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Abstract

This paper employs state similarity to improve rein-
forcement learning performance. This is achieved
by first identifying states with similar sub-policies.
Then, a tree is constructed to be used for locat-
ing common action sequences of states as derived
from possible optimal policies. Such sequences are
utilized for defining a similarity function between
states, which is essential for reflecting updates on
the action-value function of a state onto all similar
states. As a result, the experience acquired during
learning can be applied to a broader context. Effec-
tiveness of the method is demonstrated empirically.

1 Introduction

Reinforcement learning (RL) is the problem faced by an agent
that must learn behavior through trial-and-error interactions
with a dynamic environment, by gaining percepts and rewards
from the world and taking actions to affect it. In most of the
realistic and complex domains, the task that an agent tries
to solve is composed of various subtasks and has a hierar-
chical structure formed by the relations between them [Barto
and Mahadevan, 2003]. Each of these subtasks repeats many
times at different regions of the state space. Although all in-
stances of the same subtask, or similar subtasks, have almost
identical solutions, without any (self) guidance an agent has
to learn these solutions independently by going through sim-
ilar learning stages again and again. This situation affects the
learning process in a negative way, making it difficult to con-
verge to optimal behavior in reasonable time.

The main reason of this problem is the lack of connec-
tions, that would allow to share solutions, between simi-
lar subtasks scattered throughout the state space. One pos-
sible way to build connections is to use temporally ab-
stract actions (TAAs), which generalize primitive actions
and last for a period of time [Sutton et al., 1999; Diet-
terich, 2000; Barto and Mahadevan, 2003]. TAAs can be
included in the problem definition, which requires extensive
domain knowledge and becomes more difficult as the com-
plexity of the problem increases, or be constructed automat-

∗This work was supported by the Scientific and Technological
Research Council of Turkey under Grant No. 105E181(HD-7).

ically either by finding sub-goal states and generating corre-
sponding options that solve them [Stolle and Precup, 2002;
Menache et al., 2002; Mannor et al., 2004; Simsek et al.,
2005] or by identifying frequently occurring patterns over
the state, action and reward trajectories [McGovern, 2002;
Girgin et al., 2006]. Since different instances of the same
or similar subtasks would probably have different subgoals
in terms of state representation, with subgoal based meth-
ods they will be discovered and treated separately. Although
sequence based methods are capable of combining different
instances of the same subtask, multiple abstractions may be
generated for each of them.

TAA based methods try to solve the solution sharing prob-
lem inductively. Based on the fact that states with similar pat-
terns of behavior constitute the regions of state space corre-
sponding to different instances of similar subtasks, the notion
of state equivalence can be used as a more direct mechanism
of solution sharing. By reflecting experience acquired on one
state to all similar states, connections between similar sub-
tasks can be established implicitly. In fact, this reduces the
repetition in learning, and consequently improves the perfor-
mance. State equivalence is closely related with model min-
imization in Markov Decision Processes (MDPs), and var-
ious definitions exist. [Givan et al., 2003] define equiva-
lence of states based upon stochastic bisimilarity, such that
two states are said to be equivalent if they are both action
sequence and optimal value equivalent. Based on the no-
tion of MDP homomorphism, [Ravindran and Barto, 2001;
2002] extended equivalence over state-action pairs, which as
a result allows reductions and relations not possible in case of
bisimilarity. Furthermore, they applied state-(action) equiva-
lence to the options framework to derive more compact op-
tions without redundancies, called relativized options. While
relativized options are defined by the user, instances are gen-
erated automatically. [Zinkevich and Balch, 2001] also ad-
dressed how symmetries in MDPs can be used to acceler-
ate learning by employing equivalence relations on the state-
action pairs; in particular for the multi-agent case, where
permutations of features corresponding to various agents are
prominent, but without explicitly formalizing them.

In this paper, following homomorphism notion, we pro-
pose a method to identify states with similar sub-policies
without requiring a model of the MDP or equivalence rela-
tions, and show how they can be integrated into RL frame-
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work to improve the learning performance. Using the col-
lected history of states, actions and rewards, traces of policy
fragments are generated and then translated into a tree form
to efficiently identify states with similar sub-policy behavior
based on the number of common action-reward sequences.
Updates on the action-value function of a state are then re-
flected to all similar states, expanding the influence of new
experiences. The proposed method can be treated as a meta-
heuristic to guide any underlying RL algorithm. We demon-
strate the effectiveness of this approach by reporting test re-
sults on two domains, namely various versions of the taxi
cab and the room doorway problems. Further, the proposed
method is compared with other RL algorithms, and a substan-
tial level of improvement is observed on different test cases.
Also, we present how the performance of out work compares
with hierarchical RL algorithms, although the approaches are
different. The tests demonstrate the applicability and effec-
tiveness of the proposed approach.

The rest of this paper is organized as follows: In Section 2,
we briefly describe the standard RL framework of discrete
time, finite MDPs, define state equivalence based on MDP
homomorphisms, and show how they can be used to improve
the learning process. Our approach to how similar states can
be identified during the learning process is presented in Sec-
tion 3. Experimental results are reported and discussed in
Section 4. Section 5 is conclusions.

2 Background and Motivation

In this section, we briefly overview the background necessary
to understand the material introduced in this paper. We start
by defining MDP and related RL problem.

An MDP is a tuple 〈S, A, Ψ, T, R〉, where S is a finite set
of states, A is a finite set of actions, Ψ ⊆ S×A is the set of ad-
missible state-action pairs, T : Ψ× S → [0, 1] is a state tran-
sition function such that ∀(s, a) ∈ Ψ,

∑
s′∈S T (s, a, s′) = 1,

and R : Ψ → 	 is a reward function. R(s, a) is the imme-
diate expected reward received when action a is executed in
state s.1 A (stationary) policy, π : Ψ → [0, 1], is a mapping
that defines the probability of selecting an action in a par-
ticular state. The value of a state s under policy π, V π(s), is
the expected infinite discounted sum of rewards that the agent
will gain if it starts in state s and follows π. In particular, if
the agent takes action a at state s and then follows π, the re-
sulting sum is called the value of the state-action pair (s, a)
and denoted Qπ(s, a). The objective of an agent is to find an
optimal policy, π∗, which maximizes the state value function
for all states. Based on the experience in the form of sam-
ple sequences of states, actions, and rewards collected from
on-line or simulated trial-and-error interactions with the en-
vironment, RL methods try to find a solution to an MDP by
approximating optimal value functions. Detailed discussions
of various approaches can be found in [Kaelbling et al., 1996;
Sutton and Barto, 1998; Barto and Mahadevan, 2003].

RL problems, in general, inherently contain subtasks that
need to be solved by the agent. These subtasks can be repre-
sented by simpler MDPs that locally preserve the state tran-
sition and reward dynamics of the original MDP. Let M =

1s, a is used instead of (s, a), wherever possible.

s1 s2 s3 s4
a1/1 a2/0 a1/2

a1/0 a1/0

s1 s2 sΥ
a1/1 a2/0

a1/0 aΥ/c

(a) (b)

Figure 1: (a) Markov Decision Process M , and (b) its homo-
morphic image M ′. Directed edges indicate state transitions.
Each edge label denotes the action causing the transition be-
tween connected states and the associated expected reward.

〈S, A, Ψ, T, R〉 and M ′ = 〈S′∪{sΥ}, A
′∪{aΥ}, Ψ

′, T ′, R′〉
be two MDPs, such that sΥ is an absorbing state with a single
admissible action aΥ which, once executed, transitions back
to sΥ with certainty. A surjection h : Ψ → Ψ′ ∪ {(sΥ, aΥ)}
is a partial MDP homomorphism (pMDPH) from M to M ′,
if for all states that do not map to sΥ, state-action pairs that
have the same image under h also have the same block tran-
sition behavior in M and the same expected reward2. Un-
der h, M ′ is called the partial homomorphic image of M 3.
Two state-action pairs (s1, a1) and (s2, a2) in M are said to
be equivalent if h(s1, a1) = h(s2, a2); states s1 and s2 are
equivalent if there exists a bijection ρ : As1

→ As2
such that

∀a ∈ As1
, h(s1, a) = h(s2, ρ(a)). The set of state-action

pairs equivalent to (s, a), and the set of states equivalent to s
are called the equivalence classes of (s, a) and s, respectively.
[Ravindran and Barto, 2001] proved that if h above is a com-
plete homomorphism, then an optimal policy π∗ for M can
be constructed from an optimal policy for M ′4. This makes it
possible to solve an MDP by solving one of its homomorphic
images which can be structurally simpler and easier to solve.
However, in general such a construction is not viable in case
of pMDPHs, since the optimal policies would depend on the
rewards associated with absorbing states.

For example, consider the deterministic MDP M given in
Fig. 1(a). If the discount factor, γ, is set as 0.9, then optimal
policy at s2 is to select action a2; M ′ given in Fig. 1(b) is a
partial homomorphic image of M 5 and one can easily deter-
mine that Q∗(s2, a1) = 1 and Q∗(s2, a2) = 9 ∗ c, where c is
the expected reward for executing action aΥ at the absorbing
state. Accordingly, the optimal policy for M ′ at s2 is to select
a1 if c < 1/9, and a2 otherwise, which is different than the
optimal policy for M . This example demonstrates that unless
reward functions are chosen carefully, it may not be possible
to solve a given MDP by employing the solutions of its par-
tial homomorphic images. However, if equivalence classes of
state-action pairs and states are known, they can be used to
speed up the learning process. Let (s, a) and (s′, a′) be two
equivalent state-action pairs in a given MDP M based on the
partial homomorphic image M ′ of M under the surjection h.

2h((s, a)) = (f(s), gs(a)), where f : S → S′ ∪ Υ is a sur-
jection and {gs : As → A′

f(s)|s ∈ S} is a set of state dependent
surjections.

3For a formal definition see [Ravindran and Barto, 2001; 2002]
4∀a ∈ g−1

s (a′), π∗(s, a) = π∗
M′(f(s), a′)/|g−1

s (a′)|
5Under h defined as f(s1) = s1, f(s2) = s2, f(s3) = f(s4) =

sΥ, g{s1,s2}(a1) = a1, gs2
(a2) = a2, g{s3,s4}(a1) = aΥ
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Suppose that while learning the optimal policy, the agent se-
lects action a at state s which takes it to state t with an imme-
diate reward r, such that t is mapped to a non-absorbing state
under h. Let Ω be the set of states in M which are accessible
from s′ by taking action a′, i.e. probability of transition is
non-zero, and are mapped to the same state in M ′ as t under
h. By definition, for any t′ ∈ Ω, the probability of experienc-
ing a transition from s′ to t′ upon taking action a′ is equal to
that of from s to t upon taking action a. Also, since (s, a) and
(s′, a′) are equivalent, we have R(s, a) = R(s′, a′), i.e., both
state-action pairs have the same expected reward, and since
t is mapped to a non-absorbing state, independent of the re-
ward assigned to the absorbing state, they have the same pol-
icy. Therefore, for any state t′ ∈ Ω, o = 〈s′, a′, r, t′〉 can
be regarded as a virtual experience tuple and Q(s′, a′) can be
updated similar to Q(s, a) based on observation o, i.e., pre-
tending as if action a′ transitioned the agent from state s′ to
state t′ with an immediate reward r.

The method described above assumes that equivalence
classes of states and corresponding pMDPHs are already
known. If such information is not available prior to learn-
ing, then, for a restricted class of pMDPHs, it is still possible
to identify states that are similar to each other with respect to
state transition and reward behavior based on the history of
events, as we show in the next section. Experience gathered
on one state, then, can be reflected to similar states to improve
the performance of learning.

3 Finding Similar States

For the rest of the paper, we will restrict our attention to
direct pMDPHs in which, except the absorbing state and
its associated action, the action sets of an MDP and its
homomorphic image are the same and there is an iden-
tity mapping on the action component of state-action tu-
ples6. Let M = 〈S, A, Ψ, T, R〉 be a given MDP. Start-
ing from state s, a sequence of states, actions and rewards
σ = s1, a2, r2, . . . , rn−1, sn, such that s1 = s and each
ai, 2 ≤ i ≤ n − 1, is chosen by following a pol-
icy π is called a π-history of s with length n. ARσ =
a1r1a2 . . . an−1rn−1 is the action-reward sequence of σ,
and the restriction of σ to Σ ⊆ S, denoted by σΣ, is the
longest prefix s1, a2, r2, . . . , ri−1, si of σ, such that for all
j = 1..i, sj ∈ Σ and si+1 /∈ Σ. If two states of M are
equivalent under a direct pMDPH h, then the set of images of
π-histories restricted to the states that map to non-absorbing
states under h, and consequently, the list of associated action-
reward sequences are the same 7. This property of equiva-
lent states leads to a natural approach to calculate the similar-

6gs(a) = a, for every s that maps to a non-absorbing state.
7Let (s, a) and (s′, a′) be two state-action pairs that are equiv-

alent to each other based on partial homomorphic image M ′ =
〈S′ ∪ {sΥ}, A ∪ {aΥ}, Ψ

′, T ′, R′〉 of M = 〈S, A, Ψ, T, R〉 un-
der direct pMDPH h. Consider a π-history of state s of length
n, and let Σh ⊆ S be the inverse image of S′ under h, and
σΣh

= s1, a2, r2, . . . , rk−1, sk, k ≤ n be the restriction of σ on
Σh. The image of σΣh

under h, denoted by F (σΣh
), is obtained

by mapping each state si to its counterpart in S′, i.e., F (σΣh
) =

h(s1), a2, r2, h(s2), a3, . . . , rk−1, h(sk). By definition, F (σΣh
) is

a π-history of h(s) in M ′, and since s and s′ are equivalent, there

ity between any two states based on the number of common
action-reward sequences.

Given any two states s and s′ in S, let Πs,i be the set of
π-histories of state s with length i, and ςi(s, s

′) calculated as

ςi(s, s
′) =

∑i

j=1
|{σ ∈ Πs,j |∃σ′ ∈ Πs′,j , ARσ = ARσ′}|

∑i

j=1
|Πs,j |

be the ratio of the number of common action-reward se-
quences of π-histories of s and s′ with length up to i to the
number of action-reward sequences of π-histories of s with
length up to i. ςi(s, s

′) will be close to 1, if s′ is similar to s
in terms of state transition and reward behavior; and close to
0, in case they differ considerably from each other. Note that,
even for equivalent states, the action-reward sequences will
eventually deviate and follow different courses as the subtask
that they are part of ends. As a result, for i larger than some
threshold value, ςi would inevitably decrease and no longer
be a permissible measure of the state similarity. On the con-
trary, for very small values of i, such as 1 or 2, ςi may over
estimate the amount of similarity since number of common
action-reward sequences can be high for short action-reward
sequences. Also, since optimal value of i depends on the
subtasks of the problem, to increase robustness, it is neces-
sary to take into account action-reward sequences of various
lengths. Therefore, the maximum value or weighted average
of ςi(s, s

′) over a range of problem specific i values, kmin

and kmax, can be used to combine the results of evaluations
and approximately measure the degree of similarity between
states s and s′, denoted by ς(s, s′). Once ς(s, s′) is calcu-
lated, s′ is regarded as equivalent to s if ς(s, s′) is over a
given threshold value τsimilarity . Likewise, by restricting the
set of π-histories to those that start with a given action a in the
calculation of ς(s, s′), similarity between state-action pairs
(s, a) and (s′, a) can be measured approximately.

If the set of π-histories for all states are available in ad-
vance, then equivalent states can be identified prior to learn-
ing. However, in general, the dynamics of the system is not
known in advance and consequently such information is not
accessible. Therefore, using the history of observed events
(i.e. sequence of states, actions taken and rewards received),
the agent must incrementally store the π-histories of length
up to kmax during learning and enumerate common action-
reward sequences of states in order to calculate similarities
between them. For this purpose, we propose an auxiliary
structure called path tree, which stores the prefixes of action-
reward sequences of π-histories for a given set of states. A
path tree P = 〈N, E〉 is a labeled rooted tree, where N is the
set of nodes, such that each node represents a unique action-
reward sequence; and e = (u, v, 〈a, r〉) ∈ E is an edge
from u to v with label 〈a, r〉, indicating that action-reward
sequence v is obtained by appending a, r to u, i.e., v = uar.
The root node represents the empty action sequence. Fur-
thermore, each node u holds a list of 〈s, ξ〉 ∈ S × R tuples,
stating that state s has one or more π-histories starting with

exists a π-history σ′ of s′ such that the image of its restriction to Σh

under h is equal to F (σΣh
), i.e., F (σ′

Σh
) = F (σΣh

); and further-
more ARσ′

Σ
h

= ARσΣ
h

.
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Algorithm 1 Q-learning with equivalent state update.

1: Initialize Q arbitrarily (e.g., Q(·, ·) = 0)
2: Let T be the path tree initially containing root node only.
3: repeat
4: Let s be the current state
5: repeat � for each step
6: Choose and execute a from s using policy derived from

Q with sufficient exploration. Observe r and the next state s′;
append 〈s, a, r, s′〉 to observation history.

7: ΔQ(s, a) = α(r + γ maxa′∈A
s′

Q(s′, a′) − Q(s, a))

8: for all (t, at) similar to (s, a) do
9: Let t′ be a state similar to s′.

10: ΔQ(t, at) = α(r + γ maxa
t′
∈A

t′
Q(t′, at′) −

Q(t, at))
11: end for
12: s = s′

13: until s is a terminal state
14: Using the observation history, generate the set of π-histories

of length up to kmax and add them T .
15: Traverse T and update eligibility values of the tuples in each

node; prune tuples with eligibility value less than ξthreshold.
16: Calculate ς and determine similar states s, s′ such that

ς(s, s′) > τsimilarity.
17: Clear observation history.
18: until a termination condition holds

action sequence σu. ξ is the eligibility value of σu for state s,
representing its occurrence frequency. It is incremented every
time a new π-history for state s starting with action sequence
σu is added to the path tree, and gradually decremented oth-
erwise. A π-history h = s1a2r2 . . . rk−1sk can be added to a
path tree by starting from the root node, following edges ac-
cording to their label. Let n̂ denote the active node of the path
tree, which is initially the root node. For i = 1..k−1, if there
is a node n such that n̂ is connected to n by an edge with label
〈ai, ri〉, then either ξ of the tuple 〈s1, ξ〉 in n is incremented
or a new tuple 〈s1, 1〉 is added to n if it does not exist, and n̂
is set to n. Otherwise, a new node containing tuple 〈s1, 1〉 is
created, and n̂ is connected to this node by an edge with label
〈ai, ri〉. The new node becomes the active node.

After each episode, or between two termination conditions
such as reaching reward peaks in case of non-episodic tasks,
using the consecutive fragments of the observed sequence of
states, actions and rewards, a set of π-histories of length up
to kmax are generated and added to the path tree using the
procedure described above. Then, the eligibility values of
tuples in the nodes of the tree are decremented by a factor
of 0 < ξdecay < 1, called eligibility decay rate, and tuples
with eligibility value less than a given threshold, ξthreshold,
are removed to keep the tree of manageable size and focus
the search on recent and frequently used action-reward se-
quences. Using the generated path tree, ς(s, s′) can be cal-
culated incrementally for all s, s′ ∈ S by traversing it in
breadth-first order and keeping two arrays κ(s) and K(s, s′).
κ(s) denotes the number of nodes containing s, and K(s, s′)
denotes the number of nodes containing both s and s′ in their
tuple lists. Initially ς(s, s′), K(s, s′), and κ(s) are set to 0.
At each level of the tree, the tuple lists of nodes at that level
are processed, and κ(s) and K(s, s′) are incremented accord-
ingly. After processing level i, kmin ≤ i ≤ kmax, for ev-

ery s, s′ pair that co-exist in the tuples list of a node at that
level, ς(s, s′) is compared with K(s, s′)/κ(s) and updated
if the latter one is greater. Note that, since eligibility values
stored in the nodes of the path tree is a measure of occurrence
frequencies of corresponding sequences, it is possible to ex-
tend the similarity function by incorporating eligibility val-
ues in the calculations as normalization factors. This would
improve the quality of the metric and also result in better dis-
crimination in domains with high degree of non-determinism,
since the likelihood of the trajectories will also be taken into
consideration. In order to simplify the discussion, we opted
to omit this extension. Once ς values are calculated, equiv-
alent states, i.e., state pairs with ς greater than τsimilarity ,
can be identified and incorporated into the learning process.
The proposed method applied to Q-learning algorithm is pre-
sented in Alg. 1.

4 Experiments

We applied the similar state update method described in Sec-
tion 3 to Q-learning and compared its performance with dif-
ferent RL algorithms on two test domains: a six-room maze8

and various versions of the taxi problem9 (Fig. 2(a)). Also, its
behavior is examined under various parameter settings, such
as maximum length of π-histories and eligibility decay rate.
In all test cases, the initial Q-values are set to 0, and ε-greedy
action selection mechanism, where action with maximum Q-
value is selected with probability 1 − ε and a random action
is selected otherwise, is used with ε = 0.1. The results are
averaged over 50 runs. Unless stated otherwise, the path tree
is updated using an eligibility decay rate of ξdecay = 0.95
and an eligibility threshold of ξthreshold = 0.1, and in sim-
ilarity calculations the following parameters are employed:
kmin = 3, kmax = 5, and τsimilarity = 0.8.

Fig. 2(b) shows the total reward obtained by the agent un-
til goal position is reached in six-room maze problem when
equivalent state update is applied to Q-learning and Sarsa(λ)
algorithms. Based on initial testing, we used a learning rate
and discount factor of α = 0.125, and γ = 0.90, respectively.
For the Sarsa(λ) algorithm, λ is taken as 0.98. State simi-
larities are calculated after each episode. As expected, due to
backward reflection of received rewards, Sarsa(λ) converges
much faster compared to Q-learning. The learning curve of

8The agent’s task is to move from a randomly chosen position in
the top left room to the goal location in the bottom right room us-
ing primitive actions that move the agent to one of four neighboring
cells. Each action is non-deterministic and succeeds with probabil-
ity 0.9, or moves the agent perpendicular to the desired direction
with probability 0.1. The agent only receives a reward of 1 when it
reaches the goal location and a negative reward of −0.01 otherwise.

9The agent tries to transport a passenger between predefined lo-
cations on a n × n grid world using six primitive actions: move
to one of four adjacent squares, pickup or dropoff the passenger.
Should a move action cause the agent hit to wall/obstacle, the posi-
tion of the agent will not change. The movement actions are non-
deterministic and with 0.2 probability agent may move perpendic-
ular to the desired direction. An episode ends when the passenger
is successfully transported and the agent receives a reward of +20.
There is an immediate negative reward of −10 if pickup or drop-off
actions are executed incorrectly, and −1 for any other action.
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Figure 2: (a) Six-room maze and 5 × 5 Taxi problems, (b) Results for the six-room maze problem; Results for the (c) 5 × 5
and (d) 12 × 12 taxi problems; (e) Experience replay with the same number of state updates; Effect of ξdecay and kmin,max on
5 × 5 taxi problem: (f,h) Reward obtained, and (h,i) average size of the path tree.

Q-learning with equivalent state update indicates that, start-
ing from early states of learning, the proposed method can
effectively utilize state similarities and improve the perfor-
mance considerably. Since convergence is attained in less
than 20 episodes, the result obtained using Sarsa(λ) with
equivalent state update is almost indistinguishable from that
of Q-learning with equivalent state update.

The results of the corresponding experiments in 5 × 5 taxi
problem showing the total reward obtained by the agent is
presented in Fig. 2(c). The initial position of the taxi agent,
location of the passenger and its destination are selected ran-
domly with uniform probability. α is set to 0.05, and λ is
taken as 0.9 in Sarsa(λ) algorithm. State similarities are com-
puted every 5 episodes starting from the 20th episode in order
to let the agent gain experience for the initial path tree. Simi-
lar to the six-room maze problem, Sarsa(λ) learns faster than
regular Q-learning. In SMDP Q-learning [Bradtke and Duff,
1994], in addition to primitive actions, the agent can select
and execute hand-coded options, which move the agent from
any position to one of predefined locations using minimum
number of steps. Although SMDP Q-learning has a very steep
learning curve in the initial stages, by utilizing abstractions

and symmetries more effectively Q-learning with equivalent
state update performs better in the long run. The learning
curves of algorithms with equivalent state update reveals that
the proposed method is successful in identifying similar states
which leads to an early improvement in performance, which
allows the agent to learn the task more efficiently. The results
for the larger 12 × 12 taxi problem presented in Fig. 2(d)
demonstrate that the improvement becomes more evident as
the complexity of the problem increases.

The proposed idea of using state similarities and then up-
dating similar states leads to more state-action value, i.e., Q-
value, updates per experience. It is known that remember-
ing past experiences and reprocessing them as if the agent re-
peatedly experienced what it has experienced before, which
is called experience replay [Lin, 1992], speed up the learn-
ing process by accelerating the propagation of rewards. Ex-
perience replay also results in more updates per experience.
In order to test whether the gain of the equivalent state up-
date method in terms of learning speed is simply due to the
fact that more Q-value updates are made or not, we compared
its performance to experience replay using the same number
of updates. The results obtained by applying both methods
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to regular Q-learning algorithm on the 5 × 5 taxi problem
are presented in Fig. 2(e). Even though the performance of
learning improves with experience replay, it falls short of
Q-learning with equivalent state update. This indicates that
in addition to number of updates, how they are determined
is also important. By reflecting updates in a semantically
rich manner based on the similarity of action-reward patterns,
rather than neutrally as in experience replay, the proposed
method turns out to be more efficient. Furthermore, in or-
der to apply experience replay, the state transition and reward
formulation of a problem should not change over time as past
experiences may no longer be relevant otherwise. The dy-
namic nature of the sequence tree allows the proposed method
to handle such situations as well.

In order to analyze how various parameter choices of the
proposed method affect the learning behavior, we conducted
a set of experiments under different settings. The results for
various ξdecay values are presented in Fig. 2(f,g). As the
eligibility decay decreases, the number of π-histories repre-
sented in the path tree also decrease, and recent π-histories
dominate over existing ones. Consequently, the less num-
ber of equivalent states can be identified and the perfor-
mance of the method also converges to that of regular Q-
learning. Fig. 2(h,i) shows how the length of π-histories
affect the performance in the taxi domain. Different kmax

values show almost indistinguishable behavior, although the
path tree shrinks considerably as kmax decreases. Despite
the fact that minimum and maximum π-history lengths are
inherently problem specific, in most applications, kmax near
kmin is expected to perform well as restrictions of pMDPHs
to smaller state sets will also be pMDPHs themselves.

5 Conclusions

In this paper, we proposed and analyzed the interesting and
useful characteristics of a tree-based approach that, during
learning, identifies states similar to each other with respect to
action-reward patterns, and based on this information reflects
state-action value updates of one state to multiple states. Ex-
periments conducted on two well-known domains highlighted
the applicability and effectiveness of utilizing such a relation
between states in the learning process. The reported test re-
sults demonstrate that experience transfer performed by the
algorithm is an attractive approach to make learning systems
more efficient. However, when the action set is very large, the
parameters, such as eligibility decay, must be chosen care-
fully in order to reduce the computational cost and keep the
size of the tree manageable. Also, instead of matching action-
reward sequences exactly, they can be matched partially and
grouped together based on their reward values (ex. ε neigh-
borhood). This is especially important in cases where the im-
mediate reward has a distribution. We are currently working
on adaptation of the method to continuous domains, which
also covers these issues. Furthermore, since the similarity be-
tween two states is a value which varies between 0 and 1,
rather than thresholding to determine equivalent states and
reflecting the whole experience, it is possible to make use of
the degree of similarity, for example, by updating Q-values in
proportion to their similarity. Future work will examine pos-

sible ways of extending and improving the proposed method
to consider such information.
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