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Abstract

Searching the feature space for a subset yielding
optimum performance tends to be expensive, es-
pecially in applications where the cardinality of
the feature space is high (e.g., text categorization).
This is particularly true for massive datasets and
learning algorithms with worse than linear scaling
factors. Linear Support Vector Machines (SVMs)
are among the top performers in the text classifi-
cation domain and often work best with very rich
feature representations. Even they however benefit
from reducing the number of features, sometimes
to a large extent. In this work we propose alterna-
tives to exact re-induction of SVM models during
the search for the optimum feature subset. The ap-
proximations offer substantial benefits in terms of
computational efficiency. We are able to demon-
strate that no significant compromises in terms of
model quality are made and, moreover, in some
cases gains in accuracy can be achieved.

1 Introduction

Linear Support Vector Machines (SVMs) [Vapnik, 1998]
have been found to be among the best performers in tasks
involving text categorization [Joachims, 1998][Lewis ef al.,
2004]. Due to the richness of natural language, text cat-
egorization problems are characterized by very large num-
bers of features. Even with infrequent features removed, the
dimensionality of the attribute space tends to be very high
(e.g., =100,000), which for some learners poses computa-
tional challenges and/or leads to overfitting the training data.
In the case of linear SVMs good performance is in many
cases is achieved with little or no feature selection [Joachims,
1998]1[Lewis et al., 2004][Mladenic et al., 2004], although
best performance using all features is by no means guaran-
teed. It has been shown [Gabrilovich and Markovitch, 2004]
that it is relatively easy to identify text classification prob-
lems where best accuracy is achieved with aggressive feature
selection.

Even if optimum performance is achieved with no selec-
tion, the dependence between the classification accuracy and
the number of features used often exhibits saturation whereby
the improvement in accuracy due to increasing the number of
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features beyond a certain count is very small. It is therefore
important to be able to estimate at which point the perfor-
mance curve of the classifier measured against the number
of most informative features either achieves a maximum or
“levels off”. Unfortunately, the search for optimum feature
settings can be time-consuming due to repetitive model re-
training.

In this work we investigate alternatives to SVM model re-
induction during feature selection. We are able to demon-
strate that the proposed techniques not only result in substan-
tial gains in terms computational efficiency but may actually
lead to more accurate solutions and typically lead to equiva-
lent results. As for the feature selection criterion we focus on
the feature ranking induced by the SVM itself, since it was
found that in the text categorization domain it compares fa-
vorably [Mladenic et al., 2004] with the mainstream feature
selection criteria such as Information Gain [Rogati and Yang,
2002].

2 Model-driven feature selection for SVMs

A linear SVM creates a classification model by attempting
to separate elements of two different classes by a maximum
margin [Vapnik, 1998]. For problems that are linearly separa-
ble this results in identifying the subsets of both positive and
negative examples that lie exactly at the margin — these are
called support vectors (SVs). It is quite common, however,
that the problem is not linearly separable, in which case the
support vector set is enriched by those training examples that
cannot be classified by the model correctly (the soft-margin
SVM [Cortes and Vapnik, 1995] balances the margin with
the total loss over the training data). In either case, the weight
vector of the SVM solution (derived via convex optimization)
is given by a linear combination of the SVs, and the output of
a the SVM to an input vector z is expressed as

f (@)= Zwﬂ?i +b= Z Zyjozjdf xi+b (1)
7 [ 7

where d] is the value corresponding to feature i for the train-

ing example j, w; is the weight assigned to the ¢-th feature by

the SVM and «; is the Lagrange multiplier associated with

d’ (the value of «; is O unless d’ is a support vector - other-

wise «; > 0; for soft-margin SVMs the Lagrange multipliers
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must satisfy 0 < «; < C); y/ € {—1,+1} is the class label
associated with d’.

SVMs have proven to be quite robust in dealing with large
numbers of features and overfitting tends to be less of an is-
sue compared to other learners applied in the text classifi-
cation domain. When feature selection needs to be applied
SVMs have been reported to perform well with established
feature selection approaches such as IG, 2 and BNS [For-
man, 2003].

In recent work [Mladenic et al., 2004] investigated the effi-
cacy of using the feature ranking imposed by a trained SVM
itself. It was found that ranking according to absolute fea-
ture weight values outperforms other established alternatives.
Its use is justified [Mladenic er al., 2004] by the fact that the
sensitivity of the margin separating the two classes (as deter-
mined by a linear SVM) to changes in the j-th feature is di-
rectly dependent on the sensitivity of the norm of the weight
vector to such changes. This can be expressed as [Mladenic
et al.,2004]
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Therefore, features receiving low absolute weights can be ex-
pected to have little effect on the orientation of the optimum
hyperplane.

[Mladenic er al., 2004] proposed to apply this criterion in
the filter fashion [John et al., 1994], whereby the ranking is
obtained just once and subsequent attempts to identify the op-
timum subset use the top-/NV features according to the initial
ordering. [Guyon er al., 2002] followed an alternative wrap-
per approach [John e al., 1994] where, after each subset of
the least relevant features is removed, the SVM model trained
with the remaining ones provides the new ranking, which is
then used to identify the next subset of features to remove.
As discussed in [Hardin er al., 2004] an SVM may assign
low weights to features that are redundant given the presence
of other relevant features. The recursive approach of [Guyon
et al., 2002] is thus likely to be more successful in compen-
sating for this effect, especially if it is desired to identify a
fairly small set of the most relevant features.

In the text domain, where the optimum number of features
tends to be large, the differences in quality between mod-
els utilizing the recursive and non-recursive approaches are
rather small [Li and Yang, 2005][Kalousis ef al., 2005]. In
this work we focus exclusively on the filter variant of SVM
based feature selection proposed in [Mladenic et al., 2004].

3 Avoiding model re-induction in SVM-based
feature selection

Traditionally, investigation of the efficacy of different feature
subsets relies on inducing a model with each particular choice
of the subset and comparing the results achieved. Depending
on the type of the learner, repetitive model re-induction may
carry a more or less significant cost in terms of the compu-
tational time required. In the case of linear SVMs the cost
is quadratic in terms of the number of training instances and
linear in terms of the number of features used. For massive

datasets and rich feature representations, both of which are
common in text categorization applications, identifying the
optimum can be thus quite expensive.

Published results on SVM-based feature selection indicate
that SVM is good in feature ranking in text applications. One
interesting question however is: “how stable is the original
solution subject to subsequent feature selection?"”. Put dif-
ferently, we are interested if the original solution can be sig-
nificantly reoptimized in the restricted domain of using the
top-N features.

For linear SVMs, the quality of the solution is primarily de-
termined by the orientation of the hyperplane normal. Given
the direction of this vector, the final position of the hyper-
plane (controlled by the bias term b in (1)) can be adjusted so
as to satisfy a particular utility function (e.g., misclassifica-
tion cost, precision or recall).

For any feature subset one can obtain a projection of the
original hyperplane normal onto the reduced feature space,
which is obtained by ignoring or “masking" the coordinates
corresponding to the removed features. Our contribution is
the address the following questions:

e [s the direction of the projected hyperplane normal sub-
stantially different from the direction of the normal in-
duced over the reduced feature representation?

How does the classification performance of the solution
associated with the projected hyperplane normal com-
pare with the solution induced over the reduced feature
representation?

How is the membership of the support vector set affected
by reducing the dimensionality of the training data.

3.1 Normal vector feature masking

Let us consider a simple procedure which uses the original
SVM model to derive one that operates within the reduced
space of top-/V features. In this approximation the original
model is unchanged, except that only those weight vector
components which intersect with the top-/V feature subset are
retained. A corresponding feature masking transformation is
applied to the documents. The output of the masked model
can be expressed as:

>
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and M is the set of features to be masked.

To gain some insight into the properties of masking let us
start with the original model and assume that the feature to be
masked has the index of N. Given that the original solution
is optimal (for a linearly separable problem), it minimizes the
Lagrangian

L (w,a,b) = %w-w— Z oy’ (w-d? +b—1)
jEtrn set

subject to:y? (w-d’ +b—1) > 0 forall j )
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and thus satisfies the first-order local minimum conditions:

oL o
—=w- Y  ayd =0 3)
ow jEtrn set
oL :
5= 2 v =
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Let us now mask out the /N-th feature of vector w and each
of training vector d’, while keeping the Lagrange multipliers
unchanged, and consider the same optimization problem but
in the N — 1 dimensional space. Notice that the derivatives
of the new Lagrangian in (3) with respect to w and b remain
0 and thus the original solution when projected on the lower-
dimensional space meets the necessary optimality conditions
(with respect to w and b) there as well. To be a true solution in
the space in which feature NV is ignored it also needs to maxi-
mize L with respect to o and meet to constraints (2) however.
The constraints in (2) were met originally with equality for
the SV set and with strong inequality by all other training
vectors. For the sake of an argument let us assume that (2)
will hold for points outside the SV set. For the true SVs the
constraints will be violated only for those in which feature
N was actually present (given the sparsity of text this may
be only a small fraction of the SV set). The amount of the
violation for each such SV will be
Yy’ (w~dj+b— 1) — ) (w7N~dj —|—b—1) =y dwy
“)
where it can be seen that a small value of |w | leads to a small
departure from the optimum (w ™" represents the vector with
the N-th feature masked out).

Based on the above we can expect that by keeping the
values of Lagrange multipliers fixed and masking a low
weight feature we can achieve a solution that lies close to
the optimum in the reduced-dimensionality space. The va-
lidity of such an assumption will increase for features that
are infrequent (i.e., inequality constraints for fewer training
points will be affected) and for features assigned low ab-
solute weights (i.e., the departure from optimality will likely
be small).

3.2 Feature masking and document normalization

In the text domain one often transforms the document feature
vectors to unit norm (e.g., according to L2) to compensate for
the document length variability [Joachims, 1998][Dumais et
al., 1998][Leopold and Kindermann, 2002]. Such transfor-
mation introduces feature weighting that is uniform for fea-
tures within a document but varied across documents. The
normal-based feature masking preserves the original feature
weighting as the less relevant features are removed, which
counters to some extent the original length normalization. An
alternative that we consider here is to retain the set of SVs and
the associated Lagrange multipliers but renormalize the train-
ing vectors after each set of features is removed. The output
of such a model is thus given by (assuming L2 length normal-
ization)

fsv (I) = Z ZO‘J'

i J

&
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Note that such renormalization would typically be applied by
default when re-inducing the SVM model using top-N fea-
tures.

4 Experimental Setup

We used linear SVM induced with all features as the baseline
and as the source of feature ranking. Given the original fea-
ture set, the methodology was to examine the quality of mod-
els using only top N features. To asses the extent and impor-
tance of these differences we compared the effectiveness of
exact model re-induction and the proposed alternatives over
the following document collections:

TREC-AP!: This dataset represents a collection of AP
newswire articles for which the training/test split de-
scribed in [Lewis et al., 1996] was used. The collection
consisted of 142,791 training and 66,992 test documents
divided into 20 categories. Each document belonged to
one category only.

Reuters—RCV1% This collection represents of the most
recent and largest corpus used in research involving text
categorization. There are 23, 149 training documents
and 781, 265 test documents As described in [Lewis ef
al., 2004] there are several ways of grouping the docu-
ments and we restricted ourselves to the Topic ontology
using thelO1 topic categories represented in the train-
ing portion of the data (out of the 103 categories total).
A document may belong to more than one topic and in
certain cases there is a hierarchical relationship where a
topic may be considered a subtopic of another.

TechTC-1003: 100 two-class problems (based on the
Open Directory Project*) generated to purposefully rep-
resent different challenges for SVMs as far as feature
selection is concerned [Gabrilovich and Markovitch,
2004].

4.1 Document representation

Documents were preprocessed by removing markup and
punctuation, converting all characters to lower case and ex-
tracting feature tokens as sequences of alphanumerics de-
limited by whitespace. In the case of the RCV1 and
TechTC-100 collections, we used the pre-tokenized feature
files provided on the corpus websites. In-document term fre-
quency was ignored and each feature received the weight of
one if it appeared in a document at least once — otherwise its
weight was zero. This binary representation in our experience
performs as well as TF-IDF when coupled with document-
length normalization. More importantly, in the context of this
work, with the binary representation the magnitude of pertur-
bations (4) to the conditions (2) depended primarily on the
SVM weights and not on independently derived factors, e.g.,
TF-IDF. L2 length normalization was applied since it has
been found to be beneficial in text classification [Joachims,

"http://www.daviddlewis.com/resources/testcollections/trecap
Zhttp://www.daviddlewis.com/resources/testcollections/rcv1/
*http://techtc.cs.technion.ac.il/techtc 100/techtc100.html
*http://www.dmoz.org
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19981[Dumais er al., 1998][Leopold and Kindermann, 2002].
Words which occurred just once in the training corpus were
eliminated.

4.2 Experimental procedure

The multi-class categorization problems were broken into a
series of one-against-the-rest tasks, where each class was
treated in turn as the target with the remaining ones playing
the role of the anti-target. The TechTC-100 dataset natu-
rally consisted of 100 two-class tasks. Unlike TREC—AP and
RCV1 however the two-class problems here were fairly well
balanced, with comparable numbers of training and test ex-
amples available for the target and the anti-target.

Classification performance was measured in terms of the
Area under the Receiver Operating Characteristic (ROC)
curve (AUC) and the best attainable value of F1, as tuned via
decision-threshold adjustment. Both metrics were estimated
over the test data and are reported in terms of the macro-
average (for best F1) and micro-average (for AUC) across the
categories.

For each two-class task an SVM model was induced using
all features, which were then ranked according to their ab-
solute weight values. Features not represented in the SV set
were removed and we then considered using just a fraction of
the top ranking features (with respect to the non-zero weight
ones) with values in {0.01,0.05,0.1,0.2,...,0.9,0.99}.

In addition to computing the average performance figures
for each fraction we also provided the average of the best re-
sults on a per category basis, which acknowledges that the op-
timum number of features according to a given performance
metric may change from one two-class problem to another.

In labeling the results the exact reinduction approach is de-
noted as exact, normal-based feature masking is denoted as
mask and the weight re-computation using the masked and
renormalized SV set is labeled as sv set.

5 Results

5.1 Accuracy effects

Table 1 one compares the average AUC and best F1 results for
the TREC—-AP and Reuters—RCV1 collections, where the
best feature selection results were determined on a per cate-
gory basis. It can be seen that the best results according these
two metrics are numerically very close to each other within
each dataset when using the three model feature selection ap-
proaches. According to the P-values the differences between
the exact and approximate approaches can also be considered
statistically insignificant (we used the macro t-test outlined in
[Yang and Liu, 1999]), except for the best-F1 measure and
the normal-based masking method for RCV1. Over the two
collections, best AUC performance was achieved with all or
almost all features, but the best F1 performance was more
varied as illustrated in Figure 1 for the case of TREC-AP,
where it is apparent that reducing the number of features can
have a beneficial effect. This exemplifies the fact that opti-
mality of feature selection is dependent on the performance
criterion. Note that when a high fraction of top ranking fea-
tures is retained (> 50%) there is essentially no difference
whether an exact or an approximate feature selection method
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0.92

0.915

0.91

avg F1

0.905

0.9

—+— exact
—o— svset
—6— mask

0.895
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0

20 40 60

percentage of features used

80 100

Figure 1: Average best-F1 as a function of top-N features for

TREC—-AP.

mask sv_set exact

0.90

0.88 -

|

Figure 2: Average-best AUC across the 100 two-class prob-
lems for TechTC-100. According to the one-sided paired t-
test the difference between the exact and masking approaches
is significant (P-value < 10~?), while the difference between
the exact and SV set approaches is not (P-value= 0.0852).

0.86

0.84

avg best AUC

0.82

0.80

is chosen. For lower feature counts the differences become
more pronounced.

Since the TechTC-100 collection consisted of prob-
lems with balanced numbers of positive and negative ex-
amples, in reporting classification accuracy we limited our-
selves to the average AUC metric. Following [Gabrilovich
and Markovitch, 2004], 4-fold cross-validation was used to
estimate accuracy and one-sided paired t-test was applied to
estimate significance of the differences in classification per-
formance.

The average best AUC results for using all features and the
three feature selection methods are shown in Figure 2. Note
that all approaches to optimize the feature set are substantially
better than using all features, with the differences being sta-
tistically significant (P-values ~ (). The P-values show that
the SV set approach was statistically equivalent to the exact
one, although normal-based masking underperformed in this
case. Given that TechTC-100 was specifically designed to
illustrate the benefits of feature selection for SVM it is not
surprising to see the big gains in AUC shown in Figure 2.

Correlation effects

Aside from measuring the impact of feature selection on the
classification performance it is interesting to investigate the
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Table 1: Average best AUC and F1 results for the exact and approximate methods for feature selection over the TREC—AP and
Reuters—RCV1 collections. P-values for one-sided pairwise t-test (macro) are also given for determining at which point the
differences between the two approximate variants and the exact approach can be considered significant.

best AUC best F1
exact mask/P-val sv set/P-val exact mask/P-val sv set/P-val
TREC-AP | 0.989499 0.989537/0.21 0.989525/0.23 | 0.920365 0.92107/0.36 0.919142/0.22
RCV1 0.974551 0.97452/0.117 0.97451/0.126 | 0.595599 0.594883/0.003 0.595328/0.086
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Figure 3: Pearson correlation coefficient and cosine similarity
between the masked original weight vector and the weight
vector obtained after SVM retraining using the top-N features

for TREC—-AP (top) and RCV1 (bottom).

similarity between the weight vectors assigned by the origi-
nal SVM and the SVM obtained using a reduced feature rep-
resentation.

Figure 3 shows the dependence of the weight-vector simi-
larity according to the Pearson correlation coefficient and the
cosine similarity on the number of top-ranking features used
for TREC-AP. and RCV1. For both datasets the weight vec-
tors are very close to each other, even when the fraction of
top- N features used is small. The direction of the hyperplane
normal vector is thus only very weakly dependent on the less
relevant features and by projecting the original weight vector
onto the sub-space of the top ranking features one obtains a
direction that is oriented very close the optimum.

Figure 4 shows set the average overlap between the origi-
nal set of SVs and the one obtained when using top-V fea-
tures for TREC-AP and RCV1. Since the overall number of
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Figure 4: Overlap between the original set of support vec-
tors and the set obtained when training with reduced feature
representation for TREC—AP (top) and RCV1 (bottom). The
fraction (containment) of SVs corresponding to the original

SV set is also shown.

SVs tends to decrease when fewer features are used, they also
show the fraction of SVs corresponding to the original SV set
that are part of the SV set obtained using the reduced feature
representation. As can be seen, SV set overlap is quite high
(exceeds 80%) as long as a sizable fraction of the original
features is used (at least 50%). For smaller values of N, the
overlap goes down, but this is mainly due to the decrease in
the number of SVs in such cases, since the fraction of orig-
inal SVs used remains consistently very high. The overlap
and containment of SV sets do not approach 1 as the frac-
tion of features used approaches 100%. This is because the
fraction is defined with respect to the set of features that re-
ceived non-zero weights in the original SVM run (i.e., after
discarding the zero-weight ones). It is thus apparent that the
use of features that were deemed irrelevant did in fact have an
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impact on the original SV set selection.

Given that correlation between masked original weight
vectors and weight vectors obtained during reinduction is
very high despite somewhat lower levels of overlap between
the sets of support vectors, it appears that SVM training sig-
nificantly alters the original Lagrange multipliers to compen-
sate for the effect of vector length normalization (such nor-
malization will increase the relative contribution of the non-
eliminated features) and the use of fewer features. This seems
to happen without substantially altering the orientation of the
optimum hyperplane.

6 Conclusions

In this work we stipulated that given the stability and robust-
ness of SVMs it is unnecessary to re-induce the SVM models
when searching for optimum feature subset settings. We were
able to demonstrate experimentally that feature masking pro-
duces results that are equivalent to the ones obtained using
the traditional model reinduction while being extremely fast
compared to SVM retraining. Our experiments showed that
both orientation of the normal to the hyperplane and the sup-
port vector set remain quite stable as the set of active features
is reduced by pruning the least relevant ones. This is partic-
ularly true for the orientation of the weight vector, which is
the reason why feature masking is so effective and provides
evidence that in text categorization the direction of the hy-
perplane normal will be mostly affected by the most relevant
features, with the solution only marginally influenced by in-
cluding the less relevant ones.

The SVM-based feature selection utilizing feature mask-
ing is practically very attractive and much faster (e.g., run-
time cost of table-lookup for normal-based masking) than the
commonly-used approaches, in which although the original
feature ranking is typically quite fast (e.g., using Information
Gain), the subsequent estimation of performance when using
top-N features requires the more expensive model reinduc-
tion. By comparison, without model re-induction the search
through the model space to identify the optimum feature
count is orders of magnitude faster than the traditional ap-
proach and in fact this type of feature selection scales on par
with some of the most scalable learners such as Naive Bayes.
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