Automated Benchmark Model Generators for Model-Based Diagnostic Inference

Gregory Provan* and Jun Wang
Department of Computer Science,
University College Cork, Cork, Ireland
g.provan,jw8 @cs.ucc.ie

Abstract

The task of model-based diagnosis is NP-complete,
but it is not known whether it is computationally
difficult for the “average” real-world system. There
has been no systematic study of the complexity
of diagnosing real-world problems, and few good
benchmarks exist to test this. Real-world-graphs,
a mathematical framework that has been proposed
as a model for complex systems, have empirically
been shown to capture several topological proper-
ties of real-world systems. We describe the ad-
equacy with which a real-world-graph can char-
acterise the complexity of model-based diagnos-
tic inference on real-world systems. We empiri-
cally compare the inference complexity of diagnos-
ing models automatically generated using the real-
world-graph framework with comparable models
from well-known ISCAS circuit benchmarks. We
identify parameters necessary for the real-world-
graph framework to generate benchmark diagnosis
circuit models with realistic properties.

1

Model-based diagnosis (MBD) focuses on determining
whether an assignment of failure status to a set of mode-
variables is consistent with a system description and an obser-
vation (e.g., of sensor values). This problem is known to be
NP-complete [Bylander ef al., 1991; Friedrich et al., 1990].
However, this is a worst-case result, and some NP-complete
problems, such as graph colouring [Cheeseman er al., 19911,
are known to be tractable for particular problem classes.

We focus on the average-case complexity of MBD algo-
rithms on real-world problem instances. At present, it is not
known whether MBD is computationally difficult for the “av-
erage” system. There has been no systematic study of the
complexity of diagnosing real-world problems, and few good
benchmarks exist to test such a conjecture.

This article makes two main contributions. First, it de-
scribes an algorithm for automatically generating diagnos-
tic benchmark models that can be used to analyse the per-
formance of diagnostic inference algorithms. This model

Diagnostic Inference for Complex Systems

*Both authors are supported by SFI grant 04/IN3/1524.

generator can be applied to any domain, and can generate
models that accurately capture the properties of complex sys-
tems, given as input a library of domain-dependent compo-
nent models. In particular, we propose a real-world graph
model, that, given a model with n components, uses a small
set of domain-dependent parameters to specify the complex-
ity of diagnostic inference for a device. We compare the
predictions made by our model to results obtained from IS-
CAS circuit benchmark models [Harlow, 2000]. By empir-
ically comparing generated models with benchmark models
we show the model-generation parameters best suited for IS-
CAS circuits. This approach circumvents the difficulty of
assembling a large suite of test problems (benchmark mod-
els), given that most large diagnosis models tend to be pro-
prietary. It also enables us to control model parameters (and
hence analyse specific parameters).

Second, we use this framework to show empirically that di-
agnosing a suite of benchmark circuit models is computation-
ally hard. This provides the first clear experimental demon-
stration of this computational intractability for a well-known
benchmark suite.

We organize the remainder of the document as follows.
Section 2 examines the topological structure that all real-
world complex systems possess. Section 3 summarises the
model-based diagnosis task that we solve. Section 4 describes
the process we adopt for generating diagnostic models using
domain parameters, and Section 5 describes the optimisation
technique for auto-generation. Section 6 presents the experi-
mental results, and Section 7 summarises our contributions.

2 Topological Models for Complex Systems

Several recent theoretical studies and extensive data analyses
have shown that a variety of complex systems, including bio-
logical [Newman, 2003], social [Newman, 2003], and techno-
logical [Braha and Bar-Yam, 2004; i Cancho et al., 2001] sys-
tems, share a common underlying structure, which is charac-
terised by a real-world graph. A real-world graph (RWG) is a
complex network in which (a) the nodes form several loosely
connected clusters, (b) every node can be reached from every
other by a small number of hops or steps, and (c) the degree
distribution P(k), which is the probability of finding a node
with k links, follows a power-law [Newman, 2003].

Several random-graph models have been proposed to cap-
ture the real-world graph properties, such as the Watts-

I[JCAI-07

513

Strogatz (or small-world graph) and the Barabasi-Albert
models [Newman, 2003]. In this article we adopt the small-
world graph (SWG) framework, whose key properties are
summarised below. We assume that we have a graph G(V, E)
with a set V' of vertices and set E of edges. We assume that
G is connected, i.e., there is a sequence of distinct edges (a
path P) joining any two nodes in G. A graph is directed, i.e.,
called a digraph, if all its edges are directed. The degree of a
vertex is the number of edges incident on that vertex.

The SWG framework addresses two graph parameters:
mean distance L and clustering coefficient ©. The mean dis-
tance L is the average of all distances, i.e., shortest paths con-
necting two vertices, in G. Graph clustering characterises the
degree of cliquishness of a typical neighbourhood (a node’s
immediately connected neighbours). The clustering coeffi-
cient ©; for a vertex v; is the proportion of links between the
vertices within its neighbourhood divided by the number of
links that could possibly exist between them. The graph clus-
tering coefficient is the average of the clustering coefficients
for each vertex [Newman, 2003].

Several empirical studies, summarised in, e.g., [Newman,

2003], have shown that the SWG framework, with particu-
lar parameter settings, provides a good model for complex
systems. These parameter settings are described in terms of
random graph parameters as follows.
Definition 1 (SWG). A small-world-graph (SWGQG) is a graph
G(V, E) that has small-world properties measurable in terms
of its mean distance L and clustering coefficient ©. Given
a random graph G(n, p)! with mean distance L,, clustering
coefficient ©,., and the same number of nodes and edges as
G(V, E), a SWG has the properties L ~ L, and © > O,.

i Cancho et al. [2001] have applied real-world graphs to
electronic circuits [i Cancho er al., 2001], mapping the ver-
tices of the graph G to electronic components (gates, resis-
tors, capacitors, diodes, etc.), and the edges of G to the wires
between the components. The circuits studied comprise both
analog and ISCAS89/ITC89 benchmark circuits, and all dis-
play © and L parameters that are typical of SWG topologies.
In an electronic circuit, a cluster of components corresponds
to components that together serve a particular task, e.g., a
sub-system; the relatively small number of connections be-
tween clusters corresponds to the fact that sub-systems are
typically loosely-coupled. In addition, the short paths be-
tween any pair of components (nodes) in a circuit are the nat-
ural result of wire-length minimisation typical of circuits.

3 Model-Based Diagnosis

We can characterise a MBD problem using the triple
(COMPS,SD,0BS) [Reiter, 19871, where:

e COMPS = {Ci,...,Cy} describes the operating
modes of the set of m components into which the system
is decomposed.

e SD, or system description, describes the function of the
system. This model specifies two types of knowledge,

'The Erdos-Renyi G(n, p) model consists of n nodes, each pair
of which is randomly connected with probability p, and has param-

eters (L, ©,) = (ll:(g;)) ,D).

denoted SD (8,B), where S denotes the system
structure (connections between the components), and 5
denotes the behaviour of the collection of components.?

e OBS, the set of observations, denotes possible sensor
measurements, which may be control inputs, outputs or
intermediate variable-values.

We adopt a propositional logic framework for our system
behaviour models B. Component ¢ has associated mode-
variable C;; C; can be functioning normally ([C; = OK]),
or can take on a finite set of abnormal behaviours.

MBD inference assumes initially that all components are
functioning normally: [C; = OK], i = 1,...,m. Diag-
nosis is necessary when SD U OBS U {[C; = OK]|C; €
COMPS} is proved to be inconsistent. Hypothesizing that
component 7 is faulty means switching from [C; = OK] to
[C; # OK]. Given some minimality criterion w, a (minimal)
diagnosis is a (w-minimal) subset C’ C COM PS such that:
SDUOBSU{[C; = OK]|C; e COMPS\ C'} U{[C; #
OK]|C; € C'} is consistent.

In this article, we adopt a multi-valued propositional logic
using standard connectives (—, V, A, =-). We denote variable
A taking on value « using [A = «]. An example equation for
abuffer X is [In =] A [X = OK] = [Out = t].

4 Benchmark Diagnostic Model Generation

This section describes our algorithm for generating bench-
mark diagnostic models. Figure 1 depicts the process of au-
tomatically generating diagnostic models and using them for
evaluating diagnosis inference algorithms. Our approach is
applicable to any domain, since (a) the underlying topolog-
ical models can be tailored to virtually any complex system
[Newman, 20031, and (b) functionality is incorporated into
the system model using a component-library, where compo-
nents can be developed for any domain in which the system
models are decomposable.

The topology-generation method we adopt was originally
developed based on the theory of random graphs—see [New-
man, 2003] for background in this area. However, this
method focuses solely on the system structure (as captured
by the graph), and ignores the system functionality. We ex-
tend this approach by adopting the system structure based on
the random-graph generators, and then encoding system func-
tionality using a component library.

Model Generation Algorithm: We generate diagnostic
(benchmark) models in a three-step process.

1.
2.

generate the (topology) graph G underlying each model;
assign components to each node in G for system S D, to
create an MBD-graph G';

3. generate the system description (and fault probabilities).

Every domain requires domain-specific parameters for
generating realistic models. All real-world graph models re-
quire specific parameters to be able to match particular prop-
erties of a given domain [Costa et al., 2005]. For example,
the SWG model requires specific parameters for initial graph

%S can be defined in several ways, such as through propositional
sentences; in this article we define S in terms of a graph G(V, E).

I[JCAI-07

514

Inference
Algorithm
Library

Component
Library

.] Inference
Diagnosis Algorithm
—_— / Model Evaluator
Generator
Topology
Generator

Model Generator

Model Evaluator

Figure 1: Automated model generation and analysis.

connectivity k£ and random connectivity probability p; simi-
larly, extended versions of the Barabasi-Albert model [Costa
et al., 2005] need various parameters to capture properties
such as inter-node distance and the cost of adding links. Anal-
ogous to these approaches, circuit auto-generation methods
use domain-specific parameters like the Rent parameter &,
e.g., [Verplaetse et al., 2000].

As an alternative to empirically-derived domain parame-
ters that are known a priori, we can frame the generation task
in terms of an optimisation task where we compute the do-
main parameters. The remainder of this section describes this
auto-generation process based on domain-dependent param-
eters. We use an example, and then describe each step of the
process. Section 5 describes the optimisation approach.

Example 1. To demonstrate this approach, we study a suite
of auto-generated electronic combinational circuits, which
are constructed from simple gates. The inputs to the genera-
tion process consist of: (a) a component library; (b) param-
eters defining the system properties, such as the number n
of components; and (c) domain-dependent parameters, such
as the well-known engineering parameter for determining in-
put/output variables for a circuit, the Rent parameter & [Ver-
plaetse er al., 2000]. As an example, Figure 2 shows several
of the gates that we use in our component library, together
with the gates’ functionality (in terms of truth-tables).

Diagnosis models differ from generic circuit models in that
they explicitly encode failure modes and the functional effect
of failure modes. As a consequence, the structure of a di-
agnostic model is slightly different than the structure of the
corresponding electronic circuit, since a diagnostic model ex-
plicitly encodes failure modes of components.

Example 2. Figure 3(a) shows the schematic of a simple cir-
cuit with arbitrary components A, B, C, D and E. The circuit
has two inputs, I; and I5, with the output of component ¢ de-
noted by O;. Figure 3(b) shows the circuit with instantiated
components. Figure 4 shows the process of transforming this
schematic into a MBD-graph, which is the basis for construct-
ing a diagnostic model. We first translate the schematic into
a topology graph, which makes the graphical topology of the
circuit explicit by denoting each component as a node, the
inputs as nodes, and the input-component and component-
component wires as directed edges.’ Next we replace each

3This is roughly the graphical framework used for the small-

AND IR MARD IEIE
D8 8 1
B—1 " |10l0] e—L" T|1 0|1

H=p. g 11 W=k B 1 1|0

OR I MOR & Bl

— oojnp A 0o
,_2,>*K a1 é So—e ¥ (01 |0
B 101 @ 1 0|0

w=n0+HB 1111 w=p+0 1110

=0R I
P sl T

)f>_axn1 1
B 101

¥=2agB [11]0

Buffer Inverter {MOT)

[&K A X
e =[O0 & AIRE

L~ 1]1 :;_ 10

W=a W=2

Figure 2: Partial component library for combinatorial digital
circuit domain. Each gate also has an associated truth-table
defining the gate’s functionality.

component X in the topology graph with a pair (Cx,Ox),
which denotes the mode and output of component X, respec-
tively. We introduce the mode-variables for each component,
and define component behavioural equations in order to diag-
nose the fault status of each component.

~— 1A 04 B Oy be
I,
Circuit
Topology o
E
(a) I, C O E —
b Oy 0y
Components L SAl invert
Assigned SAL: stuck-at-1 Invert: inverse of normal

behaviour
(b)
1L o,

Figure 3: Schematic of simple electronic circuit.

The topology graph G and MBD-graph G’ are as follows.
Definition 2 (Topology graph). A topology graph G(V, E)
for a system (COMPS,SD,OBS) is a directed graph
G(V, E) corresponding to the system structure S. Hence in
G(V,E): (a) the nodes V consist of a collection of nodes
corresponding to system components (), and system inputs
(n),1.e., V = x Un; and (b) the edges correspond to connec-
tions between two component-nodes, or between an input-
node and a component-node, i.e., E = (x4, x;) U (0:, X&)s
for xi, x;, xx € X, and n; € n.

Definition 3 (MBD-graph). An MBD-graph G'(V’', E') is a
topology graph G(V, E) in which each component node x; €

world analyses of electronic systems in [i Cancho et al., 2001].

I[JCAI-07

515

V' is replaced with a subgraph consisting of the node for the
corresponding component-output O;, the node corresponding
to component-mode Cj, and the directed edge (C;, O;)—see
Figure 4. Hence in G'(V’, E’): (a) the nodes V' consist of
a collection of nodes corresponding to system component-
outputs (O), mode-variables (COM PS), and system inputs
(n), ie., V=0 UCOMPS Un; and (b) the edges corre-
spond to connections between two component-output-nodes,
or between an input-node and a component-node, i.e., £ =
(Oi, O]) U (’m, Ok) U (Cz, Ol)), for O;, Oj, Or €0, n: €M,
and C; € COMPS.

=
(4) (o)
(® (¢

©® ®

(a) Topology Graph

(b) Translation to
MBD graph

(c) MBD Graph

Figure 4: Transforming the topology graph of a simple elec-
tronic circuit into a model-based diagnosis graph.

4.1 Generate Graph Structure for GG

We generate a small-world-graph (SWG) using a revised ver-
sion of the approach of Watts and Strogatz [Newman, 2003].
The SWG approach generates a graph G with a degree of ran-
domness that is controlled by a probability p € [0,1]. p ~ 0
corresponds to a regular graph, and p ~ 1 corresponds to an
Erdos-Renyi random graph; graphs with real-world structure
(SWGs) occur in between these extremes, as has been deter-
mined by empirically comparing the © and L parameters of
generated graphs and actual networks [Newman, 2003].
Figure 5 depicts the graph generation process, where we
control the proportion of random edges using a rewiring prob-
ability p. Standard SWG generation takes a regular graph (a
ring lattice of n nodes), where each node is connected to its k
nearest neighbors, and randomly “rewires” an edge by mov-
ing one of its ends to a new position chosen at random (with
probability p) from the rest of the lattice [Newman, 2003].
We have modified the SWG framework to enable us to
match the mean degree of the graph for the ISCAS circuit
with that of the generated graph, since the mean degree is
a critical parameter in this framework. The original SWG
model requires the mean degree % to be an even number; how-
ever, the mean degree in real circuits is typically not an inte-
ger. Our enhanced SWG generator first creates a ring lattice
with degree k, where k is any positive real number, by setting
k" = [%7, and connecting every node to its nearest %/ neigh-
bors on both sides, just as in the classic SWG model. Next it
connects every node to its two %/ + 1 nearest nodes on both

sides, with probability !5+

4.2 Assign Components to graph G
Given a topology graph GG, we associate to each component-

node in G a component, based on the number of incom-
ing arcs for the node. Given a SWG component-node with

f":;' i \
N !
s ’
le e
8 y 2 '
e~ =
p=0 .
Large L Small L Small L
Large © Large © Small ©

Figure 5: Generating a small-world graph from a regular ring
lattice with rewiring probability p.

¢ inputs and o outputs, we assign a component, denoted
SD(i,o0,7,B,w) where T denotes the type (e.g., AND-gate,
OR-gate), B defines the behavioural equations, and w the
weights assigned to the failure modes.

Example 3. For our experiments, we use a set of digital com-
parator components, such as shown in Figure 2. Given a node
that has ¢ possible components that are suitable, we randomly
select one with probability %. For example, the single-input

nodes correspond to single-input gates (NOT, buffer), and the
dual-input nodes correspond to dual-input gates (AND, OR,
NAND, NOR, XOR), etc.

4.3 Generate the System Description

Given a selected component, we then generate its normal-
mode equations (and potentially failure-mode equations). We
randomly select the mode type (of the s possible failure
modes) for any component-model with probability % We as-
sign weights to failure-mode values by assuming that normal
behaviour is highly-likely, i.e., Pr{C; = OK} ~ 0.99, and
faulty behaviour is unlikely, i.e., Pr{C; # OK} ~ 0.01.

Example 4. Figure 3(b) shows a randomly-generated circuit
based on the schematic of Figure 3(a). Here, we instanti-
ate components A, D and E to NOT gates, component C
to an AND gate, and component B to a buffer. This figure
also depicts the instantiated failure-mode for the components
in shaded boxes: Components B, C and E have SA1 fault-
modes, component A has a SAO fault-mode, and component
D has a INVERT fault-mode. Given this information, we
can generate a system description with equations correspond-
ing to the component-types and fault-mode types as just de-
scribed. For example, the equations for gates A and C are:

A: [=t)]A[Ma = OK] = [0a = f]
[= f] A [Ma = OK] = (04 =1
[Ma = SA0] = [0a = f]

C: [IL=tA[0Oa =t]A[Mc = OK] = [O¢ =]
(2=t AN[0a=t)AN[Mc=0K] = [Oc=f]
[Mc = SA1] = [0Oc =1

5 Optimisation Model-Generation Approach

This section reviews the optimisation approach we have
adopted for generating the topology graph underlying real-
istic diagnosis models. The standard SWG generation pro-
cess has a wide range of parameter choices, e.g., parameters

I[JCAI-07

516

(n, k,p), that produce models with very different properties.
Hence, one must generate a model using a parameter-setting
that best captures a desired property. This approach is gen-
eral, and can be used to create models for testing a variety
of objectives, such as diagnostic inference complexity, model
size, etc. Since we are generating models that can be used to
test the relative efficiency of MBD inference algorithms, we
pose the auto-generation problem as an optimisation problem
whose objective function is defined in terms of the computa-
tional complexity of MBD inference.

MBD Auto-Generation Task: The objective of MBD
auto-generation is to create a model SD that minimises
|74 (SD,0BS) — v4(SD,0OBS)|, where SD is an MBD
model , and A is an MBD inference algorithm that has com-
plexity v4(SD,OBS) when computing a w-minimal diag-
nosis given model SD and observations O BS.*

We have adopted the causal network approach [Darwiche,
1998] for our experiments. We used as our measure of in-
ference complexity the largest clique-table in the compiled
causal network model, which is a typical complexity measure
for this type of model. The diagnosis minimality criterion w is
a order-of-magnitude probability function [Darwiche, 1998].

From a theoretical perspective, the complexity of causal
network inference is expressed in terms of the graph topol-
ogy: it is exponential in the largest clique of the graph (or the
graph width) [Darwiche, 1998]. This indicates that the influ-
ence of behaviour B and observations OBS are outweighed
by the graph structure.

We have shown experimentally that system structure is the
primary determinant of diagnostic inference complexity for
causal network diagnostic inference, i.e., y4(SD,OBS) ~
~v4(8). In particular, we showed that the diagnostic inference
complexity was invariant to variation in the behaviour equa-
tions 5 and the observation set OBS. Using the structure of
the ISCAS85 benchmark circuit C499, we examined 54 dif-
ferent combinations of component type and 6 sets of differ-
ent observations. A two-way analysis of variance (ANOVA)
of data averaged over 300 runs indicated that neither varying
component types nor altering the number of observations had
a statistically significant effect on the inference complexity.
Hence we concluded that structure is the primary determinant
of diagnostic inference complexity.

6 Experimental Comparison of Generated
and ISCAS-Benchmark Models

This section summarises results of experiments comparing
the structure and diagnostic inference complexity properties
of auto-generated models with ISCAS benchmark models.
The ISCAS circuits are an established benchmark for cir-
cuit optimisation [Harlow, 2000]. The benchmark suites con-
sist of multiple sets of circuits, of which we focus on the IS-
CASS85 combinational circuits. Our experiments were con-
ducted on 3GHz Pentium-IV with 3GB of RAM. All data
presented is based on an average of 300 runs. Given an IS-
CAS circuit SD with n components, we generated a diag-

*We assume that ~(:) returns a complexity parameter such as
CPU-time or number of nodes searched.

nostic SWG model SD with n nodes, by varying the graph-
generation parameters (k,p) in order to choose the best pa-
rameter setting such that SD and S D had the same diagnostic
performance.

W A
A A W’\N_MMWW
WM log,y(max_clique_size)

......................... H
i

I\
v AT

| 17 ad b [kmad aa ped and \

v

LAl AN A
|

J had heraad

= max_degree

03 0.4

rewiring probability

0.5 0.6 0.7 0.8 0.9 1

Figure 6: The inference complexity and maximal degree dis-
tributions of a SWG corresponding to benchmark C432.

6.1 Average-Case Diagnosis Complexity

Our first set of experiments explored the complexity of auto-
generated models corresponding to all ISCASS8S5 circuits over
the entire range of the rewiring parameter p. Figure 6 shows
the maximal degree of the generated graph G (corresponding
to C432) compared with the log; , of the inference complexity
of G. The figure shows that both curves have the same trend,
rising from the relatively efficient regular graph (p = 0) to
the range of small-world graphs (0 > p > 1). This increase
occurs because, given a graph with n nodes, a SWG will have
more and larger clique-tables than a regular graph,and hence
will be computationally harder than a regular graph.

Given that all circuits demonstrated properties similar to
those shown in Figure 6, i.e., complexity exponential in the
largest clique (or intractability for non-trivial circuits), our
experiments have shown that the ISCASSS circuits are com-
putationally difficult to diagnose, on average.

6.2 Parameter Optimisation

We then studied two approaches to choosing parameters that
minimise the diagnosis-complexity difference between IS-
CAS and generated circuits: matching topological parame-
ters governing (1) degree distribution, k, an easily-computed
topological parameter; and (2) diagnostic complexity, v4, a
computationally intensive measure.

Degree Distribution: We first tried to match the diagnostic
complexity of corresponding models SD and SD by match-
ing the degree distributions of SD and SD. Figure 7 shows
the degree distributions of ISCAS85 circuits. For each real
circuit most nodes have low degree; however, each graph in
Figure 7 also has a long tail containing some high-degree
nodes that significantly affect the inference complexity, since
the complexity is proportional to the node of highest degree.
A generated SWG has a unimodal degree distribution that
matches the most-likely degrees very well, but not the tail
of the curve. For example, consider the SWG for C432, with

I[JCAI-07

517

(n = 196,k = 3,p = 0.05), whose degree distribution is
shown in Figure 8; this SWG contains fewer edges than C432,
and our experiments indicate that its inference complexity is
also much lower than that of C432. Obviously, just matching
the most-likely degree does not lead to generated models that
match the complexity of ISCASSS circuits due to the absence
of long tails.

1800

T
432
— 499
880
—x-el1355
1908
—— 2670
3540
5315
6288
- ¢7552

1600

1400 |

o]
1]
3

Number of Nodes

Degree

Figure 7: Degree distributions of ISCAS85 benchmarks

Inference-Complexity Optimisation: Next, we set the
mean degree of SD to be that of the real circuit SD, and
experimentally selected the rewiring probability p that min-
imised |v4(SD,OBS) —~4(SD,OBS)| over a broad range
of observations. As shown in Figure 8, increasing p (for fixed
k) modifies the SWG degree distribution by flattening the dis-
tribution, lowering the magnitude of the peak value but in-
creasing the length of the tail (and hence increasing the in-
ference complexity of S'D). For example, empirical compar-
isons showed that the SWG with (n = 196,k = 3.43,p =
0.28) produced a model with inference complexity closest to
that of C432—see Figure 6. In our experiments we found
that the ISCASSS circuits all had corresponding SWG models
with p < 0.3.5 Note that p < 0.3 corresponds to SWG mod-
els of relatively low complexity, i.e., we can generate models
of significantly higher complexity than the ISCASS8S5 circuits,
thus providing a range of difficulty of auto-generated models.

7 Conclusion

This article has described a method for generating diagnos-
tic models that have real-world topology and can be tailored
to different domains. We have generated models of systems
composed of digital circuits, but can generalise this approach
to any domain where systems can be composed from a library
of components. This method circumvents the problems with
using random-graphs for experiments, and provides an alter-
native to developing suites of hand-built benchmark models.
This article has also empirically shown that MBD problems
with a real-world topology, i.e., with a SWG structure, are
computationally hard.

*It is interesting to note that our auto-generated circuits had an
effective Rent parameter similar to that of the original circuits, indi-
cating the correctness of the approach.

100

——C432

—#— SWG(n=196, k=3.43, p=0.05)

—+—SWG(n=196, k=3.43, p=0.28)
SWG(n=196, k=3.43, p=0.8)

—#*—SWG(n=196, k=3, p=0.05)

Number of Nodes

4 6
Degree

Figure 8: Comparison of circuit degree distributions of C432
and auto-generated circuits at various values of p.

References

[Braha and Bar-Yam, 2004] Dan Braha and Yaneer Bar-
Yam. Topology of large-scale engineering problem-
solving networks. Physical Review E, 69:016113, 2004.

[Bylander et al., 1991] T. Bylander, D. Allemang, M.C. Tan-
ner, and J. Josephson. The Computational Complexity of
Abduction. Artificial Intelligence, 49:25—60, 1991.

[Cheeseman et al., 1991] Peter Cheeseman, Bob Kanefsky,
and William M. Taylor. Where the Really Hard Problems
Are. In Proc. IJCAI-91, pages 331-337, 1991.

[Costaetal,,2005] L. d. F. Costa, F. A. Rodrigues,
G. Travieso, and P. R. Villas Boas. Characterization of
complex networks: A survey of measurements. ArXiv
Condensed Matter e-prints, May 2005.

[Darwiche, 1998] Adnan Darwiche. Model-based diagnosis
using structured system descriptions. J. Artificial Intelli-
gence Research, 8:165-222, 1998.

[Friedrich et al., 1990] Gerhard Friedrich, Georg Gottlob,
and Wolfgang Nejdl. Physical impossibility instead of
fault models. In AAAI, pages 331-336, 1990.

[Harlow, 2000] J.E. Harlow. Overview of popular bench-
mark sets. IEEE Design & Test of Computers, 17(3):15—
17, 2000.

[i Cancho et al., 2001] Ramon Ferrer i Cancho, Christiaan
Janssen, and Ricard V. Sole. Topology of technology
graphs: Small world patterns in electronic circuits. Physi-
cal Review E, 64(4):046119, 2001.

[Newman, 2003] M. Newman. The structure and function of
complex networks. SIAM Review, 45(2):167—- 256, 2003.

[Reiter, 1987] R. Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32:57-96, 1987.

[Verplaetse et al., 2000] P. Verplaetse, J. Van Campenhout,
and D. Stroobandt. On synthetic benchmark generation
methods. In IEEE International Symposium on Circuits
and Systems, volume 4, pages 213-216, Geneva, 2000.

I[JCAI-07

518

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

