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Abstract

In this paper we study a recent formal model for
qualitative spatial reasoning with cardinal direction
relations. We give an O(n4) algorithm to check
the consistency of a network of basic cardinal con-
straints with variables ranging over the set of con-
nected regions homeomorphic to the closed unit
disk (which includes a wide variety of irregular-
shaped regions). To the best of our knowledge, this
was an open problem. A previous algorithm for
a domain that includes also disconnected regions
works in O(n5), but, for the problem we consider
here, such an algorithm cannot be used. Using the
new algorithm we also show that the problem of
deciding the consistency of a network of disjunc-
tive cardinal constraints with variables ranging over
the set of connected regions is NP -Complete. Our
main contribution is based on results from the field
of combinatorial geometry.

1 Introduction

It is widely accepted that spatial reasoning plays an impor-
tant role in various artificial intelligence applications, such
as geographic information systems (GISs), robot navigation,
computer vision, etc. Algebraic approaches formalize spa-
tial reasoning as constraint satisfaction problems (CSPs),
which can be classified depending on the type of relations
between variables representing objects of some topological
(or Euclidean) space. A first broad distinction can be made
between quantitative and qualitative formalisms; we are in-
terested here in qualitative calculi for spatial reasoning [Cohn
and Hazarika, 2001; Sharma et al., 1994], which allow a ma-
chine to represent and reason with spatial objects making ab-
stractions from quantitative (or metric) knowledge. More-
over, qualitative spatial models can be classified in direc-
tional [Frank, 1996] and topological [Renz and Nebel, 1998];
the present work falls in the former category.

Different directional (or orientational) spatial reasoning
formalisms have been studied for different types of objects
(regions). Our work in based on a formalism, presented
in [Skiadopoulos and Koubarakis, 2004], for cardinal di-
rection relations between connected and irregular-shaped re-

gions, which can be used to model areas in various interest-
ing applications [Goyal, 2000]. The model we consider is
very expressive since it overcomes some of the limitations
of point-based [Ligozat, 1998] and box-based [Mukerjee and
Joe, 1990; Balbiani et al., 1998] approximation formalisms
with cardinal directions [Frank, 1996]. As a practical exam-
ple [Skiadopoulos and Koubarakis, 2005], in a point-based
approximation, Spain is northeast of Portugal, while in a
box-based model Portugal is contained in Spain; most peo-
ple would agree that none of this representation is accurate,
since Spain lies partially at the northwest, at the north, at the
northeast, at the east and at the southeast of Portugal.

The present work is organized as follows. In Section 2
and 3 we briefly introduce some definitions and an algorithm
(given in [Skiadopoulos and Koubarakis, 2005]) which de-
cides the consistency of a network of basic cardinal con-
straints where variables represent either connected or discon-
nected regions of the Euclidean space R

2. In Section 4 we
exploit some results from combinatorial geometry which are
essential for what we accomplish in Section 5; that is, the de-
sign of a consistency checking algorithm for a network of ba-
sic cardinal constraints over connected regions. We prove the
correctness of the algorithm, we analyze its complexity and
we show that the same problem for disjunctive constraints is
NP-complete, before concluding.

2 A Formal Model for Cardinal Relations

In this section, we shortly revise the main definitions of Ski-
adopoulos and Koubarakis’s formalism [2005] for qualitative
spatial representation and reasoning with cardinal direction
relations. The model is based on previous results for cardinal
relations [Goyal, 2000; Goyal and Egenhofer, 2000].

Let REG be the set of regions of R
2 that are homeomor-

phic to the closed unit disk; each region is closed, connected
and have connected boundaries. The set of all finite unions
of regions in REG is denoted by REG∗; regions in REG∗

may be disconnected and have holes.
Let a = a1∪· · ·∪ak ∈ REG∗, such that each ai ∈ REG,

and consider the orthogonal axes of the space R
2. The sym-

bols a−
x (resp., a+

x ) and a−
y (resp., a+

y ) denote the infimum
(resp., the supremum) of the projection of each region ai on
the x-axis and y-axis. The minimum bounding box of region
a, denoted mbb(a), is the box formed by the straight lines
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Figure 1: Tiles and mbb w.r.t. region b

x = a−
x , x = a+

x , y = a−
y , y = a+

y . Any box with area
greater than 0 will be called non-trivial box. We will refer
to a−

x , a+
x , a−

y , a+
y as the endpoints of mbb(a). By consider-

ing the axes of mbb(b), where b is called the reference re-
gion, the space is divided into 9 areas that are represented by
the tile-symbols B, S, SW, W, NW, N, NE, E, SE (see Fig-
ure 1). Tile-areas are closed, unbounded (except for B(b)),
pairwise disjoint (or with a non-trivial box intersection) and
their union is R

2. An expression like R1:R2: . . . :Rk, where
1 < k ≤ 9 and such that each Ri is a tile-symbol will be
called a multitile-symbol, and it denotes the union of the cor-
responding tile-areas.

A basic cardinal relation (BC-relation, for short) is a bi-
nary relation, denoted by a tile or a multitile-symbol R =
R1: · · · :Rk, that is defined as:

R = {(α, β) ∈ (REG∗)2 | α = α1 ∪ . . . ∪ αk ∧
α1 ∈ R1(β), . . . , αk ∈ Rk(β)}

A formula a R b where a, b are variables ranging over REG∗

and R is a BC-relation is a basic cardinal constraint (BC-
constraint, for short)1.

When R is a tile-symbol we have that a R b ⇔ a ∈ R(b),
which can be equivalently expressed as a conjunction of bi-
nary order constraints between the endpoints of mbb(a) and
mbb(b), that is, as a set of binary constraints of the point al-
gebra (PA) [van Beek, 1992]. This fact can be used to de-
fine the satisfiability of a BC-constraint, as follows. A BC-
constraint a R1: · · · :Rk b is satisfiable iff there is an assign-
ment of regions in REG∗ to the primary variable a, the refer-
ence variable b and the component variables of a w.r.t. b, that
is, ab

1, . . . , a
b
k, in such a way that the following constraints

hold:

• order constraints: ab
1 R1 b ∧ · · · ∧ ab

k Rk b;

• union constraint: a = ab
1 ∪ · · · ∪ ab

k.

The set of BC-relations over REG∗ is denoted by D∗ and

contains Σ9
i=1

(
9

i

)
= 511 elements. Elements in the set 2D

∗

are called cardinal relations, and they can be used to repre-
sent indefinite information, since they may be disjunctive.

An interesting restriction of this model can be obtained
by constraining regions variables to range over REG. In
this case, the set of BC-relations is denoted by D, and con-
tains only 218 out of the 511 elements of D∗. For example,

1Sometimes we will use Ra,b for denoting the cardinal relation
between variables a and b.

there are no regions a, b in REG such that a E:W b holds, so
E:W /∈ D. As in the previous case, 2D denotes the set of all
cardinal relations over REG.

In order to solve spatial reasoning tasks with cardinal con-
straints, one can use a binary constraint network [Dechter,
2003] with a set of variables V representing regions of REG∗

(resp., REG) and a set of constraints C based on the oppor-
tune set of cardinal relations between variables. The main
problem is, as usual, determining whether the network is con-
sistent or not. A network N with variables V = {a1, . . . , an}
over REG∗ (resp. REG) is consistent iff there exists a so-
lution given by an n-tuple (α1, . . . , αn) ∈ (REG∗)n (resp.
REGn) such that all cardinal constrains in C are satisfied by
the assignment ai = αi, ∀ 1 ≤ i ≤ n. In the next section
we deal with the “easiest” case consisting of a network with
BC-constraints only.

3 Consistency of BC-constraints over REG∗

In [Skiadopoulos and Koubarakis, 2005] the authors present
an ad-hoc algorithm (which will be called here SK-CON) for
consistency checking of a network of basic cardinal con-
straints with variables ranging over REG∗. Such an algo-
rithm is quite complicated, and, in our view, it presents at
least two important problems: 1) its time complexity is high,
i.e, O(n5), and 2) it is not guaranteed to work when the do-
main is restricted to the set REG of connected regions. The
algorithm takes as input a network N with a set C of BC-
constraints from D∗, a set V with n variables (ranging over
REG∗), and it returns ‘Consistent’ if N is consistent; other-
wise it returns ‘Inconsistent’. Let us briefly summarize the
idea of the three steps (S1, S2, S3) of the algorithm2.

Begin of SK-CON

S1 Translation:
• For each Cb

a ∈ C of the form a R1: · · · :Rk b, consider
the set of component variables Sb

a = {ab
1, . . . , a

b
k}, and map

Cb
a into a set of order constraints Ob

a between the endpoints
of mbb(a), mbb(b) and mbb(ab

i) for each component variable

ab
i ∈ Sb

a. Notice that the constraints in Ob
a are logically im-

plied by the spatial configuration expressed by Cb
a;

• Form a point algebra CSP (PA-CSP ) with the set of
constraints CO =

⋃
a,b∈V Ob

a and the set of variables V O

defined as the set of all endpoint variables obtained from the
previous step.
S2 Order constraint checking:
• Solve the PA-CSP with CSPAN algorithm [van Beek,

1992] and, if possible, obtain a solution σO for the order con-
straints, otherwise return ‘Inconsistent’;
• Derive a maximal solution μO , by considering, for each

pair of variables a, b and each ab
i ∈ Sb

a, the solution-box αb
i

for ab
i , and extending it in all possible directions until it touch

whatever line, from the solution-boxes for the mbbs of vari-
ables a and b, is closer to it. (See Example 1).
S3 Union constraint checking: Check if a solution
for the network N can be obtained upon the maximal

2It is worth noticing that this algorithm takes, with examples and
partial results, fourteen pages to be presented. We here introduce
some small changes in the original notation for the sake of clarity.
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solution μO . This control is performed by using the
function GLOBALCHECKNTB, which decides if the set
of union constraints CU derived from the set of BC-
constraints C can also be satisfied. If so, the algo-
rithm returns ‘Consistent’; otherwise it returns ‘Inconsistent’.

End of SK-CON

It is worth noticing that step S1 introduces new variables
in such a way that the PA-CSP works actually with O(n2)
variables. Thus, since CSPAN has quadratic time-complexity,
the complexity of step S2 is O(n4). At the same time, the
function GLOBALCHECKNTB takes into consideration each
variable a ∈ V in turn, and it checks if the sets Σb1

a , . . . ,Σbm
a

of maximal solutions corresponding to each set Sbi
a of com-

ponent variables of a w.r.t any reference variable bi ∈ V ,
satisfy or not the following predicate:

Non-Trivial Box (NTB):
For all σ ∈ Σb1

a ∪ · · · ∪ Σbm
a there exists a tuple

(σ1, . . . , σm) ∈ Σb1
a ×· · ·×Σbm

a such that mbb(σ)∩
mbb(σ1) ∩ · · · ∩ mbb(σm) is a non-trivial box.

Predicate NTB holds iff function CHECK-
NTB (Σb1

a , . . . ,Σbm
a ) returns ‘True’:

Function CHECKNTB (Σb1
a , . . . , Σbm

a )
For every s in Σb1

a ∪ · · · ∪ Σbm
a Do

Q = {s};
For every Σ′ in {Σb1

a , . . . , Σbm
a } Do

Q′ = ∅;
For every s′ in Σ′ and every q in Q Do

If mbb(s′) ∩ mbb(q) is a non-trivial box Then
Q′ = Q′ ∪ {mbb(s′) ∩ mbb(q)};

IfQ′ = ∅ Return ‘False’
Q = Q′;

Return ‘True’;

This function works in O(n4) and it is called for each vari-
able a ∈ V . Hence step 3 of the SK-algorithm is O(n5),
which gives the overall time complexity of the algorithm.

Satisfiability of NTB for variable a ∈ V supposes that
there is an assignment a = α so that for each reference
variable bi, with a R1i: · · · :Rki b, there is also an assign-

ment abi

1i = αbi

1i, . . . , a
bi

ki = αbi

ki for its component vari-

ables such that union constraint from Cbi
a is satisfied, that is,

α = αbi

1i ∪ · · · ∪ αbi

ki and the order constraints in Obi
a are also

satisfied. GLOBALCHECKNTB guarantees that such an as-
signment is posible for any variable and hence, there is an
assignment ai = αi, (αi ∈ REG∗) for each ai ∈ V such
that order and union constraints in CO and CU are satisfied
and thereby all BC-constraints are satisfied and the network
is consistent.

Example 1 ([Skiadopoulos and Koubarakis, 2005]) Let C
be the following set of BC-constraints on region variables
a, b and c: {a B:N:E b, a B:S:W c, b SW c}. Figure
2 shows mmb(α), mmb(β), mmb(γ) found for variables
a, b and c, respectively. When considering a B:N:E b the
maximal solutions for component variables of a is the set
Σb

a = {αb
1, α

b
2, α

b
3} and when considering a B:S:W c is Σc

a =
{αc

1, α
c
2, α

c
3}.

Figure 2: Σb
a and Σc

a of Example 1

4 Cardinal Constraints and Helly-type

theorems

In order to design a consistency algorithm for a network of
BC-constraints over REG we will keep the first 2 steps of
the algorithm SK-CON, while we will substitute the last step
with a more efficient method, which, as we will show, is suit-
able for constraints in D. We will accomplish such a result
with the help of Helly-type theorems of combinatorial geom-
etry [Eckoff, 1993].

Helly’s theorem (in its original formulation) states that
if F = {K1, . . . , Kn} is a family of convex sets in a d-
dimensional Euclidean space Ed, and for every choice of
(d + 1) of these sets, being (d + 1) ≤ n, there exists a point
that belongs to all the chosen sets, then there exists a point
that belongs to all the sets K1, . . . , Kn, that is,

⋂
F 	= ∅.

This result gave rise to a whole family of theorems (called
Helly-type theorems) that present the same logical structure,
and include those in which it is shown that the fact that every
subfamily of k sets meets a certain property P implies that
the whole family meets the same property P . The constant k
is called the Helly number.

The key idea is to find out whether our problem, that is,
the consistency of BC-constraints over REG, is expressible,
at least in part, as the problem of checking whether a fam-
ily of sets in R

2, namely, the family Fa = {Σb1
a , . . . ,Σbm

a }
of sets of maximal solutions for component variables of a
w.r.t any of its reference variables bi, satisfies the predicate
NTB, in such a way that a Helly-type theorem of number 3
is applicable. If it is so, one can find an O(n3) function for
deciding if the whole family satisfies the predicate NTB, un-
der the hypothesis that such property can be checked, for any
3-members subfamily, in constant time. The following gen-
eralization of Helly’s theorem turned out to be a very useful
result:

Helly’s Topological Theorem: Let F be a finite
family of closed sets in Rd such that the intersec-
tion of every k members of F is a cell, for k ≤ d,
and it is nonempty for k = d + 1. Then

⋂
F is a

cell.

For the case d = 2, the expression “
⋂

F is a cell” means
that the intersection is a region homeomorphic to the closed
unit disk, that is, it belongs to REG. Thus, before using this
theorem we need to prove a sufficient condition to assure that
the intersection of any two sets of Fa belongs to REG.

A common technique in CSP is using composition of re-
lations for constraint propagation in order to decide consis-
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tency or just to prune the search space. In [Skiadopoulos and
Koubarakis, 2004] a composition operation ◦ for cardinal re-
lations is defined, but it turns out to be a weak composition,
in the sense that it only guarantees that, if a R1 b and b R2 c
holds, then a R1 ◦ R2 c also holds. An algebraic closure
algorithm for a network of binary constraints is essentially
a path-consistency algorithm based on a weak composition
operator [Renz and Ligozat, 2005]. Such an algorithm makes
the input network A-closed. Unfortunately, a BC-constraint
network over REG may be A-closed but not consistent3. The
following is an example (borrowed from [Skiadopoulos and
Koubarakis, 2004]) of an inconsistent BC-network which is
A-closed:

Example 2 Consider the following set of BC-
constraint between the variables a, b, c, and
d: {a B:SW:W:N: NE b, a B:SW:W:E:SE c,a B:SW:W:E:
SE d, b B:S:SW:W:E:SE c, b S:SW d, d B:W:NW:N:
NE:E c}. This network is A-closed but inconsistent.

Nevertheless, an A-closure procedure can still be useful for
us, as we will see now. If the domain for regions is REG and
the set of constraints is D, then each set Σbi

a of the family Fa

obtained in step 2 of the algorithm SK-CON is, by construc-
tion, a region of REG (see again Example 1). Obviously, this
is not true if the constraints belong to (D∗ −D).

Lemma 1 If a network N with constraints in D is A-closed,
then for any variable a and any subset B ⊆ Fa with |B| = 2,
the intersection

⋂
B is a region of REG.

Proof. If N is A-closed, by definition, there is a so-
lution for any 3 variables (i.e., one can draw 3 regions sat-
isfying all the constraints), which, in general, does not im-
ply that a solution for any 2 variables can be extended to a
solution for 3 variables (this may not be true when using a
weak composition). In particular, there is a partial solution
for variable a and any other two bi, bj . Since Σbi

a is a max-
imal connected region w.r.t the relation Ra,bi

between vari-

able a and variable bi, and similarly for Σ
bj
a w.r.t the relation

Ra,bj
, then Σbi

a

⋂
Σ

bj

a must be a region from REG, other-
wise we would have that (Ra,bi

◦ Rbi,bj
) ∩ Ra,bj

= ∅, or
(Ra,bj

◦ Rbj ,bi
) ∩ Ra,bi

= ∅, which contradicts the assump-
tion of N being A-closed. �

Example 3 Consider the set of BC-constraint showed in Ex-
ample 1. The A-closure algorithm detects that such set is
inconsistent because (B:N:E ◦ SW) ∩ B:S:W = ∅. So
a B:S:W c is not feasible. Figure 2 shows that Σb

a

⋂
Σc

a is the
union of two disconnected regions I1 and I2.

Still, we cannot directly apply Helly’s topological theorem,
because we can prove that the intersection of two sets of the
family Fa is a region from REG but, when considering a
third set of the family, the nonempty intersection condition
only implies that the intersection of all sets of Fa is a region
of REG. What we need is that the intersection is a region not
only connected but also with a special shape compatible the
with binary constraints between primary variable a, and the
reference variables b1, . . . , bm. Nevertheless, we can state a

3The details on this point are omitted due to space limitation.

Helly-type theorem for the family Fa and the predicate NTB
with Helly number 3.

Theorem 1 Let Fa = {Σb1
a , . . . ,Σbm

a } be the family of sets
of the maximal solutions for component variables of a w.r.t
any of its reference variables bi in an A-closed BC-network
N over REG. If for every subfamily B ⊆ Fa, with |B| = 3,
NTB holds for B, then NTB holds for Fa.

Proof. First, notice that, for every subfamily with |B| =
2, we have that

⋂
B ∈ REG, by Lemma 1, and when |B| =

3, since predicate NTB guarantees that
⋂

B 	= ∅ then, by
Helly’s topological theorem, we have that

⋂
Fa ∈ REG. It

remains to show that NTB holds for Fa. Let us proceed by
induction.

Suppose that NTB holds for every subfamily Bk =
{Σb1

a , . . . ,Σbk
a } of size k, and consider the intersection Ik =

Σb1
a ∩ · · · ∩ Σbk

a . By Helly’s topological theorem, Ik is a
connected region and, since NTB holds for B by induc-
tion hypothesis, this implies that indeed Ik is the maximal
partial solution for variable a w.r.t variables b1, . . . , bk, so
that all BC-constraints Cbi

a from the subnetwork N , with
variables a, b1, . . . , bk, are satisfied. This is true because Ik

is the non-disjoint union (since Ik is connected) of all tu-
ples (σ1, . . . , σk) ∈ Σb1

a × · · · × Σbk
a for which mbb(σ) ∩

mbb(σ1) ∩ · · · ∩ mbb(σm) is a non-trivial box, for every

σ ∈ Σb1
a ∪ · · · ∪ Σbk

a . Hence, if we add a new set Σ
bk+1

a to

Bk, forming a subfamily Bk+1, then we have that Ik ∩Σ
bk+1

a

is also a connected region from REG (by Helly’s topological
theorem) and it also satisfies predicate NTB, since Ik is a
maximal partial solution for a w.r.t. variables b1, . . . bk, as

we said above. Otherwise Σ
bk+1

a contains a convex subset σ′,
which corresponds to a maximal solution-box for some com-

ponent variable a
bk+1

i of a w.r.t bk+1, so that that σ′ has not a
non-trivial box intersection with some solution-box of other
component variable a

bp

j of a w.r.t variable bp of the subnet-

work Nk restricted to variables a, b1, . . . bk. This means that
the constraints between 3 variables, namely a, bp and bk+1,
are not satisfied. But this is not possible under the assump-
tion that N is A-closed. Hence NTB holds for Bk+1, and so
NTB holds for the family Fa, as we wanted to prove. �

5 Consistency of BC-constraints over REG

In this section we present an O(n4) algorithm for consis-
tency checking of a BC-constraint network over the set of
connected regions REG. Such a problem, to the best of our
knowledge, was still open. A restricted case, solved in [Ci-
cerone and Felice, 2004], is the pairwise-consistency prob-
lem, that is, deciding if one relation Ri,j is consistent with
Rj,i, which has the primary and reference variables inter-
changed. We can solve here the consistency problem of the
overall network, not only the pairwise-consistency with two
variables. Our algorithm will make use of the following sub-
parts:

• An algebraic closure algorithm (AC, for short), which uses
the operations of (weak) composition, inverse, and intersec-
tion of relations [Skiadopoulos and Koubarakis, 2004];
• Step 1 and 2 of the algorithm SK-CON (see Section 3).
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• A procedure for the global check of NTB through the func-
tion CHECKNTB of SK-CON applied to every three sets, as
Theorem 1 suggests.

Our algorithm, called REG-BCON, takes as input a network
N with a set C of BC-constraints from D, and a set V with
n variables (ranging over REG), and it returns ‘Consistent’
if N is consistent; otherwise it returns ‘Inconsistent’. In what
follows, we briefly summarize the structure of REG-BCON.

Begin of REG-BCON

S0 Preprocessing: Apply AC to N , and if N is not A-
closed return ‘Inconsistent’;

S1 Translation: (Step 1 of SK-CON).

S2 Order constraint checking: (Step 2 of SK-CON).

S3 Union constraint checking: Check if NTB holds for
any variable, that is,

For each variable a ∈ V Do

For every tuple (bi, bj , bk) of variables in V Do

If 3CHECKNTB (Σbi
a , Σ

bj

a , Σbk
a ) returns ‘False’

Then Return ‘Inconsistent’;

Return ‘Consistent’;

End of REG-BCON

Clearly, the function 3CHECKNTB has exactly the same
structure of function CHECKNTB (of the algorithm SK-
CON), with the only exception that it is called over 3 sets
instead of (at most) n sets.

Theorem 2 Algorithm REG-BCON correctly decides whether
a network of BC-constraints over REG is consistent.

Proof. The correctness of the algorithm follows from The-
orem 1 and from the correctness of algorithm SK-CON. The
latter establishes that the set of BC-constraints is consistent
if and only if 1) the set of order constraints CO has a maximal
solution μO; 2) a solution for the network N can be obtained
upon the maximal solution μO , that is, the union constraints
in CU are also satisfied.

We can now proceed exactly as in the case of SK-CON,
but for the case of a network of BC-constraints over REG.
In fact, if algorithm REG-BCON returns ‘Inconsistent’, then
there is no solution for the network. This may happen either
when the network is not A-closed (step 1), or when order con-
straints are not satisfied (step 2), or when union constraints
are not satisfied (step 3). Otherwise, the network is consistent
because there is a maximal solution that satisfies order and
union constraints by correctness of step 2 and by Theorem 1.
Indeed, for every variable a there is a consistent assignment,
which is precisely a =

⋂
Fa, since Theorem 1 guarantees

that
⋂

Fa is a region from REG for which NTB holds. �

Theorem 3 Algorithm REG-BCON is O(n4).

Proof. Step 0 is O(n3) due to the time complexity of
algorithm AC and the fact that all constraints are basic (see
[van Beek, 1992] for similar case). Step 1 is O(n2) and step
2 is O(n4), as we discuss in Section 3. But now step 3 is
O(n4) since 3CHECKNTB works in constant time. Hence
REG-BCON is O(n4). �

A deeper analysis would reveal that 3CHECKNTB per-
forms no more than 81 elementary operations of intersection
of boxes. So, to be precise, our algorithm is O(81 × n4),
but algorithm SK-CON is O(81 × n5). The constant k = 81
may be decreased taking into account that any region Σbi

a is
the union of at most 3 line-connected convex sets. By line-
connected we mean that there is a vertical or horizontal line
joining two regions. Step 2 of the algorithm can be modi-
fied so that when it obtains a set of maximal solutions Σb

a,
the solution-boxes of Σb

a may be joined to form a new set
Γb

a of at most 3 convex sets. For instance, if a B:N:E b and
Σb

a = {αb
1, α

b
2, α

b
3}, as in Figure 2, αb

1, α
b
2 may be joined into

one convex set, since they corresponds to adjacent tiles B, N .
This is just a matter of comparing the endpoints of mbb(αb

1),
mbb(αb

2), as it is done for the intersection of boxes. Thereby,
step 3 only has to make 3 × 3 intersection operations.

The process of joining adjacent tiles can also be exploited
to obtain a solution for any variable a. To do so, function
3CHECKNTB has to be redesigned so that a set data struc-
ture is used instead of the queue Q, which contains the inter-
sections of non-trivial boxes. This is possible because, as we
know by Theorem 1, the intersection of partial solutions for
any four variables is a region of REG.

We argue that there is no cubic time-complexity algorithm
that solves the same problem. This is due to the non-convex
nature of BC-constraints. A solution for the set of component
variables of a w.r.t variable b, i.e. Σb

a, may be concave, and
so, it is not representable as a set of point algebra constraints,
unless the region is partitioned in convex components, as it is
the case. Constraints of Example 2 represents a subnetwork
of four variables for which NTB predicate is false. A BC-
network of n variables may have a subnetwork like this, for
which there is no way of detecting the inconsistency trough
algebraic closure or checking the union constraints for any
subnetwork of three variables.

Finally, we focus our attention to the problem of deciding
the consistency of a network with (disjunctive) cardinal con-
straints over REG.

Theorem 4 The problem of deciding the consistency of a net-
work N with constraints in 2D and region variables over
REG is NP -complete.

Proof. Deciding the consistency of N is in NP , since a
nondeterministic algorithm first guesses a basic constraint for
each disjunctive one appearing in N , obtaining a network N ′

where each constraint belongs to D, and then it applies our
polynomial algorithm REG-BCOM to check the consistency
of N ′. In order to prove that our problem is NP -complete,
the reduction of the problem 3SAT to the problem of satis-
fiability of a set of cardinal constraints with variables over
REG∗, shown in [Skiadopoulos and Koubarakis, 2005], will
suffice, since in such a reduction only regions over REG and
constraints in 2D are used. �

6 Conclusion and Future Work

In this paper we have considered a very expressive formal
model for spatial reasoning with cardinal relations. We have
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presented an algorithm for consistency checking of a basic
cardinal constraint network over a set of connected regions.
Such a problem, to the best of our knowledge, was still open.
The consistency problem has been previously solved for the
case of region variables over the set of finite unions of con-
nected regions in time O(n5), but the method cannot be di-
rectly applied to the case considered here. We have devised
an O(n4) algorithm by adapting the existing one for discon-
nected regions and by exploiting Helly’s topological theorem,
which gives us the key to decide if a solution can be obtained
for a set of basic cardinal constraints. Moreover, the theo-
rem has also been useful for suggesting how to decrease the
time-complexity and for the task of finding a solution of the
network.

For future work, we first point out that the following ques-
tion remains unanswered so far: given that the consistency
problem when considering the set of cardinal constraints is
NP-complete, as we have proved, is it possible to find a sub-
class, which includes non-basic cardinal constraints, such that
the consistency problem is still tractable? In fact, a tractable
disjunctive subclass has been identified [Navarrete and Sciav-
icco, 2006] for the special case of rectangular cardinal rela-
tions, i.e., those that express relations between rectangles (a
type of convex region). It is interesting to know what happen
when the domain includes non-convex regions.

It is worth to observe that the same consistency problem
we have considered may be solved with a non-constructive
method, i.e., an algorithm that uses the operations of the alge-
bra. One of the problem of the model is that the underlaying
algebra has not some desirable properties for an Euclidean-
exact reasoning with cardinal relations [Frank, 1996]. Possi-
ble extensions of the model, which express more accurately
the exact position between two regions and includes the def-
inition of a relational algebra, would be interesting for some
applications.
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