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Abstract

Cognitive psychologists have long recognized that
the acquisition of a motor skill involves a transi-
tion from attention-demanding controlled process-
ing to more fluent automatic processing. Neurosci-
entific studies suggest that controlled and automatic
processing rely on two largely distinct neural path-
ways. The controlled pathway, which includes the
prefrontal cortex, is seen as acquiring declarative
representations of skills. In comparison, the au-
tomatic pathway is thought to develop procedural
representations. Automaticity in motor skill learn-
ing involves a reduction in dependence on frontal
systems and an increased reliance on the automatic
pathway. In this paper, we propose a biologically
plausible computational model of motor skill auto-
maticity. This model offers a dual-pathway neuro-
computational account of the translation of declar-
ative knowledge into procedural knowledge during
motor learning. In support of the model, we re-
view some previously reported human experimen-
tal results involving the learning of a sequential key
pressing task, and we demonstrate, through simula-
tion, how the model provides a parsimonious expla-
nation for these results.

1 Introduction

Learned motor skills are central to most human activities.
Learning plays a critical role in our abilities to walk, talk,
cook, type, and play games like ping-pong, for example. The
importance of learning in human motor performance has led
many robotics researchers to examine machine learning ap-
proaches to motor control. We currently lack a clear and com-
plete computational account of how humans acquire motor
skills, however. In hopes of addressing this deficit, this paper
offers some insights into the neurocomputational structure of
motor skill learning.

One of the central findings of cognitive research into skill
learning involves the process of automaticity, through which
fluency at a skill is improved by gradually shifting from a
declarative representation of the task to a more procedural
representation [Anderson, 1981]. A growing body of neu-
roscientific evidence suggests that declarative and procedural

processes are implemented by two largely separate neural net-
works in the brain [Bapi ef al., 2000; Hikosaka et al., 2002;
Wolpert et al., 2001]. Both networks have the capability to
individually acquire motor skills, but they typically coordi-
nate with each other during learning. The controlled pathway
includes dorsolateral prefrontal cortex (DLPFC), anterior cin-
gulate cortex (ACC), anterior parts of the cerebellum, anterior
parts of the basal ganglia, and the pre-supplementary motor
area (preSMA). This pathway is seen as acquiring represen-
tations of motor skills that are primarily declarative. Declar-
ative representations are formed very quickly, and they guide
skill execution during the early stages of learning. The sec-
ond network, which we call the automatic pathway, includes
areas like the supplementary motor area (SMA), primary mo-
tor cortex, lateral parts of the cerebellum, and lateral parts
of the basal ganglia. As a skill becomes well practiced, this
network slowly encodes a procedural representation of the
skill. With practice, the involvement of the frontal controlled
pathway decreases, and the skill comes to be primarily exe-
cuted by the automatic pathway. The modulation of frontal
involvement is thought to be governed by a separate coordi-
nation mechanism, perhaps embodied in the preSMA and the
ACC [Hikosaka et al., 2002].

This paper addresses a key question concerning this pro-
cess - are the information processing properties of these brain
regions, as they are currently understood, sufficient to account
for the behavioral shift in skill learning? To address this ques-
tion, we have explored a neurocomputational model of motor
skill learning that is based on the dual-pathway hypothesis.
We report the results of simulation experiments involving a
sequential key pressing task. In these simulations, keys are
pressed using a two joint planar arm. The arm learns to trace
out a sequence of trajectories such that the end effector suc-
cessively moves from one key to the next in a trained sequen-
tial order.

In our model, the controlled pathway learns a declarative
representation of the task: the key sequence. When executing
the task, the prefrontal cortex (PFC) in the controlled path-
way actively maintains an abstract representation of the next
key to be pressed. This representation of the desired key,
along with the current state of the arm, is then transformed
by the network into an appropriate reaching trajectory toward
that key. Once the current target key has been pressed, the
PFC rapidly updates to encode the next key in the sequence,
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and the next reach is produced. Thus, the controlled pathway
needs only to learn the sequence of keys during task learning,
depending on a pre-trained motor area to translate the PFC
representation of each target key into an appropriate reaching
motion.

In contrast, the automatic pathway of our model learns the
entire motor skill from scratch. It acquires a procedural repre-
sentation of the skill by learning the entire motion trajectory
needed for the complete sequence of key presses. This path-
way learns more slowly than the controlled pathway, because
much more detailed knowledge must be learned.

As the automatic pathway becomes proficient in executing
the sequence, the involvement of the controlled pathway is
withdrawn. In our model, this shift is driven by a cognitive
control mechanism. This mechanism monitors performance
error and modulates the weight given to the controlled path-
way appropriately. When error is high, the contribution of
the fast-learning controlled pathway is strengthened. As er-
ror falls, the contribution of the automatic pathway is allowed
to dominate.

2 Background

2.1 Leabra

Our model uses the Leabra modeling framework [OReilly and
Munakata, 2001]. Leabra offers a collection of integrated
cognitive modeling formalisms that are grounded in known
properties of cortical circuits but are sufficiently abstract to
support the simulation of behaviors arising from large neu-
ral systems. It includes dendritic integration using a point
neuron approximation, a firing rate model of neural coding,
bidirectional excitation between cortical regions, fast feed-
forward and feedback inhibition, and a mechanism for synap-
tic plasticity. Of particular relevance to the current model
are Leabra’s synaptic learning rules and its lateral inhibition
mechanism.

Leabra modifies the strength of synaptic connections in
two ways. An error correction learning algorithm changes
synaptic weights so as to improve network task performance.
Unlike the backpropagation of error algorithm, however,
Leabra’s error correction scheme does not require the biolog-
ically implausible communication of error information back-
ward across synapses. In addition to this error-correction
mechanism, Leabra also incorporates a Hebbian correlational
learning rule. This means that synaptic weights will continue
to change even when task performance is essentially perfect.

The effects of inhibitory interneurons tend to be strong and
fast in cortex. This allows inhibition to act in a regulatory
role, mediating the positive feedback of bidirectional exci-
tatory connections between brain regions. Simulation stud-
ies have shown that a combination of fast feedforward and
feedback inhibition can produce a kind of “set-point dynam-
ics”, where the mean firing rate of cells in a given region
remains relatively constant in the face of moderate changes
to the mean strength of inputs. Leabra implements this dy-
namic using a k-Winners-Take-All (kWTA) inhibition func-
tion that quickly modulates the amount of pooled inhibition
presented to a layer of simulated cortical neural units based
on the layer’s level of input activity. This results in a roughly

constant number of units surpassing their firing threshold. In
our model, this mechanism both encourages learning through
the development of sparse neural representations and it helps
to make neural network outputs interpretable.

2.2 Cognitive Control

Cognitive control involves the ability to behave according to
rules or goals instead of responding in a reflexive manner.
Prefrontal cortex (PFC) is critical for robust cognitive con-
trol [OReilly and Munakata, 2001]. Dense recurrent connec-
tivity in PFC allows it to actively maintain information in fir-
ing rate patterns, and it is thought that this active maintenance
of task relevant information is central to task directed behav-
ior. Also, interactions with the midbrain allow the PFC to
rapidly update its state, based on task requirements [Rougier
et al., 2005]. We have incorporated both active maintenance
and rapid updating in the PFC component of our model.

The strength of cognitive control can be modulated based
on the task requirements. Botvinick et al. [2001] proposed
that the anterior cingulate cortex (ACC) monitors the amount
of conflict between parallel neural pathways and strengthens
cognitive control when conflict is high. In our model, perfor-
mance error is seen as a sign of conflict. Thus, we modulate
the strength of cognitive control between trials, in proportion
to the amount of error experienced on previous trials.

2.3 Motor SKkill Learning

A wide variety of sequential key pressing tasks have been
used to investigate human motor skill learning [Bapi ef al.,
2000; Hikosaka et al., 2002; Rand et al., 2001], and a num-
ber of interesting findings have resulted. There is a period of
rapid improvement in performance during the early stages of
training. During this stage, learning is effector independent
(e.g., switching hands does not substantially degrade perfor-
mance). Further, interfering with the frontal systems involved
in the controlled pathway during this period seriously disrupts
performance. Interfering with the automatic pathway, how-
ever, does not affect performance during this early period.

After extensive training, the execution of the skill becomes
more automatized. The skill becomes relatively effector de-
pendent. Also, performance remains robust if the controlled
pathway is disrupted.

Additionally, studies of choking under pressure have sug-
gested that errors in performance in the face of stress may
have different causes early and late in learning [Beilock et
al., 2004]. Early in learning, when the controlled pathway
dominates, errors may arise due to a failure to engage cog-
nitive control systems. With a well practiced skill, however,
degraded performance may be due to the excessive exertion
of unnecessary cognitive control. These results are also re-
flected in our model.

2.4 Previous Computational Models

Ours is certainly not the first computational model of mo-
tor skill learning. For example, Wolpert et al [1998; 2001]
proposed MOSAIC, a model for sensorimotor control. MO-
SAIC consists of multiple modules, where each module con-
sists of a pair of forward and inverse models. While MO-
SAIC has many strengths, it does not address the issue of
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representational change in skill learning. There is no mecha-
nism for early declarative representations, making MOSAIC
somewhat analogous to our automatic pathway.

The automatic pathway in our model is largely based on
the previous Leabra networks of Gupta and Noelle [2005b;
2005al. These networks were used to explore the neurocom-
putational principles underlying skill savings and the transfer
of knowledge from one skill to another.

Nakahara et al. [2001] proposed a skill learning model that
is very similar in general architecture to our own. There are
a number of important differences between our models, how-
ever. First, their model does not focus on the question of dif-
ferences in declarative and procedural represntations of the
skill. Instead, the early dominance of the controlled path-
way is driven by differential learning rates, with the con-
trolled pathway made to learn faster. In contrast, our model
is novel in showing that declarative and procedural represen-
tations can naturally emerge from neural encodings, and this
difference in encoding easily explains the difference in the
speeds of learning. Also, unlike our model, the Nakahara
model does not include a mechanism for dynamically adjust-
ing cognitive control — the relative contribution of the con-
trolled pathway. While the previous model does include a
“coordinator”, the function of this mechanism is not the same.
Hence, in their model, once a skill has been automatized, its
controlled execution based on task demands is not possible.
This is inconsistent with the behavioral observations. Lastly,
our model critically depends on the active maintenance of tar-
get key representations in the PFC and the rapid updating of
these representations as keys are pressed, while the Nakahara
model incorporates no such mechanism.

The biggest point of difference between our model and the
previous models of skill learning is that our model grounds
the previous more-abstract theories in well established neu-
rocomputational mechanisms. In other words, our model
demonstrates that the declarative/procedural translation the-
ory fits naturally with Leabra neurocomputational primitives,
and our instantiation takes a step toward the generation of
quantitative predictions for the model.

3 Tasks

We have used our model to simulate the learning of key press-
ing motor sequences. Our model controls a simulated 2-joint
planar arm which moves over a 9-key keyboard, as show in
in Figure 1. The state of the arm at any point in time is rep-
resented by the vector (ql, q2), where ql and g2 are the two
joint angles. The joint angles range between 0° and 120°.
Movements are to be generated in such a way that the end
effector follows a straight line trajectory from the position
of the previous key to the position of the next key in the
sequence. The arm starts over of the bottom-left key. The
motion trajectory is discretized at equidistant time intervals,
and hence, any trajectory is represented as a sequence of arm
states over the successive time steps. During training, the arm
is essentially guided along the desired trajectory, with differ-
ences between the motor output of the arm controller and the
configuration of the arm, as specified by the guide, acting as
a measure of error to drive synaptic weight change.

[ ]
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Figure 1: A two joint planar arm and a keyboard. The state of
the arm at any point in time is given by the vector of joint an-
gles (q1, g2). The arm produces motion trajectories such that
its end effector moves from one key to the next, in sequence.

4 The Network

Figure 2 shows the Leabra network used for our simulations.
The Sensory_Input layer provides the current state of the arm
as input to the network and the Motor_Output layer is to pro-
duce the desired arm state for the next time step. Each joint
angle is encoded over a pool of 15 neural units. Each of the
15 units has a preferred angle, ranging from —10° to 130°,
in 10° increments. To encode a given joint angle, the closest
unit with regard to preference, as well as its two neighbors,
are set to their maximal firing rates. Similarly, patterns of
activity over each row of 15 units in the Motor_Output are
decoded by identifying the preferred angle of the unit in the
middle of the three adjacent units that are all active. Other
patterns of activity in the Motor_Output layer are considered
to be ill-formed. With each joint angle encoded over 15 units
in this way, the complete arm configuration is encoded over
30 units.

The network is composed of two pathways: the controlled
pathway on the left and the automatic pathway on the right.
In the automatic pathway, the Sensory_Input layer influences
the Motor_Output layer via the Automatic_Path layer. This
is similar to the network used by Gupta and Noelle [2005a;
2005b], with one addition. A contextual hidden layer has
been added to this pathway, which provides a copy of the Au-
tomatic_Path layer activity at the previous time step as input
to the Automatic_Path layer during the next time step. Con-
nection weights from the Automatic_Path layer to the Mo-
tor_Output are not allowed to exceed 50% of the maximum
weight value allowed by Leabra (implemented by setting the
relative weight scaling parameter to 0.5). This restriction al-
lows the controlled pathway to strongly dominate over the
automatic pathway by strengthening the controlled pathway’s
influence on the Motor_Output layer beyond what is possi-
ble for the automatic pathway. This dominance occurs when
cognitive control is strong. When cognitive control is weak,
however, the automatic pathway weights can still be strong
enough to drive appropriate outputs.

In the controlled pathway, the Sensory_Input layer provides
input to the PFC layer. This layer generates a declarative rep-
resentation of the key sequence, by sequentially activating a
single unit in the PFC_Output layer corresponding to the cur-
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Table 1: Network Performance (SSE) During Early Stages of Learning.

Sequence Both Pathways (High Control)  Controlled Pathway Alone  Automatic Pathway Alone
Sequence 1 12.4 (£5.1) 22.2 (£6.4) 296.4 (+£25.6)
Sequence 2 19.2 (£2.2) 21.6 (£2.9) 214.6 (£9.4)
Sequence 3 16.8 (£2.5) 18.2 (£3.7) 234.0 (+£22.7)

Figure 2: The Leabra network. Each gray box corresponds
to a neural processing unit. Each arrow represents complete
interconnectivity between the units in two layers. The dashed
line from the Motor_Output layer to the Sensory_Input layer
signifies that, when the arm is unguided, the output at the
previous time step is the input for the next time step.

rent target key. The PFC_Context layer feeds the PFC layer
activity from the previous time step. The PFC_Output layer,
as well as the Sensory_Input layer, provide input to the Mo-
tor_Area layer. The Motor_Area layer translates the current
key target, in PFC_Output, and the current Sensory_Input into
an appropriate action at the Motor_Output. It is important to
note that, during training, the PFC_Output layer receives an
explicit error signal (as does the Motor_Output layer), driv-
ing the PFC to learn to produce the correct sequence of target
keys. Finally, the PFC layer also provides input to the Au-
tomatic_Path layer. This input helps guide learning for the
automatic execution of the sequence.

Our model includes a cognitive control modulation mech-
anism. This mechanism modulates the strength of the con-
trolled pathway’s contribution to the final motor output as
well as the strength of the input going from the controlled
pathway to the automatic pathway. Cognitive control is mod-
ulated as follows:

Controlyew = X Controlyg + (1 — A) (a Conflict + 3)

Control,e,, specifies the value of control for the current trial.
This value, which is between O and 1, is used to scale the
weights from the controlled pathway (using Leabra’s relative
weight scaling parameter). Control,;q specifies the value of

control for the previous trial. «, § and A are constants, with
values of 1, 0 and 0.6 respectively, determined by an ad hoc
search. Conflict is a normalized measure of performance
error, and it is computed as follows:

Conflict = Error—9

where Error is the sum squared error (SSE) produced in the
Motor_Output layer during the previous trial. € and - are
constants with values of 10 and 80, determined by an ad hoc
parameter search. If the value of Control is less than 0.15, it
is thresholded to 0. If the value of C'ontrol is greater than 1, it
is set to 1. Hence, the magnitude of control is approximately
proportional to a running average of output error over previ-
ous trials. When error has been high, control will be high,
and the influence of the controlled pathway will be strong.

The focus of this work is on the learning of specific mo-
tor skills, rather than on the development of basic motor
competence. Thus, it was assumed that the system included
the means to generate a reaching motion to a single target
key, with the identity of that key being actively maintained
in PFC. This PFC-controlled reaching process was imple-
mented in the pathway from the PFC_Output, through the
Motor_Area, to the Motor_Output. This portion of the net-
work was pre-trained to capture fundamental motor compe-
tence. During pre-training, the network experienced every
possible arm configuration along with every possible target
key, and it was trained, using Leabra’s standard synaptic mod-
ification rules, to produce the next time step of an appropri-
ate reaching response. Once this pre-training was complete,
learning was disabled for all projections going into or out of
the Motor_Area layer.

In order to examine the learning properties of our model,
we trained it to produce three randomly generated 10-key se-
quences. Each simulation involved the learning of one of
these sequences. Random generation of the key sequences
resulted, at the finer level of arm motion time steps, in se-
quences of 57, 42 and 51 arm states for the three sequences.
For each sequence, we examined the learning profile of each
of the two pathways when isolated, as well as the perfor-
mance of the model as a whole. Each simulation was repeated
five times with different random initial synaptic weights in
the network, and we report the mean and standard error of the
mean over these five repetitions for each measurement taken.

5 Results

Initially, the automatic pathway was disabled, and only the
controlled pathway was trained. On each trial, the initial arm
state was presented at the network’s input, and this triggered
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Table 2: Network Performance (SSE) After Extensive Training.

Sequence Both Pathways (High Control) Controlled Pathway Alone = Automatic Pathway Alone
Sequence 1 66.4 (+£4.8) 30.2 (£4.0) 29.0 (£4.5)
Sequence 2 36.3 (£2.2) 24.6 (£3.0) 19.3 (£2.2)
Sequence 3 37.4 (£3.2) 18.8 (£3.7) 11.4 (£2.5)

the selection of a target key at the PFC_Output layer. A train-
ing signal was then provided to this layer, specifying the cor-
rect target key. The correct target was then actively main-
tained in the PFC while the Motor_Area layer generated the
corresponding reaching motion. Once each reach was com-
plete, the PFC was allowed to rapidly update, based on the ac-
tivity in the PFC_Context layer and the Sensory_Input layer,
selecting a new target key at PFC_Output. A training signal
was then provided, once again, to PFC_Output, and this pro-
cess continued until the end of the sequence, and the end of
the trial, was reached. Through this training process, the con-
trolled pathway learned quickly. An average of 11.8 (£1.8),
18.6 (£2.0), and 13.2 (£3.1) trials were required for the con-
trolled pathway to learn the three sequences to criterion, re-
spectively.

Next, the controlled pathway was disabled in order to ex-
amine the learning performance of the automatic pathway.
Once again, each trial began with the initial arm position be-
ing provided as input. Synaptic weight changes were made
in response to training signals provided at the Motor_Output
layer, with performance error driving learning in the stan-
dard Leabra manner. The arm was guided from key to key in
the sequence, forcing the Sensory_Input to always fall along
the correct trajectory. This process continued until the motor
sequence was complete. An average of 83.0 (£10.4), 76.4
(£5.8) and 70.2 (£7.0) trials were required for this pathway
to master the three sequences, respectively. Hence, the time
required to train the automatic pathway was found to be sub-
stantially greater than the time required to train the controlled
pathway for all three sequences. Clearly, learning the declar-
ative sequence of key identities was easier than learning the
nuanced motor trajectory needed to visit every key in order.
This provides an explanation for why learning in the con-
trolled pathway is generally faster, allowing it to dominate
performance early in skill acquisition.

Finally, the complete model was trained on each key se-
quence, with the control modulation mechanism determining
the strength of the controlled pathway on any given trial. Ini-
tially, performance error was high. This quickly resulted in
a high level of control (i.e., a control value of 1), maximally
increasing the influence of the controlled pathway. Because
the controlled pathway can learn rapidly, error then dropped
rapidly. This drop occurred after 15 (£1.3), 19.8 (£4.9) and
15.2 (£2.3) training trials for the three sequences, respec-
tively. Network performance at this point in training is shown
in Table 1, alongside the performance that arose when each
pathway was temporarily disabled at this point in training.
Note that correct motor sequences were produced by the in-
tact model and by the controlled pathway alone but not by
the automatic pathway in isolation. This is consistent with

the observation that human performance suffers early in skill
learning when the controlled pathway is disrupted (e.g., under
PFC-based working memory load).

Another interesting observation is that the full model was
able to generate the correct sequence despite the automatic
pathway’s tendency to generate incorrect responses. It ap-
pears as if the controlled pathway, which was the primary
contributor to the correct output, learned to compensate for
some of the erroneous activity from the automatic pathway.
This may be the reason why the error for the isolated con-
trolled pathway is slightly greater than the error for the full
model. The isolated controlled pathway might have been
overcompensating for an automatic pathway that was no
longer present.

Training was continued past this point. When the control
was up-modulated to a high value, the network produced cor-
rect motor sequence due to the corresponding frontal involve-
ment. However, as correct outputs were generated, the run-
ning average of error decreased and the strength of control
dropped. When this happened, the controlled pathway’s con-
tribution to the motor output decreased, bringing error back
up and strengthening control. Thus, control oscillated close
to its maximum level. During this entire process, the auto-
matic pathway continued to learn. When the strength of con-
trol was high, the network generated correct output. Since
the amount of error was negligible on these trials, Leabra’s
error-correction learning rule played only a small role, and
the automatic pathway learned primarily through the Hebbian
component of the learning algorithm. When control dipped
and significant error appeared at the output, the automatic
pathway benefited from the error driven learning component
of Leabra. For the three sequences, the automatic pathway
needed an average of 334.4 (+£42.5), 76.8 (£4.6) and 233.2
(£21.4) training trials, respectively, to master the task. Once
the automatic pathway learned the sequence, the strength of
control dropped to 0. This signified that no control was being
employed and the task had been automatized.

Network performance at this late stage of learning is shown
in Table 2. At this point, each pathway produced reasonable
performance when isolated from the other. Interestingly, error
increased when both pathways were incorporated and control
was set to its maximum level. Thus, our model suffers when
excessive control is employed during the execution of an au-
tomatized motor skill, just as is observed in humans who are
performing a well-practiced skill under pressure [Beilock et
al., 2004]. Late in training, as control reached its minimum
value of 0, the automatic pathway learned to generate the cor-
rect motor sequence without any input from the controlled
pathway. Hence, the introduction of control resulted in un-
wanted frontal input, degrading performance.
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A final curious observation is that the time required by the
automatic pathway to learn the sequence in the full model
is substantially greater than the time needed when the auto-
matic pathway is trained alone. This occurred because the
controlled pathway kept the network error low, limiting the
utility of Leabra’s error driven learning mechanism and caus-
ing connection weights to change more slowly.

6 Discussion

We have reported some initial explorations of a computational
cognitive neuroscience model of automaticity in motor skill
learning. The use of this computational framework now gives
us the capability to produce both qualitative and quantita-
tive predictions concerning human behavior. In our model,
a declarative representation of the skill is quickly acquired
in the frontal controlled pathway. With additional practice, a
procedural representation of the skill is also acquired in the
automatic pathway. As the automatic pathway becomes more
and more proficient, the contribution of the controlled path-
way is gradually retracted by a control modulation mecha-
nism.

For the simple sequence learning task that was explored in
these simulations, the controlled pathway was faced with the
relatively simple task of learning a sequence of key identities.
The actual motor output was initially produced as a succes-
sion of reaching motions that were generated by a pre-trained
component of the model. Not all motor tasks lend themselves
to such a simple declarative representation, however. While
skilled motions like a golf put or a ping pong smash can def-
initely be broken down into discrete declarative steps, the ac-
tual execution of each of those steps is not as simple as a
previously-mastered reaching behavior. When learning such
skills, it might be necessary for the motor areas participating
in the controlled pathway to learn to execute each component
step, limiting the utility of the controlled pathway.

Some theories of automaticity suggest that the declarative
component can assist in the training of the procedural com-
ponent. This happens, in a small way, in our model. Early in
training, the controlled pathway produces correct output ac-
tivation levels, and this allows Hebbian learning in the auto-
matic pathway to improve performance in that pathway. Heb-
bian learning in Leabra is fairly weak, however, particularly
in comparison to the error driven learning mechanisms used
in this framework. We intend to explore ways in which this
this interaction can be strengthened, allowing the controlled
pathway to “teach” the automatic pathway.

The main limitation of our model is that it does not yet
capture execution-time differences between controlled pro-
cessing and automatic processing. It is well established that
controlled execution of an skill is slower than automatic exe-
cution. This is our most pressing matter for future research.
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