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Abstract

We introduce relational grams (r-grams). They up-
grade n-grams for modeling relational sequences of
atoms. As n-grams, r-grams are based on smoothed
n-th order Markov chains. Smoothed distributions
can be obtained by decreasing the order of the
Markov chain as well as by relational generaliza-
tion of the r-gram. To avoid sampling object iden-
tifiers in sequences, r-grams are generative models
at the level of variablized sequences with local ob-
ject identity constraints. These sequences define
equivalence classes of ground sequences, in which
elements are identical up to local identifier renam-
ing. The proposed technique is evaluated in several
domains, including mobile phone communication
logs, Unix shell user modeling, and protein fold
prediction based on secondary protein structure.

1 Introduction

Probabilistic sequence models occupy an important position
within the field of machine learning. They are not only
theoretically appealing but have also proven to provide ef-
fective learning algorithms across many application areas,
ranging from natural language processing to bioinformatics
and robotics. In traditional sequence models, sequences are
strings s = w; ... wy over a (finite) alphabet X. Typically,
the goal is to estimate the joint distribution P(s) over all pos-
sible strings. Given P(s) several tasks can be solved, includ-
ing sequence classification, sampling, or predicting the next
event in a sequence given a history of preceding events.
Recent technological advances and progress in artificial
intelligence has led to the generation of structured data se-
quences. One example is that of the smart phone, where
communication events of many phone users have been logged
during extended periods of time [Raento et al., 2006]. Other
ones are concerned with logging the activities and locations
of persons [Liao et al., 2005], or visits to websites [Ander-
son et al., 2002]. Finally, in bioinformatics, sequences of-
ten contain also structural information [Durbin et al., 1998].
These developments together with the interest in statistical
relational learning (see [De Raedt and Kersting, 2003] for
an overview) have motivated the development of probabilis-
tic models for relational sequences. These are sequences of

tuples or atoms such as that indicated in Example 1. The Re-
lational Markov Model (RMM) approach by [Anderson et al.,
2002] extends traditional Markov models to this domain, and
the Logical Hidden Markov Models (LOHMMSs) by [Kerst-
ing et al., 2006] upgrade traditional HMMs towards relational
sequences and also allow for logical variables and unifica-
tion. Motivated by these models and the success and simplic-
ity of n-gram models, we introduce relational grams, which
upgrade the traditional n-grams towards relational sequences.
There are two distinguished features of the r-grams. First, as
LOHMMs and RMMs they allow one to work with general-
ized, i.e. abstract atoms in the sequences. For instance, in the
bioinformatics example the atom helix(right,alpha,short)
can be generalized to helix(X,alpha,Y) to describe an alpha-
helix of any orientation and length. Secondly, the use of
variables and unification allows one to make abstraction of
object identifiers and to share information between events.
For example, the (abstract) sub-sequence outcall(.X ,fail),
outtxt(X) describes that a user, after failing to reach a per-
son, writes a text message to the same person, without stating
the identity of the person. This is especially important when
generalizing the patterns across phones or users, as the ob-
jects referred to will typically be different, and the precise
identifiers do not matter but the relationships and events they
occur in do.

The paper is structured as follows: in Section 2, we intro-
duce relational sequences and define the notion of a genera-
tive model that takes into account the nature of identifiers and
object identity; in Section 3, we then start from n-grams to
derive r-grams; in Section 4, we report on some experiments,
and finally, in Section 5, we conclude and touch upon related
work.

2 Relational Sequences

An atom p(t1,...,t,) is a relation p of arity n that is fol-
lowed by n terms t;. We will work with three kinds of terms:
constants (in slanted font), identifiers (in izalic) and vari-
ables (starting with an upper case character). Furthermore,
the relations are fyped, i.e. for each argument position ¢
of the relation p, one can either have constants or identi-
fiers. Variables may appear at any position. We shall also
distinguish constant-variables from identifier-variables; the
former can be instantiated to constants, the latter to identi-
fiers. They will be written in italic or slanted font respec-
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Example 1. The following sequences over atoms are examples for relational sequences from different domains:
outcall(116513 fail), outcall(1165183 fail), incall(116513,succ), outtxt(213446), intxt(213/46), . ..
mkdir(rgrams), Is(rgrams), emacs(rgrams.tex), latex(rgrams.tex), ...
strand(sa,plus,short), helix(right,alpha,medium), strand(blb,plus,short), helix(right,f3to10,short),. ..

The first domain describes incoming and outgoing calls and text messages for a mobile phone user. In the second domain, Unix
shell commands executed by a user are described in terms of command name and arguments. In the third domain, helices and
strands as protein secondary structure elements are defined in terms of their orientation, type, and length.

tively. For instance, the relation outcall has identifiers at
the first position, and constants at the second one. Therefore,
outcall(711365 fail) is type-conform. The types, constants,
identifiers, variables and relations together specify the alpha-
bet X, i.e. the set of type-conform atoms. X C X is the set of
atoms that do not contain identifiers. A relational sequence is
then a string s = wy, ..., Wy, in X*. An expression is ground
if it does not contain any variable. Example sequences will
typically be ground, cf. Example 1.

Notice that constants typically serve as attributes describ-
ing properties of the relations, and identifiers identify particu-
lar objects in the domain. Identifiers have no special meaning
and they are only used for sharing object identity between
events. Moreover, there is no fixed vocabulary for identifiers
which is known a priori, rather, new identifiers will keep ap-
pearing when applying a model to unseen data. Therefore, it
is desirable to distinguish ground sequences only up to iden-
tifier renaming, which motivates the following definition.

Definition 1 (Sequence Congruence). Two relational se-
quences Di1...DPm, q1---Qm are n-congruent if for
all i€{l,...,m—n} the subsequences p;...Pi+n—1,
Ti...Titn—1 are identical up to identifier renaming. Two se-
quences s1, So are identical up to identifier renaming if there
exist a one-to-one mapping @ of the identifiers in sy to those
in sy such that sy equals so after replacing the identifiers ac-
cording to .

Example 2. The sequences r(z)p(a,y)r(y)p(b,x) and
r(z)p(a,w)r(w)p(b,u) are 3-congruent (but not 4-congruent).

m-congruent sequences are identical up to identifier re-
naming. For n < m, the definition takes into account a
limited history: two sequences are congruent if their object
identity patterns are locally identical. Finally we note that n-
congruence defines an equivalence relation, i.e. it is reflexive,
symmetric and transitive.

Let us now define a generative model for relational se-
quences. It should not sample actual identifier values, but
rather equivalence classes of congruent sequences. This
yields the following definition:

Definition 2 (Generative Model). Let 3 be a relational al-
phabet. Let S(X) be the set of all ground sequences of length
m over X, and let S,,(X) be the set of equivalence classes
induced on S(X) by n-congruence. Then a generative model
of order n over 3 defines a distribution over S,,(X).

Such a generative model can be learned from a set of
ground sequences and the alphabet . In its simplest form,
the learning problem can be stated as maximum likelihood
estimation:

Given

a relational alphabet X

a set S of ground sequences over ¥

néeN

a family A of generative models of order n over X,

Find a model A € A that maximizes

P(S|A) =[] P(s11 V)

seS

where [s] denotes the equivalence class of s with regard to n-
congruence. A simple instance of such a family of generative
models will be introduced in the next section.

3 r-gram Models for Relational Sequences

Markov Chains are amongst the simplest yet most success-
ful approaches for sequence modeling. n-grams are based on
higher-order Markov chains, and employ certain smoothing
techniques to avoid overfitting the sample distribution. In this
section, we will briefly review n-grams, and then propose a
simple extension of n-grams for relational sequences.

3.1 n-grams: Smoothed Markov Chains

n-grams define a distribution over sequences wj...w,, of
length m by an order n — 1 Markov assumption:

m

P(wlwm) = HP(’LUZ | wi,nJrl...wl-,l)
=1

(where w;—n41 is a shorthand for wy,az(1,i—n+1))- In the
most basic case, the conditional probabilities are estimated
from a set S of training sequences in terms of ’gram” counts:

C(wi_n_H ce wl)
O(wz'fnJrl v wifl)

(1

Pp(w; | Wi—pg1 ... wim1) =

where C(wj...wy) is the number of times wy ...w;, appeared
as a subsequence in any s € S. Note that this is indeed the
estimate maximizing the likelihood.

The gram order n defines the tradeoff between reliability of
probability estimates and discriminatory power of the model.
Rather than selecting a fixed order n, performance can be in-
creased by combining models of different order which are
discriminative but can still be estimated reliably [Manning
and Schiitze, 1999]. The two most popular approaches are
back-off and interpolation estimates. In this paper, we will
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focus on the latter approach, which defines conditional distri-
butions as linear combinations of models of different order:

n
P(wz- | Wi—n+1 - - .wi_l) = ZakPk(wl | Wi—k+1 - - .wi_l)

k=1

@)
where the ay, ..., o, are suitable weights with Zzzl ap =1,
and the lower-order distributions Py (w; | wi—g+41 .- wi—1
are estimated according to maximum likelihood (Equation 1).
Several more advanced smoothing techniques have been pro-
posed (cf. [Manning and Schiitze, 1999]), but are beyond the
scope of this paper.

3.2 r-grams: Smoothed Relational Markov Chains

Consider ground relational sequences of the form
g1---9m € S(X). The key idea behind r-grams is a
Markov assumption

P(g1.-gm) = HP(gi | gi—nt1--Gi—1)- (3

i=1

However, defining conditional probabilities at the level of
ground grams does not make sense in the presence of object
identifiers. Thus, ground grams will be replaced by general-
ized ones. Generality is defined by a notion of subsumption:
Definition 3 (Subsumption). A relational sequencely, . .. 1
subsumes another sequence ki, ..., ky, with substitution 0,
notation li,...,lp =g ki,...,kyn, if and only if k < n
and Vi,1 < i < k : ;0 = k;. A substitution is a set
{Vi/t1,...,Vi/ti} where the V; are different variables and
the t; are terms such that no identifier or identifier variable
occurs twice in {t1, ..., 1 }.

The restriction on the allowed substitutions implements the
object identity subsumption of [Semeraro er al., 1995]. The
notion of sequence subsumption is due to [Lee and De Raedt,
2003]. It can be tested in linear time.

Example 3. Let Y, Z, U,V be identifier variables.
r(X)p(a, Y)r(Y) =g, r(w)p(a, u)r(u)
r(X)p(a, Y)r(Z) =, r(W)p(a, U)r(V)

but
r(X)p(a, Y)r(Z) 2 ¢(W)p(a, U)r(U).

with 01 = {X/w,Y/u} and 0o = {X/W,Y /U, Z/V}.

We can now refine equation 3 to take into account general-
ized sequences. This will be realized by defining

P(glgm) = HP(ll | li7n+1---li71)
i=1

where I;_p41...li =9 Gi—n+1.--g;. This generalization ab-
stracts from identifier values and at the same time yields
smoothed probability estimates, with the degree and charac-
teristic of the smoothing depending on the particular choice
of l;_p+1...0;. This is formalized in the following definition.

Definition 4 (r-gram model). An r-gram model R of order n
over an alphabet X, is a set of relational grams

v vt — 10,

where

Vi:ly.dp 1l € 5%

Vi : lfl contains no constant-variables;

Vi : 1% is annotated with the probability values

Pl | 1yl 1) such that S0 Po(lE [ 1ydy 1) = 1
Vi # i lyedp1ll, A 1y..0y_1l; ie. the heads are

mutually exclusive.

4.

Example 4. The following is an example of an order 2 rela-
tional gram in the mobile phone domain (see Example 1).

0.3 outtxt(X)
0.05 outtxt(Y)
0.2 outcall(X,fail) 3 < outcall(X],fail)

0.05 intxt(Y)
It states that after not reaching a person a user is more likely
to write a text message to this person than to somebody else.

We still need to show that an r-gram model R defines a dis-
tribution over relational sequences. We first discuss a basic
model by analogy to an unsmoothed n-gram, before extend-
ing it to a smoothed one in analogy to Equation 2.

A Basic Model

In the basic r-gram model, for any ground sequence g ...gn—1
there is exactly one gram l,ll V..V lfl — ly...l,—1 with
li...ln—1 26 91...gn—1. Its body [;...1,,_1 is the most specific
sequence in X* subsuming gi...gn—1. According to Equa-
tion 3, we start by defining a probability Pr(g | g1.--gn-1)
for any ground atom g given a sequence g ...g,—1 of ground
literals. Let g be a ground literal and consider the above gram
r subsuming gi...g,—1. If there is an i € {1, ..., d} such that
ll...ln,llfl =9 g1..-gn—19 it is unique and we define

Pr(g|g1---9n-1) :=P-(g ]| g1--gn—1) :== Pr-(l}, | l1.-.ln—1)
Otherwise, Pr(g | g1...-gn—1) = 0. From Pr(g | g1---9n-1)s
a probability value Pr(g;...g:m) can be derived according to
Equation 3. Note that this is not a distribution over all ground
sequences of length m, as the model does not distinguish be-
tween n-congruent sequences. Instead, the following holds:

Lemma 1. Let R be an order n r-gram over Y, and
s,8 € S(X) be relational sequences with s n-congruent to
s'. Then Pr(s) = Pr(s’).

Let us therefore define Pg([s]) Pg(s) for any
[s] € Sn(Q). Furthermore, 3° s () Pr([s]) = 1. There-
fore,

Theorem 1. An order n r-gram over ¥ is a generative model
over X.

Example 5. Consider the r-gram model R with grams
p(a, X) Vp(b, X) « r(X)
r(X) < p(b, X)
r(X)vr(Y) < p(a, X)

r(X) e
and uniform distributions over head literals. € is an
artificial start symbol that only matches at the begin-
ning of the sequence. The ground sequence ¢i...gs
r(u)p(a,u)r(v)p(b,v)r(v) has probability Pr(gi...g5) = 1 -
0.5-0.5-0.5-1=0.125.
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Smoothing r-grams
In the basic model, there was exactly one gram r € R sub-
suming a ground subsequence ¢;...g,—1, namely the most
specific one. As for n-grams, the problem with this approach
is that there is a large number of such grams and the amount
of training data needed to reliably estimate all of their fre-
quencies is prohibitive unless n is very small. For n-grams,
grams are therefore generalized by shortening their bodies,
i.e., smoothing with k-gram estimates for k& < n (Equation 2).
The basic idea behind smoothing in r-grams is to generalize
grams logically, and mix the resulting distributions:

ay
Pa(g | g1gn1) = - brlgl g1 gn-1)

reR

where P.(9 | ¢1..-gn—1) is the probability defined by r
as explained above, R is the subset of grams in R sub-
suming ¢j...gn—1, and « is a normalization constant, i.e.
a= ZTG £ ar. The more general r, the more smooth the
probability estimate P,.(g | g1...gn—1) will be. The actual de-
gree and characteristic of the smoothing is defined by the set
of matching r-grams together with their relative weights ..

By analogy with n-grams, additional smoothing can be
obtained by also considering relational grams r € R with
shorter bodies Iy...[x_1, k < m. However, there is a sub-
tle problem with this approach: Relational grams of order
k < n define a probability distribution over S, (X) rather than
S, (%), i.e. the sequences are partitioned into a smaller num-
ber of equivalence classes. However, this can be taken care
of by a straightforward normalization, which distributes the
probability mass assigned to an equivalence class modulo &
equally among all subclasses modulo n.

Example 6. Consider the r-gram model R with grams r,q
given by

T r(X)Vvr(Y)«—r(X)

q: r(X)
uniform distribution over head literals and o, = ag = 0.5.
We expect Pr(r(u) | r(v)) + Pr(r(v) | r(v)) = 1. However,
when directly mixing distributions
Pr(r(u) [ r(v)) = arPo(r(Y) | r(X))+aqPy(r(X)) = 0.75
Pr(r(v) | r(v)) = ar Pr(r(X) | r(X))+aqPy(r(X)) = 0.75,
as the r-gram q does not distinguish between the sequences
r(z)r(z) and r(z)r(y). Instead, we mix by

Pr(r(z) | r(y)) = ar Pr(r(X) [ /(X)) + %qupq(f(X))

where v = 2 is the number of subclasses modulo
2-congruence of the class [r(X)].

The ultimate level of smoothing can be obtained by a rela-
tional gram r of the form I} V... V1< « where the [¢, are fully
variablized (also for non-identifier arguments). For this gram

Pr(g | gl'“gn—l) = Pr(l;) HP(X7 = ,Tj)
j=1

where X1, ..., X,, are the non-identifier arguments of [, and
z1,..., X, their instantiations in g. This case corresponds to
an out-of-vocabulary event (observing an event that was not
part of the training vocabulary) for n-grams.

3.3 Building r-grams From Data

To learn an r-gram from a given set S of training sequences,
we need to 1) choose the set R of relational grams; 2) es-
timate their corresponding conditional probabilities; and 3)
define the weights o, for every r € R. Before specifying our
algorithm, we need to define counts in the relational setting:

C(ll...lk) = |{i|81...8m e Sandly...lp =g Si---3i+k}|
“

Our algorithm to learn r-grams is specified below:

r-grams(input: sequences S; alphabet: 3; parameters: ~y, n)

1 B::{ll...lk_lEf)*|C(ll...lk_1)>Oandk§n}
2 foreachl;...lp_1 € B

3 do let {I} ... I{} contain all maximally specific
literals [}, € X such that C(ly ... lx—10},) >0
4 addr=1{ V.- VI§ —1y...l;_1 to R with

i Cly..lp 11}
Pr(lifly . l) = Sgti=tis)

5 L(T) = Hgl...gn,lges(r) Pr(g | gl'-'gn—l)-
6 t=|S(r)]

7 = L(T)%

8 return R

In Line 1 of the algorithm, one computes all r-grams that
occur in the data. Notice that no identifiers occur in these
r-grams (cf. X*). This can be realized using either a fre-
quent relational sequence miner, such as MineSeqLog [Lee
and De Raedt, 2003], or using an on-the-fly approach. In
the latter case, a relational gram with body [;...[; is only
built and added to R when and if it is needed to evaluate
Pr(g | g1---gn-1) with l3...ly < g1...gx on unseen data. In
Line 3, all possible literals [} are sought that occur also in
the data. They are maximally specific, which means that they
do not contain constant-variables (cf. condition 2 of Defini-
tion 4). Line 4 then computes the maximum likelihood esti-
mates and Lines 5-7 the weight «,-. Here S(r) denotes the set
of all ground subsequences g;...gn,—1¢g appearing in the data
which are subsumed by r. The likelihood L(r) of r defined
in Line 5 is a measure for how well the distribution defined
by r matches the sample distribution. The «,. as in Line 7 is
then defined in terms of |S(r)| and the parameter ~, which
controls the tradeoff between smoothness and discrimination.
Highly discriminative (specific) rules have higher likelihood
than more general ones as they are able to fit the sample dis-
tribution better, and thus receive more weight if v > 0.

4 Experiments

This section reports on an empirical evaluation of the pro-
posed method in several real-world domains. More specifi-
cally, we seek to answer the following questions:

(Q1) Are r-grams competitive with other state-of-the-art ap-
proaches for relational sequence classification?

(Q2) Is relational abstraction, especially of identifiers, use-
ful?

Experiments were carried out on real-world sequence clas-
sification problems from three domains. In the Unix Shell
domain [Greenberg, 1988; Jacobs and Blockeel, 2003],
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Domain r-grams | LOHMM | LOHMM + FK
Protein 83.3 74.0 82.7
Domain r-grams kNN C4.5
Unix-50 93.8 £ 2.7 91.0 88.8
Unix-1000 | 97.24+0.4 95.3 94.7

Table 1: Comparison of classification accuracy of r-grams to
Logical Hidden Markov models and Fisher kernels in the Pro-
tein Fold domain, and to k-nearest neighbor and C4.5 in the
Unix Shell domain. For protein fold prediction, a single split
into training and test set is used. In the Unix Shell domain, 10
subsets of 50/1000 examples each are randomly sampled, ac-
curacy determined by 10-fold cross-validation and averaged.

the task is to classify users as novice programmers or
non-programmers based on logs of 3773 shell sessions con-
taining 94537 commands (constants) and their arguments
(identifiers). To reproduce the setting used in [Jacobs and
Blockeel, 20031, we sampled 10 subsets of 50/1000 instances
each from the data, measured classification accuracy on these
using 10-fold cross-validation, and averaged the results. In
the Protein fold classification domain, the task is to classify
proteins as belonging to one of five folds of the SCOP hi-
erarchy [Hubbard e al., 1997]. Strand names are treated as
identifiers, all other ground terms as constants. This problem
has been used as a benchmark before [Kersting et al., 2006;
Kersting and Girtner, 2004], and we reproduce the experi-
mental setting used in this earlier work: the same 200 ex-
amples per fold are used for training, and the remaining ex-
amples as the test set. In the Context Phone domain, data
about user communication behavior has been gathered using
a software running on Nokia Smartphones that automatically
logs communication and context data. In our study, we only
use information about incoming and outgoing calls and text
messages. Phone numbers are identifiers, other ground terms
constants. The task in Phone I is to discriminate between
real sequences of events and “corrupted” ones, which con-
tain the same sequence elements but in random order. For
k € {20,40,60, 80,100}, 5 subsets of size k were sampled
randomly, 5-fold cross-validation performed and averaged for
each k. In Phone II, the task is to classify communication
logs as belonging to one of three users, based only on their
communication patterns but without referring to actual phone
numbers in the event sequence.

In all domains sequence classification is performed by
building an r-gram model R¢ for each class C and la-
beling unseen sequences s with the class that maximizes
Pc(s)P(C). We used bigram models in the Phone IT domain
and trigram models for all other domains, and the smoothing
parameter v was set to 1 in all experiments. Learning the r-
gram model was done on-the-fly as explained in Section 3.3.

Table 1 compares the classification accuracy of r-grams
with accuracy results from the literature in the Protein Fold
and Unix Shell domains. In the Protein Fold domain, a hand-
crafted Logical Hidden Markov Model achieves 74% accu-
racy [Kersting ef al., 2006]. This has been improved to 82.4%
by a fisher kernel approach, in which the gradient of the like-
lihood function of the Logical Hidden Markov Model is used

Domain r-grams n-grams | n-grams w/o IDs
Protein 83.3 79.7 83.3
Unix-50 93.8+2.7 74.4 95.6 + 2.7
Unix-1000 | 97.24+0.4 76.3 97.1£04
Phone I 95.0+2.0 30.0 86.8 £ 3.3
Phone I1 93.3+£14.9 33.3 86.7 £ 18.3

Table 2: Accuracy comparison of r-grams to n-grams, and
to n-grams w/o IDs. For Protein/Unix domains settings are
as before. For the Phone I domain, 5 subsets of size 100
have been sampled from the data, a 5-fold cross-validation
is performed on each set and results are averaged. For Phone
II, results are based on one 5-fold cross-validation. Results
for n-grams are based on one sample only.

T
r-grams
n-grams w/o IDs------

0.95-

0.9

Accuracy

0.85-

0.8

L L L
70

0.75 L L L
20 50

L
60
Number of examples

100

Figure 1: Accuracy for different training set sizes ranging
from 20 to 100 examples in the Phone I domain. For each
size, 5 sets are sampled, a 5-fold cross-validation is per-
formed and the result averaged.

as input in a support vector machine [Kersting and Girtner,
2004]. The Unix Shell log classification problem was orig-
inally tackled using a k-nearest neighbor method based on
customized sequence similarity [Jacobs and Blockeel, 2003].
In the same paper, the authors present results for a C4.5 de-
cision tree learner using a bag-of-words representation. In
both cases, r-grams yield competitive classification accuracy,
which is a positive answer to question (Q1). Furthermore, we
note that even using a naive implementation r-grams are com-
putationally efficient. Times for building an r-gram model
ranged from 3 to 240 seconds in the presented experiments'.

In a second set of experiments, the effect of using rela-
tional abstraction was examined in more detail. More pre-
cisely, r-grams were compared to n-grams which implement
non-relational smoothing as outlined in Section 3.1, treating
the atoms in ¥ as flat symbols. For these experiments, we
tried keeping identifiers in the events (n-grams) or removing
them from the data (n-grams w/o IDs). Accuracy results for
the Protein Fold, Unix Shell and Context Phone domains are

'All experiments were run on standard PC hardware with
3.2GHz processor and 2GB of main memory.
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given in Table 2. If identifiers are treated as normal constants,
accuracy is reduced in all cases, especially for the identifier-
rich Unix and Context Phone domains. This is not surpris-
ing, as most identifiers appearing in the test data have never
been observed in the training data and thus the correspond-
ing event has probability zero. When identifiers are removed
from the data, performance is similar as for r-grams in the
Protein Fold and Unix Shell domain, but worse in the Con-
text Phone domains. On Phone I, r-grams significantly out-
perform n-grams w/o IDs (unpaired sampled t-test, p = 0.01).
Figure 1 shows more detailed results on Phone I for differ-
ent numbers of training examples. It can be observed that
relational abstraction is particularly helpful for small num-
bers of training examples. To summarize, there are domains
where it is possible to ignore identifiers in the data, but in
other domains relational abstraction is essential for good per-
formance. Therefore, question (Q2) can be answered affir-
matively as well.

5 Conclusions and Related Work

We have presented the first approach to upgrading n-grams to
relational sequences involving identifiers. The formalism em-
ploys variables, unification and distinguishes constants from
identifiers. It also implements smoothing by relationally gen-
eralizing the r-grams. The approach was experimentally eval-
uated and shown to be promising for applications involving
the analysis of various types of logs.

The work that we have presented is related to other work
on analyzing relational and logical sequences. This in-
cludes most notably, the RMMs by [Anderson et al., 2002]
who presented a relational Markov model approach, and the
LOHMMs by [Kersting et al., 2006] who introduced Logical
Hidden Markov Models. RMMs define a probability distribu-
tion over ground relational sequences without identifiers. Fur-
thermore, they do not employ unification (or variable propa-
gation) but realize shrinkage through the use of taxonomies
over the constant values appearing in the atoms and decision
trees to encode the probability values. RMMs only consider
first order Markov models, i.e. the next state only depends
on the previous one, so RMMs do not smooth over sequences
of variable length. RMMs have been applied to challenging
applications in web-log analysis. Whereas RMMs upgrade
Markov models, LOHMMs upgrade HMMs to work with log-
ical sequences. As r-grams, they allow for unification and
offer also the ability to work with identifiers. In addition,
they allow one to work with structured terms (and functors).
However, as RMMs, they only consider first order Markov
models. Furthermore, they do not smooth distributions us-
ing models of different specificity. Finally, MineSeqLog [Lee
and De Raedt, 2003] is a frequent relational sequences miner
that employs subsumption to test whether a pattern matches
a relational sequence. One might consider employing it to
tackle the first step in the r-gram Algorithm.

There are several directions for further work. These in-
clude: extending the framework to work with structured
terms, considering back-off smoothing instead of interpola-
tion, and, perhaps most importantly, applying the work to
challenging artificial intelligence applications.
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