
The price that we pay for this generality is that the logic pro-
grams produced by our translation are programs with nested
expressions. Such programs, defined in [Lifschitz et al.,
1999], can be converted into disjunctive programs in polyno-
mial time at the price of introducing additional atoms [Pearce
et al., 2002]; this process has been implemented.2 Conse-
quently, our translation may allow us to compute the mod-
els of arbitrary causal theories using answer set solvers ap-
plicable to disjunctive programs, such as DLV 3, GNT 4 and
CMODELS, 5.

Our translation, like the one due to McCain, is modular. It
is defined in two steps. First, every rule of the given causal
theory is converted into a set of rules in clausal form

l1 ∨ · · · ∨ ln ⇐ G (6)

where each li is a literal, using [Giunchiglia et al., 2004,
Proposition 4]. Then each rule (6) is replaced by a logic pro-
gram with nested expressions; we will see that this program
is ”small” – usually linear in the size of the input.

In addition, we show how both steps can be done more ef-
ficiently. First of all, the “clausification” of a causal theory
can be done without much increase in size if we agree to in-
troduce auxiliary atoms. About converting a clausified causal
theory into a logic program, we will show that many rules
and atoms can be dropped in special cases. For instance, in
case of causal theories with Boolean signature, we get a much
simpler definition of the translation. Our optimizations also
allow us to translate causal theories whose heads are literals
or ⊥ into nondisjunctive logic programs. It follows that, for
this class of causal theories, the problem of the existence of a
model is in class NP.

We review the syntax and semantics of causal theories and
logic programs in Sections 2 and 3, respectively. The trans-

2
http://www.cs.uni-potsdam.de/˜torsten/nlp/

3
http://www.dbai.tuwien.ac.at/proj/dlv/ .

4http://www.tcs.hut.fi/Software/gnt/ .
5
http://www.cs.utexas.edu/˜tag/cmodels/ .

formation from causal theories in clausal form into logic pro-
gram is shown in Section 4, and Section 5 describes how to
make it more compact. Clausifying causal theories is dis-
cussed in Section 6.

2 Causal Theories

We review the more general syntax and semantics of
causal theories — which allow multi-valued constants —
from [Giunchiglia et al., 2004].

A (multi-valued) signature is a set σ of symbols c, called
constants, with a set of symbols Dom(c) (the domain of c)
associated to each of them. A (multi-valued) atom is a string
of the form c = v, where c ∈ σ and v ∈ Dom(c). A (multi-
valued) formula is built from atoms using the connectives ∧,
∨, ¬, � and ⊥. Formulas of the forms F ⊃ G and F ≡ G
can be seen as abbreviations in the usual way.

A (multi-valued) causal rule is an expression of the form
F ⇐ G, where F and G are formulas. These formulas
are called the head and the body of the rule respectively. A
(multi-valued) causal theory is a set of causal rules.

A (multi-valued) interpretation over σ is a (total) function
that maps each constant c of σ to an element of Dom(c). An
interpretation I satisfies (or is a model of) an atom c = v if
I(c) = v. The definition of satisfaction and model of formu-
las of more general form follows the usual rules of proposi-
tional logic.

The semantics of causal theories of [Giunchiglia et al.,
2004] defines when an interpretation I of σ is a model of
a causal theory T , as follows. The reduct T I of T relative to
I is the set of the heads of the rules of T whose bodies are
satisfied by I . We say that I is a model of T if I is the only
model of T I . It is clear that replacing the head or the body
of a causal rule by an equivalent formula doesn’t change the
models of a causal theory.

Take, for instance, the following causal theory with
Dom(c) = {1, 2, 3}:

¬(c = 1) ∨ c = 2⇐ �

¬(c = 2) ∨ c = 1⇐ �,
(7)

The reduct relative to any I is always

{¬(c = 1) ∨ c = 2,¬(c = 2) ∨ c = 1},

which is equivalent to c = 1 ≡ c = 2. The only model of the
reduct is the interpretation J such that J(c) = 3. It is then
clear that J is a model of (7), while no other interpretation I
is a model of this causal theory because I is not a model of
the reduct.

A literal is either an atom a or its negation ¬a. A rule of
the form (6), where n ≥ 0 and l1, . . . , ln are literals, is said
to be in clausal form. It is also semi-definite if n ≤ 1, and
definite if either the head is ⊥ (n = 0) or an atom. A causal
theory is in clausal form (semi-definite, definite) if all its rules
are in clausal form (respectively semi-definite, definite).

A constant c is binary if |Dom(c)| = 2. It is also Boolean
if Dom(c) = {t, f}. Signatures, formulas, causal rules and
causal theories are binary (Boolean), if they contain binary
(respectively, Boolean) constants only. In case of a binary
signature, the difference between definite and semi-definite
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causal rules is not essential, because every negative literal can
be rewritten as an atom. For instance, if the underlying signa-
ture is Boolean then ¬(c = t) is equivalent to c = f . In case
of Boolean constants c, we will often write c = t simply as
c. If a causal theory of a Boolean signature doesn’t contain
atoms of the form c = f then the heads and bodies of its rules
are essentially classical, as in the original definition of causal
theories [McCain and Turner, 1997]. We call such theories
MCT theories.

Take, for instance, the following MCT theory T of signa-
ture {p, q}:

p ∨ ¬q ⇐ �

q ⇐ p.
(8)

The interpretation I defined by I(p) = I(q) = t is a model of
T . Indeed, in this case T I = {p ∨ ¬q, q}, and its only model
is I . No other interpretation is a model of T : if I(p) = t and
I(q) = f then I is not a model of the reduct T I = {p∨¬q, q},
while if I(p) = f then the reduct T I = {p ∨ ¬q} has more
than one model.

3 Logic programs

The answer set semantics was originally defined in [Gelfond
and Lifschitz, 1988] for logic programs of a very simple
form and has been generalized several times. Here we re-
view the syntax and semantics of programs with nested ex-
pressions [Lifschitz et al., 1999]. In this section, the words
”atom” and ”literal” are understood as in classical proposi-
tional logic. A nested expression is built from literals using
the 0-place connectives� and ⊥, the unary connective “not”
(negation as failure) and the binary connectives “,” (conjunc-
tion) and “;” (disjunction).

A logic program rule (with nested expressions) has the
form

F ← G

where F and G are nested expressions. As in causal rules, F
is called the head of the rule and G its body. Finally, a logic
program (with nested expressions) is a set of logic program
rules.

The answer set semantics defines when a consistent set of
literals (a set that doesn’t contain both a and ¬a for the same
atom a) is an answer set for a logic program. In the rest of this
section X stands for a consistent set of literals, l for a literal,
F and G for nested expressions and Π for a logic program.

We define when X satisfies F (symbolically, X |= F ) re-
cursively as follows:

• X |= l if l ∈ X ,

• X |= � and X �|= ⊥,

• X |= not F if X �|= F ,

• X |= F, G if X |= F and X |= G, and

• X |= F ; G if X |= F or X |= G.

Finally, X satisfies Π (X |= Π) if, for all rules F ← G in Π,
X |= F whenever X |= G.

The reduct ΠX of Π relative to X is the result of replacing
every maximal subexpression of Π that has the form not F

with ⊥ if X |= F , and with � otherwise. A set X is an
answer set for Π if X is a minimal set (in the sense of set
inclusion) satisfying ΠX .

An expression of the form F ↔ G will stand for two rules
F ← G and G← F .

4 Main translation

Consider a multi-valued signature σ. For any formula F of
that signature, we define F ne as the nested expression ob-
tained from F by replacing each ∧ with a comma, ∨ with
a semicolon and ¬ with not.

We are now ready to define our translation. Given any
causal theory T in clausal form, we define ΠT as the program
with nested expressions obtained from T

• by replacing each causal rule (6) by

l1; . . . ; ln ← not not Gne, (l1; not l1), . . . , (ln; not ln)
(9)

where each li stands for the literal complementary to li,
and

• by adding, for every constant c ∈ σ and every distinct
v, v′ ∈ Dom(c), rules

c = v ↔ ,
w∈Dom(c)\{v}

¬(c = w) (10)

¬(c = v);¬(c = v′)← not (c = v), not (c = v′) (11)

where the “big comma” is used in the same way as big
conjunctions.

According to this definition, each rule (9) of ΠT can be
obtained from the corresponding rule of T in three steps: by

• replacing each propositional connective with the corre-
sponding “logic program connective”, with the excep-
tion of negation in the head,

• prepending not not to the body of the rule, and

• adding some “excluded middle hypotheses” to the body
of the rule.

This last step “compensates” the replacement of ∨ with the
corresponding “stronger” logic program connective. It is
clear that this translation is linear if there is an upper bound
on the size of the domain for each constant in T (for instance,
when T is binary).

Rules (10) and (11) relate literals containing the same con-
stant. They are needed to establish a 1–1 relationship between
the models of T I and the subsets of I that satisfy ΠI

T .
For instance, if T is (7) then ΠT is

¬(c = 1); c = 2← not not �, (c = 1; not (c = 1)),

(¬(c = 2); not ¬(c = 2))

¬(c = 2); c = 1← not not �, (c = 2; not (c = 2)),

(¬(c = 1); not ¬(c = 1))

c = 1↔ ¬(c = 2),¬(c = 3)

c = 2↔ ¬(c = 1),¬(c = 3)

c = 3↔ ¬(c = 1),¬(c = 2)

¬(c = 1);¬(c = 2)← not (c = 1), not (c = 2)

¬(c = 1);¬(c = 3)← not (c = 1), not (c = 3)

¬(c = 2);¬(c = 3)← not (c = 2), not (c = 3).

(12)
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If T is (8) then ΠT is

p;¬q ← not not �, (¬p; not ¬p), (q; not q)

q ← not not p, (¬q; not ¬q)

p↔ ¬(p = f)

p = f ↔ ¬p

q ↔ ¬(q = f)

q = f ↔ ¬q

¬p;¬(p = f)← not p, not (p = f)

¬q;¬(q = f)← not q, not (q = f).

(13)

The theorem below expresses the soundness of this transla-
tion. We identify each interpretation with the (complete) set
of literals over σ that are satisfied by the interpretation.

Theorem 1 For any causal theory T in clausal form, the
models of T are identical to the answer sets for ΠT .

For instance, the only answer set for (12) is {¬(c =
1),¬(c = 2), c = 3}, and indeed it is the only model of (7).
The only answer set for (13) is {p,¬(p = f), q,¬(q = f)},
which is the only model of (8).

For each causal rule (6) that has the form l1 ⇐ G (i.e.,
n = 1), we can drop the “excluded middle hypothesis” from
the corresponding rule (9) of ΠT . Two logic programs Π1

and Π2 are strongly equivalent if, for any program Π, Π1 ∪Π
has the same answer sets of Π2 ∪Π [Lifschitz et al., 2001].

Proposition 1 For any literal l and any nested expression F ,
the one-rule logic program

l ← F,
(
l; not l

)

is strongly equivalent to

l ← F.

For instance, the second rule of (13) can be rewritten as

q ← not not p

and the answer sets don’t change.

However, dropping terms of the form li; not li from (9) is
usually not sound when n > 1. Take, for instance, the one-
rule MCT causal theory:

p ∨ ¬p⇐ �,

which has no models. As we expect, the corresponding logic
program ΠT :

p;¬p←not not �, (¬p; not ¬p), (p; not p)

p↔ ¬(p = f)

p = f ↔ ¬p

¬p;¬(p = f)← not p, not (p = f)

(14)

has no answer sets. If we drop the two disjunctions in the
body of the first rule of (14) we get a logic program with two
answer sets {p,¬(p = f)} and {¬p, p = f} instead.

5 Reducing the translation

Our simplification of ΠT depends on two parameters:

• a set S of atoms of σ such that every atom occurring in
T belongs to S, and

• a set C of constants of σ such that every rule of T con-
taining a constant from C in the head is semidefinite.

For each constant c, let Nc denote the number of atoms
containing c that do not occur in S. We define the logic pro-
gram ΔT (S, C) as obtained from ΠT by:

• dropping all rules (11) such that c ∈ C or {c = v, c =
v′} �⊆ S,

• replacing, for each constant c such that Nc > 0,
rules (10) with the set of rules

,
w : c=w∈S,w �=v

¬(c = w)← c = v (15)

for all v ∈ Dom(c) such that c = v ∈ S, and

• adding
⊥ ← ,

w : c=w∈S

not (c = w) (16)

for each constant c such that Nc > 1.

We will denote ΔT (S, ∅) by simply ΔT (S). We can easily
notice that ΔT (S, ∅) contains atoms from S only. Clearly,
when S contains all atoms, ΔT (S) = ΠT . Taking S smaller
and C larger makes ΔT (S, C) contain less and generally sim-
pler rules.

Rules (15) impose a condition similar to the left-to-right
half of (10), but they are limited to atoms of S. Rule (16)
expresses, in the translation, the following fact about causal
theories: if neither of two distinct atoms c = v1 and c = v2

occurs in a causal theory T then no model of T maps c to
either v1 or v2. For instance, if Dom(c) = {1, 2, 3} and
only c = 1 occurs in T then every model of T maps c to 1.
However, if c = 2 occurs in T as well then c can be mapped
to 3, as shown by example (7).

For instance, if T is (7) then ΔT ({c = 1, c = 2}) is

¬(c = 1); c = 2← not not �, (c = 1; not (c = 1)),

(¬(c = 2); not ¬(c = 2))

¬(c = 2); c = 1← not not �, (c = 2; not (c = 2)),

(¬(c = 1); not ¬(c = 1))

¬(c = 2)← c = 1

¬(c = 1)← c = 2

¬(c = 1);¬(c = 2)← not (c = 1), not (c = 2)

(17)

If S is a set of atoms, a subset of {a,¬a : a ∈ S} is
complete over S if it contains exactly one of the two literals
a or ¬a for each a ∈ S.

Theorem 2 Let T be a causal theory over σ. Let S be a set
of atoms of σ such that every atom occurring in T belongs to
S, and let C be a set of constants of σ such that every rule of
T containing a constant from C in the head is semidefinite.
Then I �→ I ∩ {a,¬a : a ∈ S} is a 1–1 correspondence
between the models of T and the answer sets of ΔT (S, C)
that are complete over S.
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We get the models of the original causal theory by look-
ing at the unique interpretation that satisfies each complete
answer set for ΔT (S, C). (The uniqueness of the interpre-
tation is guaranteed by the theorem.) For instance, {¬(c =
1),¬(c = 2)} is the only complete answer set for (17); it
corresponds to the interpretation that maps c to 3, and this is
indeed the only model of (7).

Program ΔT (S, C) may have incomplete answer sets, and
those don’t correspond to any interpretation. They can be
eliminated from ΔT (S, C) by adding the constraint

⊥ ← not a, not ¬a (18)

for every a ∈ S.
We can notice that no constant c ∈ C occurs in the head

of “intrinsically disjunctive” rules of ΔT (S, C). Indeed, if
c ∈ C then each rule (9) with c in the head is nondisjunc-
tive because it comes from a semi-definite causal rule, and
ΔT (S, C) doesn’t contain rules (11) whose head contains c.
Moreover, rules (10) and (16) can be strongly equivalently
rewritten as nondisjunctive rules. In particular, it is possi-
ble to translate semi-definite causal theories into nondisjunc-
tive programs of about the same size. As a consequence, the
problem of the existence of a model of a semi-definite causal
theory is in class NP.

When, for a binary constant c, only one of the two atoms
belongs to S, all rules (10) and (11) in ΠT for such constant
c are replaced in ΔT (S, C) by a single rule (15) whose head
is �, which can be dropped. In particular, an MCT theory T
over σ can be translated into logic program ΔT (σ), basically
consisting just of rules (9) for all rules (6) in T .

For instance, if T is (8) then ΔT ({p, q}) is

p;¬q ← not not �, (¬p; not ¬p), (q; not q)

q ← not not p, (¬q; not ¬q)

whose only complete answer set is {p, q} as expected.

6 Clausifying a causal theory

As we mentioned in the introduction, the translations from
the previous sections can also be applied to arbitrary causal
theories, by first converting them into clausal form. One way
to do that is by rewriting the head of each rule in conjunctive
normal form, and then by breaking each rule

C1 ∧ · · · ∧Cn ⇐ G, (19)

where C1, . . . , Cn (n ≥ 0) are clauses, into n rules

Ci ⇐ G (20)

(i = 1, . . . , n) [Giunchiglia et al., 2004, Proposition 4].
However, this reduction may lead to an exponential increase
in size unless we assume an upper bound on the number of
atoms that occur in the head of each single rule.

We propose a reduction from an arbitrary causal theory
to a causal theory where the head of each rule has at most
three atoms. This translation can be computed in polyno-
mial time and requires the introduction of auxiliary Boolean
atoms. The translation is similar to the one for logic programs
from [Pearce et al., 2002] mentioned in the introduction.

We denote each auxiliary atom by dF , where F is a for-
mula. For any causal theory T , the causal theory T ′ is ob-
tained by T by

• replacing the head of each rule F ⇐ G in T by dF , and

• adding, for each subformula F that occurs in the head of
rules of T , (⊗ denotes a binary connective)

– dF ≡ F ⇐ �, if F is an atom,� and ⊥,

– dF ≡ ¬dG ⇐ �, if F has the form ¬G, and

– dF ≡ dG ⊗ dH ⇐ �, if F has the form G⊗H .

Intuitively, the equivalences in the heads of the rules above
recursively define each atom dF occurring in T ′ to be equiv-
alent to F . This translation is clearly modular.

If T is an MCT theory then T ′ is an MCT theory also. For
instance, MCT rule

p ∨ (q ∧ ¬r)⇐ r

is transformed into the following 7 MCT rules:

dp∨(q∧¬r) ⇐ r

dp∨(q∧¬r) ≡ dp ∨ dq∧¬r ⇐ �

dq∧¬r ≡ dq ∧ d¬r ⇐ �

d¬r ≡ ¬dr ⇐ �

da ≡ a⇐ � (a ∈ {p, q, r})

Theorem 3 For any causal theory T over a signature σ,
I �→ I|σ is a 1–1 correspondence between the models of T ′

and the models of T .

We can see that every rule in causal theories of the form
T ′ is either already in clausal form, or has the body � and
at most three atoms in the head. It is not hard to see that
the clausification process described at the beginning of the
section is linear when applied to T ′.

7 Related work and conclusions

McCain’s translation [McCain and Turner, 1997] is a linear
and modular translation applicable to (semi-)definite MCT
theories T (over σ) whose bodies are conjunction of literals.
Our translation ΔT (σ) is similar to McCain’s translation for
causal theories of those kinds. Also, the two outputs are —
in presence of rules of the form (18) — strongly equivalent to
each others. In this sense, our translation is a generalization
of McCain’s translation.

Another translation [Doğandağ et al., 2004] turns MCT
theories called “almost definite” into logic programs. For a
causal theory T that is both almost definite and in normal
form, ΔT (σ) is essentially strongly equivalent to the out-
put of their translation. Causal theories in normal form seem
more general than almost definite causal theories, as we don’t
know if there is any simple, modular and almost linear trasfor-
mation from arbitrary causal theories (or even from MCT the-
ories) to almost definite causal theories.

Future work will include studying how we can turn a the-
ory in the Modular Action Description language MAD into
a logic program. This will require extending the translation
to causal theories with variables [Lifschitz, 1997] and finding
other simplifications of the translation.

We will also like to investigate the relationship between
causal theories and logic programs with aggregates. It turns
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out that, for instance, all rules (10) and (11) for the same con-
stant c can be strongly equivalently replaced by a single ag-
gregate — as defined in [Ferraris, 2005] — in the head of a
rule.
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