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Abstract

We present a case-based approach to multilabel
ranking, a recent extension of the well-known prob-
lem of multilabel classification. Roughly speak-
ing, a multilabel ranking refines a multilabel clas-
sification in the sense that, while the latter only
splits a predefined label set into relevant and ir-
relevant labels, the former furthermore puts the la-
bels within both parts of this bipartition in a total
order. We introduce a conceptually novel frame-
work, essentially viewing multilabel ranking as a
special case of aggregating rankings which are sup-
plemented with an additional virtual label and in
which ties are permitted. Even though this frame-
work is amenable to a variety of aggregation pro-
cedures, we focus on a particular technique which
is computationally efficient and prove that it com-
putes optimal aggregations with respect to the (gen-
eralized) Spearman rank correlation as an underly-
ing loss (utility) function. Moreover, we propose
an elegant generalization of this loss function and
empirically show that it increases accuracy for the
subtask of multilabel classification.

1

Multilabel ranking (MLR) is a recent combination of two
supervised learning tasks, namely multilabel classification
(MLC) and label ranking (LR). The former studies the prob-
lem of learning a model that associates with an instance x
a bipartition of a predefined set of class labels into relevant
(positive) and irrelevant (negative) labels, while the latter
considers the problem to predict rankings (total orders) of
all class labels. A MLR is a consistent combination of these
two types of prediction. Thus, it can either be viewed as an
extended ranking (containing additional information about a
kind of “zero point”), or as an extended MLC (containing ad-
ditional information about the order of labels in both parts of
the bipartition) [Brinker et al., 2006]. For example, in a docu-
ment classification context, the intended meaning of the MLR
[pol >, eco][edu >, spo] is that, for the instance (= doc-
ument) x, the classes (= topics) politics and economics are
relevant, the former even more than the latter, whereas edu-
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cation and sports are irrelevant, the former perhaps somewhat
less than the latter.

From an MLC point of view, the additional order informa-
tion is not only useful by itself but also facilitates the postpro-
cessing of predictions (e.g., considering only the at most top-
k relevant labels). Regarding the relation between MLC and
MLR, we furthermore like to emphasize two points: Firstly,
as will be seen in the technical part below, MLR is not more
demanding than MLC with respect to the training informa-
tion, i.e., a multilabel ranker can well be trained on multilabel
classification data. Secondly, inducing such a ranker can be
useful even if one is eventually only interested in an MLC.
Roughly speaking, an MLR model consists of two compo-
nents, a classifier and a ranker. The interdependencies be-
tween the labels which are learned by the ranker can be help-
ful in discovering and perhaps compensating errors of the
classifier. Just to illustrate, suppose that the classifier esti-
mates one label to be relevant and a second one not. The
additional (conflicting) information that the latter is typically
ranked above the former might call this estimation into ques-
tion and thus repair the misclassification.

Hitherto existing approaches operating in ranking scenar-
ios are typically model-based extensions of binary classifica-
tion techniques which induce a global prediction model for
the entire instance space from the training data [Har-Peled
et al., 2002; Fiirnkranz and Hiillermeier, 2003]. These ap-
proaches, briefly reviewed in Section 3, suffer substantially
from the increased complexity of the target space in multi-
label ranking (in comparison to binary classification), thus
having a high level of computational complexity already for
a moderate number of class labels.

In Sections 4 and 5, we present an alternative framework
for MLR using a case-based methodology which is concep-
tually simpler and computationally less complex. One of the
main contributions of this paper is casting multilabel rank-
ing as a special case of rank aggregation (with ties) within a
case-based framework. While our approach is not limited to
any particular aggregation technique, we focus on a compu-
tationally efficient technique and prove that it computes op-
timal aggregations with respect to the well-known (general-
ized) Spearman rank correlation as an accuracy measure. In
Section 6, we show that our case-based approach compares
favorably with model-based alternatives, not only with re-
spect to complexity, but also in terms of predictive accuracy.
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2 Problem Setting

In so-called label ranking, the problem is to learn a mapping
from an instance space X’ to rankings over a finite set of labels
L = {M\... A}, ie., a function that maps every instance
2 € X to atotal strict order -, where \; =, \; means that,
for this instance, label \; is preferred to (ranked higher than)
Aj. A ranking over £ can conveniently be represented by a
permutation 7 of {1...c}, where 7(4) denotes the position
of label )\; in the ranking. The set of all permutations over ¢
labels, subsequently referred to as S, can hence be taken as
the target space in label ranking.

Multilabel ranking (MLR) is understood as learning a
model that associates with a query input x both a ranking
>, and a bipartition (multilabel classification, MLC) of the
label set £ into relevant (positive) and irrelevant (negative)
labels, i.e., subsets P,, N, C L such that P, N N, = () and
P, U N, = L [Brinker et al., 2006]. Furthermore, the rank-
ing and the bipartition have to be consistent in the sense that
A € P, and )\j € N, implies Ai )\J

As an aside, we note that, according to the above con-
sistency requirement, a bipartition (P, IV,) implicitly also
contains ranking information (relevant labels must be ranked
above irrelevant ones). This is why an MLR model can be
trained on standard MLC data, even though it considers an
extended prediction task.

3 Model-based Multilabel Ranking

A common model-based approach to MLC is binary rele-
vance learning (BR). BR trains a separate binary model M
for each label \;, using all examples x with \; € P, as posi-
tive examples and all those with A\; € N, as negative ones. To
classify a new instance z, the latter is submitted to all models,
and P, is defined by the set of all \; for which M; predicts
relevance.

BR can be extended to the MLR problem in a straightfor-
ward way if the binary models provide real-valued confidence
scores as outputs. A ranking is then simply obtained by order-
ing the labels according to these scores [Schapire and Singer,
2000]. On the one hand, this approach is both simple and effi-
cient. On the other hand, it is also ad-hoc and has some disad-
vantages. For example, good estimations of calibrated scores
(e.g., probabilities) are often hard to obtain. Besides, this ap-
proach cannot be extended to more general types of prefer-
ence relations such as, e.g, partial orders. For a detailed sur-
vey about MLC and MLR approaches, including case-based
methods, we refer the reader to [Tsoumakas et al., 2006].

Brinker ef al. [2006] presented a unified approach to cal-
ibrated label ranking which subsumes MLR as a special
case. Their framework enables general label ranking tech-
niques, such as the model-based ranking by pairwise compar-
ison (RPC) [Fiirnkranz and Hiillermeier, 20031 and constraint
classification (CC) [Har-Peled et al., 2002], to incorporate
and exploit partition-related information and to generalize to
settings where predicting a separation between relevant and
irrelevant labels is required. This approach does not assume
the underlying binary classifiers to provide confidence scores.
Instead, the key idea in calibrated ranking is to add a virtual
label A as a split point between relevant and irrelevant labels,

i.e., a calibrated ranking is simply a ranking of the extended
label set £ U {A\p}. Such a ranking induces both a ranking
among the (real) labels £ and a bipartite partition (P, N,)
in a straightforward way: P, is given by those labels which
are ranked higher than )\, N, by those which are ranked
lower. The semantics of the virtual label becomes clear from
the construction of training examples for the binary learners:
Every label \; known to be relevant is preferred to the virtual
label (\; =4 Ao); likewise, A is preferred to all irrelevant la-
bels. Adding these preference constraints to the preferences
that can be extracted for the regular labels, a calibrated rank-
ing model can be learned by solving a conventional ranking
problem with ¢ + 1 labels. We have discussed this approach
in more detail as we will advocate a similar idea in extending
case-based learning to the multilabel ranking scenario.

4 Case-based Multilabel Ranking

Case-based learning algorithms have been applied success-
fully in various fields such as machine learning and pattern
recognition [Dasarathy, 1991]. In previous work, we pro-
posed a case-based approach which is tailored to label rank-
ing, hence, it cannot exploit bipartite data and does not sup-
port predicting the zero point for the multilabel ranking sce-
nario [Brinker and Hiillermeier, 2005]. These algorithms de-
fer processing the training data until an estimation for a new
instance is requested, a property distinguishing them from
model-based approaches. As a particular advantage of de-
layed processing, these learning methods may estimate the
target function locally instead of inducing a global prediction
model for the entire input domain from the data.

A typically small subset of the entire training data, namely
those examples most similar to the query, is retrieved and
combined in order to make a prediction. The latter exam-
ples provide an obvious means for “explaining” a prediction,
thus supporting a human-accessible estimation process which
is critical to certain applications where black-box predictions
are not acceptable. For label ranking problems, this appeal-
ing property is difficult to realize in algorithms using com-
plex global models of the target function as the more com-
plex structure of the underlying target space typically entails
solving multiple binary classification problems (RPC yields
¢(c + 1)/2 subproblems) or requires embedding the training
data in a higher dimensional feature space to encode prefer-
ence constraints (such as for CC).

In contrast to the model-based methodology which suf-
fers substantially from the increased complexity of the target
space in MLR, we will present a case-based approach where
the complexity of the target space solely affects the aggrega-
tion step which can be carried out in a highly efficient manner.

The k-nearest neighbor algorithm (k-NN) is arguably the
most basic case-based learning method [Dasarathy, 1991]. In
its simplest version, it assumes all instances to be represented
by feature vectors 2 = ([x]; ... [z]x) " in the N-dimensional
space X = R endowed with the standard Euclidian metric
as a distance measure, though an extension to other instance
spaces and more general distance measures d(-, -) is straight-
forward. When a query feature vector x is submitted to the
k-NN algorithm, it retrieves the k training instances closest to
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this point in terms of d(-, -). In the case of classification learn-
ing, the £-NN algorithm estimates the query’s class label by
the most frequent label among these k& neighbors. It can be
adapted to the regression learning scenario by replacing the
majority voting step with computing the (weighted) mean of
the target values.

In order to extend the basic k-NN algorithm to multilabel
learning, the aggregation step needs to be adapted in a suit-
able manner. To simplify our presentation, we will focus on
the standard MLC case where the training data provides only
a bipartition into relevant and non-relevant labels for each in-
stance. Later on, we will discuss how to incorporate more
complex preference (ranking) data for training.

Let us consider an example (x, P, N,) from a standard
MLC training dataset. As stated above, the key idea in cali-
brated ranking is to introduce a virtual label A\ as a split point
to separate labels from P, and N,, respectively, and to asso-
ciate a set of binary preferences with . We will adopt the
idea of a virtual label but, instead of associating preferences,
use a more direct approach of viewing the sequence of the
label sets (P, {M\o}, N.;) as a ranking with ties, also referred
to as a bucket order [Fagin et al., 2004]. More precisely, a
bucket order is a transitive binary relation > for which there
exist sets By ... By, that form a partition of the domain D
(which is given by D = L U {\} in our case) such that
A = X if and only if there are 4,5 with ¢« < j such that
A € B;and X € Bj. Using this notation, the MLR sce-
nario corresponds to a generalized ranking setting with three
buckets, where By = P,, Bo = {\o} and B3 = N,.

If the training data provides not only a bipartition (P, N,,)
but also a ranking (with ties) of labels within both parts,
this additional information can naturally be incorporated: As-
sume that P, and N, form bucket orders (Bj ... B;_1) and
(Bit1 - .. Bj), respectively. Then, we can combine this addi-
tional information into a single ranking with ties in a straight-
forward way as (By ...B;_1,B;, Bit+1...Bj), where B; =
{0} represents the split point. Note that the following anal-
ysis only assumes that the training data can be converted into
rankings with ties, with the virtual label specifying the rel-
evance split point. It will hence cover both training data of
the standard MLC case as well as the more complex MLR
scenario.

A bucket order induces binary preferences among labels
but moreover forms a natural representation for general-
izing various metrics on strict rankings to rankings with
ties. To this end, we define a generalized rank o(¢) for
each label \; € D as the average overall position o (%)
Yo | Bil + 1(|B;| + 1) within the bucket B; which con-
tains \;. Fagin e al. [2004] proposed several generalizations
of well-known metrics such as Kendall’s tau and the Spear-
man footrule distance, where the latter can be written as the
[; distance of the generalized ranks o, o’ associated with the
bucket orders, l1(0,0") = 3y p |o(i) — o' (3)].

Given a metric /, a natural way to measure the quality
of a single ranking o as an aggregation of the set of rank-
ings oy ...0y is to compute the sum of pairwise distances:
L(o) = Z?Zl l(o,0j). Then, aggregation of rankings leads
to the optimization problem of computing a consensus rank-

ing o (not necessarily unique) such that L(o) = min, L(7).

The remaining step to actually solve multilabel ranking us-
ing the case-based methodology is to incorporate methods
which compute (approximately) optimal solutions for the lat-
ter optimization problem. As we do not exploit any particu-
lar property of the metric [, this approach provides a general
framework which allows us to plug in any optimization tech-
nique suitable for a metric on rankings with ties in order to
aggregate the k nearest neighbors for a query instance x.

The complexity of computing an optimal aggregation de-
pends on the underlying metric and may form a bottleneck
as this optimization problem is NP-hard for Kendall’s tau
[Bartholdi er al., 1989] and Spearman’s footrule metric on
bucket orders [Dwork et al., 2001].! Hence, computing an
optimal aggregation is feasible only for relatively small la-
bel sets {1 ... A.}. There exist, however, approximate algo-
rithms with quadratic complexity in ¢ which achieve a con-
stant factor approximation to the minimal sum of distances L
for Kendall’s tau and the footrule metric [Fagin er al., 2004].

While approximate techniques in fact provide a viable op-
tion, we will present a computationally efficient and exact
method for a generalization of the sum of squared rank differ-
ences metric in the following section to implement a version
of our case-based multilabel ranking framework.

S Aggregation Analysis

The Spearman rank correlation coefficient, a linear transfor-
mation of the sum of squared rank differences metric, is a
natural and well-known similarity measure on strict rankings
[Spearman, 1904]. Tt can be generalized to the case of rank-
ings with ties in the same way as the Spearman footrule met-
ric, where (integer) rank values for strict rankings are sub-
stituted with average bucket locations. Hence, for any two
bucket orders o, o’ the generalized squared rank difference
metric is defined as

la(o,0') = > (o(i) — o' (i)*,

A €D

)

The following theorem shows that an optimal aggregation
with respect to the /o metric can be computed by ordering
the labels according to their (generalized) mean ranks.

Theorem 1. Let o1 ...0) be rankings with ties on D
{A\1... A} Suppose o is a permutation such that the labels

\; are ordered according to %Zle 0;(i) (ties are broken
arbitrarily). Then,

k
Z 12 (07 Uj)
=1

Before we proceed to the formal proof, note that the key
point in Theorem 1 is that the minimum is taken over S, while
it is well-known that the minimizer in R¢ would be the mean
rank vector. For strict rankings with unique mean rank values,
the optimal-aggregation property was proved in [Dwork er

2)

k
< 71'161{9% Zl l2(7-7 Uj)
j=

'In the case of strict complete rankings, solving the aggregation
problem requires polynomial time for Spearman’s footrule metric
[Dwork et al., 2001].
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al., 2001]. A proof for the more general case of non-unique
rank values can be derived from [Hiillermeier and Fiirnkranz,
2004].

The following proof is an adaptation of [Hiillermeier and
Fiirnkranz, 2004] where the ranking by pairwise comparison
voting procedure for complete strict rankings was analyzed
in a probabilistic risk minimization scenario. An essential
building block of our proof is the subsequent observation on
permutations:

Lemma 2 ([Hiillermeier and Fiirnkranz, 2004]). Let m;, i =
1...¢ be real numbers ordered such that 0 < mq < mg <
-+« < my. Then, for all permutations 7 € S,,

c c
D (i=mi)? <D (i = me)* 3)
i=1 i=1
Proof [Theorem 1]. Let us define m; def % 521 oj(i), i =
1...c. Then,
k k  c
> (o) = (7(i) — (i)
j=1 j=1i=1
c k
=D () = mi+mi — 05(0))°
i=1 j=1
c k
= Z(T(Z) - mZ)Q —2(7(i) —m;)
i=1 j=1
(mi — 0(i)) + (mi — 0;(7))
c k
=3 (Y@ = m?
i=1  j=1
= 2(7(i) = mq) Y (m; — 0(i))
j=1
k
+ > (mi = 0()?)
j=1
In the last equation, the mid-term equals O as
k L. k
> mi—oi(i) = z > ou(i) =Y o).
j=1 j=1"1=1 j=1
Furthermore, the last term is a constant ¢ & Z?zl(mi -
o;(i))? which does not depend on 7. Hence, we obtain
k c
> b(rog) =ct+ kY (r(i) —mi).
j=1 i=1
The proof follows directly from Lemma 2. O

We have proved that an [5-optimal aggregation with respect
to the set of permutations can be computed by ordering the la-
bels according to their mean ranks. Regarding the complex-
ity, this method requires computational time in the order of
O(ke + clogc) for computing and sorting the mean ranks,

hence, providing a very efficient aggregation technique. Note
that this method aggregates rankings with ties into a single
strict ranking. The related problem of aggregating into a
ranking where ties are allowed forms an interesting area of
research in itself and for the case of the [5-metric the required
complexity is an open question. Moreover, multilabel rank-
ing requires predicting strict rankings such that an intermedi-
ate aggregation into a ranking with ties would entail an ad-
ditional postprocessing step and hence forms a less intuitive
approach to this problem.

As stated above, the virtual label \q is associated with
the second bucket By = {)\g} in order to provide a rele-
vance split point. In an initial empirical investigation, we ob-
served that [5-optimal rankings in k-NN multilabel ranking
yield good performance with respect to standard evaluation
measures on the ranking performance, while the accuracy in
terms of multilabel classification measures reached a reason-
able, yet not entirely satisfactory level. This observation may
be attributed to the fact that the [-metric penalizes misplaced
labels equally for all labels including \y. However, particu-
larly in the context of multilabel classification, Ay carries a
special degree of importance and therefore misclassifications
in the aggregation step should be penalized more strongly. In
other words, reversing the preference between two labels is
especially bad if one of these labels is Ay, as it means mis-
classifying the second label in an MLC sense.

To remedy this problem, our approach can be extended in
a consistent and elegant manner: Instead of a single virtual
label \g, we consider a set of virtual labels {1 ... Ao p}
which is associated with the split bucket B;. In doing so, the
theoretical analysis on the aggregation remains valid and the
parameter p provides a means to control the penalty for mis-
classifications in aggregating rankings. Note that the compu-
tational complexity does not increase as the expansion into a
set of virtual split labels can be conducted implicitly. More-
over, on computing a prediction, the set of virtual labels can
be merged into a single label again in a consistent way as all
labels have the same mean rank value.

To illustrate this “gap broadening” control mechanism, let
us take a look at a simple aggregation example with three
MLC-induced rankings using a single virtual label:

A} = {Ao} = { A2, A3, A4, A5}
A} = {0} = { A2, A3, A4, A5}
{2} = { o} = {1, A3, A4, A5}

These bucket orders would be aggregated into a total order
suchthat P = (and N = {\; ... A5} as mp = 2 (mean rank
of )\y) and every other mean rank is greater, including m; =
2.17. Using a set of two virtual labels, we obtain mg = m; =
2.5, hence, the order of these labels is determined randomly.
Finally, for three virtual labels, mo = 3 and m; = 2.83 such
that the aggregated calibrated ranking corresponds to a multi-
label classification P = {A;} and N = { Ao, A3, Ay A5}

6 Empirical Evaluation

The purpose of this section is to provide an empirical com-
parison between state-of-the-art model-based approaches and
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Figure 1: Gap amplification on the (functional) Yeast dataset:
The estimated Hamming loss clearly decreases in the param-
eter p, which controls the number of virtual labels used for
splitting relevant and irrelevant labels.

our novel case-based framework (using the /5-minimizing ag-
gregation technique). The datasets that were included in the
experimental setup originate from the bioinformatics fields
where multilabeled data can frequently be found. More pre-
cisely, our experiments considered two types of genetic data,
namely phylogenetic profiles and DNA microarray expres-
sion data for the Yeast genome, consisting of 2465 genes.”
Every gene was represented by an associated phylogenetic
profile of length 24. Using these profiles as input features,
we investigated the task of predicting a “qualitative” (MLR)
representation of an expression profile: Actually, the profile
of a gene is a sequence of real-valued measurements, each of
which represents the expression level of that gene at a partic-
ular time point. Converting the expression levels into ranks,
i.e., ordering the time points (= labels) according to the as-
sociated expression values) and using the Spearman correla-
tion as a similarity measure between profiles was motivated
in [Balasubramaniyan et al., 2005].> Here, we further ex-
tend this representation by replacing rankings with multilabel
rankings. To this end, we use the zero expression level as a
natural split point. Thus, the sets P, and N, correspond, re-
spectively, to the time points where gene x is over- and under-
expressed and, hence, have an important biological meaning.

We used data from eight microarray experiments, giving
rise to eight prediction problems all using the same input fea-
tures but different target rankings. It is worth mentioning
that these experiments involve different numbers of measure-
ments, ranging from 4 to 18. Since in our context, each mea-
surement corresponds to a label, we obtain ranking problems
of quite different complexity. Besides, even though the origi-
nal measurements are real-valued, there are many expression
profiles containing ties. Each of the datasets was randomly
split into a training and a test set comprising 70% and 30%,
respectively, of the instances. In compliance with [Balasub-

2This data is publicly available at
http://wwwl.cs.columbia.edu/compbio/exp—phylo

3This transformation can be motivated from a biological as well
as data analysis point of view.

ramaniyan et al., 2005], we measured accuracy in terms of
the (generalized) Spearman rank correlation coefficient, nor-
malized such that it evaluates to —1 for reversed and to +1
for identical rankings (see Section 5).

Support vector machines have demonstrated state-of-the-
art performance in a variety of classification tasks, and
therefore have been used as the underlying binary classi-
fiers for the binary relevance (BR) and calibrated ranking
by pairwise comparison (CRPC) approaches to multilabel
learning in previous studies [Elisseeff and Weston, 2001;
Brinker et al., 2006]. Regarding the associated kernel, we
considered both linear kernels (LIN) with the margin-error
penalty C € {27%...2%} and polynomial kernels (POLY)
where the degree varied from 1to 5 and C' € {272...22}.
For each parameter (combination) the validation accuracy
was estimated by training on a randomly selected subsample
comprising 70% of the training set and testing on the remain-
ing 30%. Then, the final model was trained on the whole
training set using the parameter combination which achieved
the best validation accuracy. Similarly, the number of nearest
neighbors k € {1,3,..,11,21, .., 151} was determined.

In addition to the original k-NN MLR approach, we in-
cluded a version (denoted by the suffix “-r”’) which only ex-
ploits the MLC training data, (P,, N, ), and a common exten-
sion in k-NN learning leading to a slightly modified aggrega-
tion step where average ranks are weighted by the distances
of the respective feature vectors to the query vector (referred
to as k-NN™*).

The experimental results in Table 2 clearly demonstrate
that our k-NN approach is competitive with state-of-the-art
model-based methods. More precisely, k-NN* and CRPC-
POLY achieve the highest level of accuracy, followed by
k-NN with only a small margin. BR is outperformed by the
other methods, an observation which is not surprising as BR
only uses the relevance partition of labels for training and
cannot exploit the additional rankings of labels. Similarly, the
MLC versions of k-NN perform worse than their MLR coun-
terparts. Moreover, CRPC with polynomial kernels performs
slightly better than with linear kernels, whereas for BR a sub-
stantial difference cannot be observed. The influence of gap
amplification is demonstrated in Figure 1 on an MLC task
replicated from [Elisseeff and Weston, 2001], where genes
from the same Yeast dataset discussed above have to be as-
sociated with functional categories. Moreover, as already an-
ticipated on behalf of our theoretical analysis in Section 5,
Table 1 impressively underpins the computational efficiency
of our approach from an empirical perspective.

7 Concluding Remarks

We presented a general framework for multilabel ranking us-
ing a case-based methodology which is conceptually simpler
and computationally less complex than previous model-based
approaches to multilabel ranking. From an empirical perspec-
tive, this approach is highly competitive with state-of-the-art
methods in terms of accuracy, while being substantially faster.

Conceptually, the modular aggregation step provides a
means to extend this approach in several directions. For
example, Ha and Haddawy [2003] proposed an appealing
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Dataset Labels | k-NN  k-NN-r k-NN* k-NN*-r | CRPC-POLY CRPC-LIN | BR-POLY BR-LIN
alpha 18 0.2126  0.2096 0.2164 0.2153 0.2241 0.2167 0.2040 0.2070
elu 14 0.2332  0.2255 0.2367 0.2274 0.2285 0.2164 0.1983 0.2021
cdc 15 0.2021 0.1834 0.2047  0.1871 0.2092 0.1825 0.1867 0.1737
spo 11 0.1858 0.1691 0.1882  0.1715 0.1750 0.1710 0.1496 0.1368
heat 6 0.1576  0.1186 0.1507  0.1206 0.1509 0.1517 0.1040 0.1417
dtt 4 0.3089 0.3155 03105 0.3117 0.3117 0.3034 0.2894 0.2303
cold 4 0.2739 0.2719 0.2840  0.2678 0.2975 0.2741 0.2415 0.2421
diau 7 04074 0.4069 0.4135 04114 0.4122 0.3996 0.3897 0.3609

Table 2: Experimental results on the Yeast dataset using the Spearman rank correlation as the evaluation measure.

k-NN CRPC BR

Dataset Test | Train Test Train  Test
alpha 1.77 | 416.90 145.61 | 44.60 15.84
elu 1.71 | 240.23 84.41 | 33.38 12.02
cdc 1.73 | 280.39 100.47 | 36.66 13.13
spo 1.71 | 154.09 54.47 | 24.32 9.11
heat 1.68 52.98 17.86 | 15.20 5.17
dtt 1.64 20.90 7.18 6.68 2.59
cold 1.66 22.81 8.07 8.91 3.15
diau 1.69 52.63 18.85 | 13.02 4.88

Table 1: Computational complexity (in seconds) for training
and testing on a Pentium 4 with 2.8GHz (where k¥ = 100 for
the k-NN approach). The Yeast training and test set consist
of 1725 and 740 instances, respectively.

probabilistic loss on preferences which originates from the
Kendall tau loss and extends to both partial and uncertain
preferences. Efficient methods for (approximate) rank ag-
gregation with respect to this measure have not been devel-
oped yet but could potentially be plugged into our case-based
framework in order to generalize to the uncertainty case.
Moreover, Chin et al. [2004] studied a weighted variant of
the Kendall tau loss function and proposed an approximate
aggregation algorithm which requires polynomial time.
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