The Ins and Outs of Critiquing

David McSherry' and David W. Aha’

'School of Computing and Information Engineering
University of Ulster, Coleraine BT52 1SA, Northern Ireland
dmg.mcsherry@ulster.ac.uk
*Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5515, Washington DC 20375, USA
david.aha@nrl.navy.mil

Abstract

Eliminating previously recommended products in
critiquing limits the choices available to users
when they attempt to navigate back to products
they critiqued earlier in the dialogue (e.g., in search
of cheaper alternatives). In the worst case, a user
may find that the only product she is prepared to
accept (e.g., having ruled out cheaper alternatives)
has been eliminated. However, an equally serious
problem if previous recommendations are not
eliminated is that products that satisfy the user’s
requirements, if any, may be unreachable by any
sequence of critiques. We present a new version of
progressive critiquing that leaves open the option
of repeating a previous recommendation while also
addressing the unreachability problem. Our em-
pirical results show that the approach is most effec-
tive when users refrain from over-critiquing attrib-
utes whose current values are acceptable.

1 Introduction

Critiquing in recommender systems is based on the idea that
it is easier for users to critique an example product than to
construct formal queries [e.g., Burke ef al., 1997; Hammond
et al., 1996; Linden et al., 1997]. An early example is En-
trée, a restaurant recommender that supports both direc-
tional critiques (e.g., Like this but cheaper) and replacement
critiques (e.g., Like this with French food) [Burke et al.,
1997]. In approaches that combine critiquing with case-
based reasoning (CBR), an initially recommended product
may be retrieved on the basis of its similarity to an initial
user query [Burke, 2002]. The product recommended in
response to a critique is typically one that satisfies the cri-
tique and is maximally similar to the critiqued product.

Concern that basic critiquing algorithms often lead to
protracted recommendation dialogues has prompted signifi-
cant research interest in increasing the efficiency of critiqu-
ing [e.g., McCarthy et al., 2005; McSherry and Aha, 2006;
Reilly et al., 2005]. However, approaches in which previ-
ously recommended products are eliminated implicitly as-

sume that critiquing a recommended product amounts to
rejection of the product by the user. We argue that this is not
a realistic assumption and show that preventing users from
navigating back to products they critiqued earlier in the dia-
logue may result in recommendation failure.

As we show in Section 2, an equally serious problem if
previously recommended products are not eliminated is that
products that satisfy the user’s requirements, if any, may be
unreachable by any sequence of critiques. The effectiveness
of existing critiquing algorithms may thus be open to ques-
tion whether or not previously recommended products are
eliminated. To address this issue, we present a new version
of progressive critiquing [McSherry and Aha, 2006] that
leaves open the option of repeating a previous recommenda-
tion while also addressing the unreachability problem.

In Section 2, we use examples to illustrate the problems
of diminishing choices and unreachability in critiquing on
which we focus in this paper. In Section 3, we describe how
these problems are addressed in progressive critiquing. In
Section 4, we evaluate our approach on a well known case
base and investigate the effects of user critiquing choices on
dialogue outcomes and efficiency. Our conclusions are pre-
sented in Section 5.

2 Problems in Critiquing

The challenge of critiquing is to recommend an acceptable
product based on information about the user’s requirements
that is both incomplete and imprecise. In a recommender
system for personal computers, for example, a critique such
as Like this with a bigger screen does not determine pre-
cisely the preferred screen size or the minimum size that the
user might be prepared to accept. Another problem is that
improvements in one attribute can often be gained only at
the expense of another [Burke, 2002]. A related issue is the
trade-off between preserving similarity to a critiqued prod-
uct and recommending one that is sufficiently different in a
single dimension to satisfy the user’s requirements [Bridge
and Ferguson, 2002; Burke, 2002; Salamé et al., 2005].
Avoiding long and fruitless dialogues when none of the
available products are acceptable to the user is another im-
portant issue in critiquing [McSherry and Aha, 2006].

I[JCAI-07

962

In any recommender system, the user’s requirements may
include constraints that must be satisfied and others that the
user is prepared to relax if necessary. Below we describe
how the user’s critiques and constraints are modeled in our
formal analysis of critiquing.

Definition 1. We denote by Matches(Q) the possibly empty
set of cases that satisfy a given set of constraints Q.

It can be seen that:

Matches(Q)= (| matches(q)
q€Q

where for each g € Q, matches(q) is the set of cases that
satisfy ¢.

In a critiquing system, the user is not required to express
her requirements in a formal query. Instead, by critiquing
the system’s recommendations, the user provides feedback
that the system uses to guide the search for an acceptable
product.

Definition 2. We denote by matches(r, C) the set of cases
that satisfy a critique r when applied to a given case C.

Definition 3. We denote by critiques(C) the set of available
critiques that are applicable to a given case C.

A critique cannot be applied to a case that already satis-
fies the critique. That is, C ¢ matches(r, C) for any case C
and r € critiques(C). If previously recommended cases are
eliminated, a critiquing failure occurs if matches(r, C) - E =
@, where E is the set of eliminated cases. If previously rec-
ommended cases are not eliminated, a critiquing failure can
occur only if matches(r, C) = &. For example, a sequence of
repeated Like this but cheaper critiques, if allowed by the
system, must eventually result in a critiquing failure.

The expressiveness of a query language is an important
issue in the retrieval of recommended products based on
user queries [Bridge and Ferguson, 2002]. An equally im-
portant issue in critiquing is whether the user’s constraints
are expressible using the available critiques.

Definition 4. We say that a constraint q is expressible us-
ing the available critiques if for any case C ¢ matches(q)
there exists r € critiques(C) such that matches(q) C
matches(r, C).

For example, Between 3 and 5 bedrooms is an expressible
constraint in a property recommender that supports more
and less critiques on bedrooms. An upper price limit (e.g.,
price < £400) is expressible in a holiday recommender with
a Like this but cheaper critique, while an equality constraint
such as month = May is expressible using a replacement
critique on month.

2.1 The Diminishing Choices Problem

It does not seem realistic to assume, as in critiquing algo-
rithms that never repeat a previous recommendation, that
critiquing a recommended product amounts to rejection of
the product by the user. Shoppers often consider alternatives
to a recommended product before deciding that it is the best

available option. It is equally natural for a recommender
system user to critique an acceptable product (e.g., in search
of cheaper alternatives). But on attempting to retrace her
steps (e.g., because cheaper alternatives do not meet her
requirements), such a user may find her choices very limited
if previously recommended products have been eliminated.

In the worst case, the user may discover that the only
product she is prepared to accept has been eliminated.
Table 1 shows an example case base in the residential prop-
erty domain that we use to illustrate this problem of dimin-
ishing choices in critiquing. The case attributes are location
(A or B), bedrooms (3 or 4), and property type (detached or
semi-detached). The attributes are equally weighted and the
similarity between two cases is the number of matching
features.

Loc | Beds | Type
Case 1 A 3 det
Case 2 B 4 det
Case 3 A 3 sem

Table 1. Example case base in the property domain.

For a critiquing algorithm in which previously recom-
mended cases are eliminated, Figure 1 shows an example
critiquing dialogue in which the user is looking for a 4 bed-
room detached property in location A but is prepared to
compromise on bedrooms. Her initial query is loc = A, and
the initially recommended case is Case 1. The user can see
from the response to her first critique that no case satisfies
all her requirements (A 4 det). But when she tries to navi-
gate back to Case | by critiquing Case 2 on location, the
case now recommended is Case 3, even though it is less
similar to Case 2 than Case 1. In this situation, it is difficult
to see how the elimination of Case 1 (i.e., the only accept-
able case) can be justified.

more beds

Figure 1. Example critiquing dialogue in which the user is unable
to navigate back to the only acceptable case.

Thus eliminating previously recommended products is
bound to result in recommendation failure if the user cri-
tiques the only acceptable product (or products). Even in a
product case base of realistic size, it is not unusual for only
a small number of acceptable products to be available if the
user has several requirements that must be satisfied
[McSherry, 2003]. The diminishing choices problem is thus
a potentially serious drawback of critiquing approaches in
which previous recommendations are eliminated.

I[JCAI-07

963

However, Theorem 1 shows that when previously rec-
ommended cases are eliminated, a case that satisfies a given
set of expressible constraints can always be reached, without
critiquing failures, if such a case exists. In practice, whether
such a case is reached without critiquing failures may of
course depend on the user’s critiquing choices. It is also
possible in practice for a case that satisfies all the user’s
constraints to be reached without any critiques (i.e., the ini-
tially recommended case may satisfy all her constraints).

Theorem 1. Eliminating previously recommended cases in
critiquing ensures that a case that satisfies a given set Q of
expressible constraints can always be reached without cri-
tiquing failures if such a case exists.

Proof. Let C* € Matches(Q) be any case that satisfies all
the constraints in Q. If C; ¢ Matches(Q), where C; is the
initially recommended case, then there exists ¢; € Q such
that C, ¢ matches(q;). As all the constraints in Q are ex-
pressible using the available critiques, there exists 7, € cri-
tigues(C,) such that matches(q,) < matches(r,, C,). As C,
¢ Matches(Q), C* € Matches(Q) = Matches(Q) - {C,} <
matches(q,) - {C,} < matches(r,, Cy) - {C\}.

If G, ¢ Matches(Q), where C, is the case recommended
in response to 7, then there exists ¢, € Q such that C, ¢
matches(q,) and r, € critiques(C,) such that matches(q,) C
matches(r,, Cy). As Cy, C, ¢ Matches(Q), C* € Matches(Q)
= Matches(Q) - {Ci, C;} < matches(qz) - {Ci, C} <
matches(ry, Cy) - {Cy, Cy}. It follows that matches(r,, C;) -
{C, G} # O, and so r, is bound to succeed despite the
elimination of C; and C,.

If C; ¢ Matches(Q), where C; is the case recommended
in response to r,, we can continue as long as necessary to
construct a sequence of recommended cases Ci, Cy, ..., C;
and successful critiques 4, 7, ..., 7 such that Cy, G, ..., C;
¢ Matches(Q). As previously recommended cases are
eliminated, Ci, (s, ..., C;, Cyy1 are distinct cases, where Ciq
is the case recommended in response to 7. As the supply of
distinct cases C ¢ Matches(Q) must eventually be ex-
hausted, it must eventually be true that Cy.; € Matches(Q).
O

2.2 The Unreachability Problem

Table 2 shows a second example case base in the property
domain that we use to illustrate the unreachability problem
in critiquing. In the example dialogue that we now present,
the initially recommended case is Case 1 (A 3 sem 2) and
the user is looking for a 4 bedroom detached property in
location A with 3 reception rooms (A 4 det 3). If all the
user’s requirements must be satisfied, then Case 5 is the
only acceptable case. Attributes in the case base are equally
weighted and the similarity between two cases is the number
of matching features. We assume a basic critiquing algo-
rithm in which:
e The available critiques are more and less critiques for
beds and reception rooms (RRs) and replacement cri-
tiques for loc and type

e Each critique is applied only to a single attribute

e The single case recommended in response to a suc-
cessful critique is one that is maximally similar
among those that satisfy the critique (i.e., no account
is taken of any previous critiques or initial query)

e Previously recommended cases are not eliminated

For such a critiquing algorithm, Figure 2 shows the cases
recommended in a sequence of four critiques. After three
critiques, the user has made no progress towards her goal,
and her fourth critique brings her back to where she started.
The user can do no better by critiquing Case 1 on beds or
RRs or by choosing different critiques on Cases 2-4. She
cannot reach Case 5 even by resorting to critiques that are
inconsistent with her requirements, as none of the negative
critiques she might choose (e.g., /less beds than Case 3) are
satisfied by Case 5.

Loc | Beds | Type | RRs
Case 1 A 3 sem 2
Case 2 B 3 det 2
Case 3 B 4 sem 2
Case 4 B 3 sem 3
Case 5 A 4 det 3

Table 2. Example case base in which an acceptable case may be
unreachable from any other case.

To confirm that Case 5 is unreachable with any of Cases
1-4 as the initially recommended case, it suffices to observe
that Case 5 cannot be reached in a single step from any of
the other cases. So the best the system can do with any of
Cases 1-4 as the initially recommended case is to recom-
mend a case that satisfies only one of the user’s require-
ments.

type = det

A 3sem?2

loc=A

more beds

Case 3
B4 sem?2

Figure 2. Example critiquing dialogue in which the only accept-
able case cannot be reached.

Case 4 more RRs

B3sem3

At the expense of susceptibility to the diminishing
choices problem (Section 2.1), eliminating previously rec-
ommended products in the example dialogue would result in

I[JCAI-07

964

Case 5 being recommended in response to the user’s fourth
critique. Another problem highlighted by our example is
that recommended cases in a critiquing dialogue may in-
volve unnecessary compromises with respect to previous
critiques that may frustrate or even mislead the user, and
delay progress towards her goal. Given the response to her
second critique, for example, the user may begin to doubt
the availability of a detached property with 4 bedrooms.

3 Progressive Critiquing

Progressive critiquing differs from other critiquing algo-
rithms in that a recommended product must, if possible,
satisfy all previous critiques as well as the current critique
[McSherry and Aha, 2006]. This strategy plays an important
role in the algorithm’s ability to address the unreachability
problem when, as in the version we now present, previously
recommended products are not eliminated.

3.1 Taking Account of Previous Critiques

While improvements in one attribute can often be gained
only at the expense of another [Burke, 2002], we have seen
in Section 2 that recommended cases may involve unneces-
sary compromises with respect to previous critiques. In pro-
gressive critiquing, the case recommended in response to the
user’s current critique is required, if possible, to satisfy all
previous critiques as well as the current critique. That is, if
r1, ..., I 1S @ sequence of critiques applied to recommended
cases Cy, ..., C; then the case Cj; recommended in response
to 7 is one that is maximally similar among the available
cases C, if any, such that:

C € () matches(r;,C;).
1<i<k

The non-existence of a case that satisfies all the user’s
critiques is recognized as a progression failure. In the event
of such a failure, the recommended case is one that is
maximally similar among those that satisfy the user’s cur-
rent critique. Such a case must exist as the user may select a
critique in progressive critiquing only if it is satisfied by at
least one case.

As previous recommendations are not eliminated in pro-
gressive critiquing, the case recommended in this situation
may be one that was previously critiqued by the user. As we
show in Theorem 2, however, a previous recommendation
can be repeated in progressive critiquing only when there is
no case that satisfies all the user’s critiques.

Theorem 2. A previous recommendation can be repeated
in progressive critiquing only when a progression failure
has occurred.

Proof. Let C; be the initially recommended case and let |,
..., I, be any sequence of critiques that has not resulted in a
progression failure. For 1< i < k, let C;y; be the case rec-
ommended in response to ri. As a progression failure
has not occurred,

() matches(r;,C;).
1<i<k

Ci1 €

As C; ¢ matches(r;, C;) for 1 <i <k, it follows that Cyy &
{Cy, ..., C}. O

By allowing previous recommendations to be repeated in
the event of a progression failure, progressive critiquing
avoids the diminishing choices problem (Section 2.1).
Moreover, as we now show, the reachability of cases that
satisfy a given set of expressible constraints, if any, does not
depend on the elimination of previously recommended cases
in progressive critiquing.

Theorem 3. A case that satisfies a given set Q of expressi-
ble constraints can always be reached in progressive cri-
tiquing without critiquing or progression failures if such a
case exists.

Proof. If C, ¢ Matches(Q), where C, is the initially recom-
mended case, then there exists g; € Q such that C; ¢
matches(q;). As all the constraints in Q are expressible us-
ing the available critiques, there exists r; € critiques(Cy)
such that matches(q;) < matches(r;, Cy). If C ¢
Matches(Q), where C, is the case recommended in response
to 7y, then there exists ¢, € Q such that C, ¢ matches(q,)
and r, € critiques(C,) such that matches(q,) < matches(r,
;). In progressive critiquing, the case C; recommended in
response to , must also satisfy 7; if such a case exists. But
Matches(Q) < matches(q,) N matches(q,) < matches(r;, C,)
N matches(r,, C3), so the existence of at least one case that
satisfies all the constraints in Q ensures the existence of a
case that satisfies both critiques. As a progression failure
has not occurred, C;, C,, and C; must be distinct cases by
Theorem 2.

If G5 ¢ Matches(Q), we can continue as long as necessary
to construct a sequence of recommended cases Cj, (s, ..., Cy
and successful critiques 7y, 75, ..., 4 such that Cy, C,, ..., C;
¢ Matches(Q) and:

Cii € () matches(r;,C;)

1<i<k

where Cy4; is the case recommended in response to 7. Again
by Theorem 2, Cy, C, ..., Cy+; must be distinct cases. As the
supply of distinct cases C ¢ Matches(Q) must eventually be
exhausted, it must eventually be true that Cyy €

Matches(Q).]

3.2 Recovery from Progression Failures

A mechanism for recovery from progression failures is
needed to ensure that progress can again be made if the user
is prepared to compromise. Our solution is to maintain a list
of active critiques that a recommended case must, if possi-
ble, satisfy as well as the user’s current critique. If no such
case exists, a maximally similar case among those that sat-
isfy the current critique is recommended, and any active
critiques that are not satisfied by this case are deleted from
the list of active critiques.

Figure 3 shows an example critiquing dialogue in the
personal computer (PC) domain that we use to illustrate our
approach. Values of the critiqued attributes PC type, screen
size (in inches), and price (in UK pounds) are shown for
each recommended case. A progression failure has occurred

I[JCAI-07

965

as the case recommended in response to the user’s third cri-
tique satisfies only two of her three critiques.

‘ ’ type = laptop

Case 1
desktop 17 450

Case 2
laptop 14 560

cheaper

v

Case 3
laptop 14 540

Case 4
laptop 15 610

‘ bigger screen

Figure 3. Example dialogue in progressive critiquing.

If the user now critiques Case 4, her critiques on Case 1
and Case 3, but not on Case 2, remain in force. For example,
a PC recommended in response to a faster critique on Case
4 must also be a laptop with screen > 14 if such a case ex-
ists. If not prepared to compromise on price, the user may
instead choose to navigate back in the direction of less ex-
pensive options by critiquing Case 4 on price. Such a cri-
tique may bring her directly back to Case 2 or Case 3, but
only if there is no laptop cheaper than Case 4 with screen >
14.

3.3 Related Work

Taking account of previous critiques is a feature that pro-
gressive critiquing shares with incremental critiquing
[Reilly et al., 2005]. In the latter approach, a case’s similar-
ity to the critiqued case is combined with the number of
previous critiques it satisfies in a single compatibility meas-
ure. However, a highly similar case may dominate other
cases that satisfy more critiques, with the result that the case
recommended in response to a critique may not satisfy all
the user’s critiques even if such a case exists. Also in con-
trast to progressive critiquing, previously recommended
cases are eliminated in incremental critiquing. This feature
also distinguishes incremental critiquing from the ap-
proaches used in FindMe systems like Entrée and Car
Navigator [Burke et al., 1997; Hammond et al., 1996].

Assessment of similarity with respect to less-is-better
(LIB) attributes and more-is-better (MIB) attributes in pro-
gressive critiquing is based on assumed preferences with
respect to such attributes [McSherry and Aha, 2006]. That
is, the preferred value of a LIB attribute (e.g., price) is as-
sumed to be the lowest value in the product case base, while
the preferred value of a MIB attribute is assumed to be the
highest available value. One advantage is that no updating
of user preferences is needed in response to critiques on
MIB or LIB attributes. Instead, only the user’s constraints
are updated, thus avoiding problems such as how to adjust a
preferred price in response to a Like this but cheaper cri-
tique [Bridge and Ferguson, 2002].

4 Empirical Results

Our evaluation focuses on the effects of user critiquing be-
havior on dialogue outcomes and efficiency when previ-
ously recommended cases are not eliminated in progressive
critiquing. We expect the best results to be achieved when
the user refrains from over-critiquing attributes whose cur-
rent values are acceptable. For example, a Like this but
cheaper critique on a product whose price is acceptable may
cause an unnecessary progression failure that hinders pro-
gress towards the user’s goal. Over-critiquing may also re-
sult in a critiquing loop in which the user keeps coming
back to an unacceptable case she has already critiqued. This
is an important issue, as a critiquing loop may result in rec-
ommendation failure if the user decides to terminate the
dialogue.

Performance measures of interest in our evaluation are
the average length of critiquing dialogues and the percent-
age of dialogues in which a target case is reached. Our ex-
periments are based on a leave-one-in approach in which
each case in the PC case base [McGinty and Smyth, 2002] is
used to represent the user’s requirements in a simulated cri-
tiquing dialogue. The value of a LIB attribute in a left-in
case is treated as an upper limit (e.g., price < 700), and the
value of a MIB attribute as a lower limit (e.g., speed = 2.2).
The values of other attributes (e.g., make, type, screen size)
are treated as equality constraints. The left-in case also
serves as a target case in the critiquing dialogue. If other
cases also satisfy all the user’s constraints, as in 14% of
dialogues, there may be more than one target case.

The case that is least similar to the left-in case is pre-
sented as the initially recommended case in a simulated cri-
tiquing dialogue that continues until a target case has been
reached or the user has tried all possible critiques on a rec-
ommended case without reaching a target case. The avail-
able critiques are less critiques on LIB attributes, more cri-
tiques on MIB attributes, more and less critiques on screen
size and replacement critiques on nominal attributes.

We experiment with simulated users in two categories:

Class 1: Choose only critiques on attributes that fail to sat-
isfy their constraints

Class 2: Choose only critiques on attributes that fail to sat-
isfy their constraints or LIB/MIB attributes that already sat-
isfy their constraints

Table 3 shows the percentages of critiquing dialogues that
were successful (i.e., a target case was reached) in Classes 1
and 2. The fact that all Class 1 dialogues were successful
provides empirical confirmation that a case that satisfies a
given set of expressible constraints can always be reached in
progressive critiquing if one exists (Theorem 3). In Class 2,
however, over-critiquing resulted in 13% of dialogues being
terminated by the simulated user without reaching a target
case.

For all Class 1 dialogues and successful (+ve) Class 2
dialogues, Figure 4 shows the minimum, average, and
maximum numbers of critiques required to reach a target
case. Lengths of unsuccessful (-ve) dialogues in Class 2 are

I[JCAI-07

966

also shown. A striking feature of the results for Class 1 is
that only 4 critiques are required on average to reach a target
case that satisfies all the user’s constraints.

Successful | Unsuccessful
Class 1 100% 0%
Class 2 87% 13%

Table 3. Outcomes of progressive critiquing dialogues.

In successful Class 2 dialogues, over-critiquing had a
major impact in terms of the average number of critiques
(9.5) required to reach a target case. A greater cause for
concern, however, is the average length of more than 20
critiques for unsuccessful dialogues in Class 2. These find-
ings support our hypothesis that progressive critiquing is
most effective when users refrain from over-critiquing at-
tributes (e.g., price) whose current values are acceptable.

B Min ©OAvg O Max

Dialogue Length

Class 1

Class 2 (+ve) Class 2 (-ve)

Figure 4. Lengths of progressive critiquing dialogues.

5 Conclusions

The diminishing choices problem is a potentially serious
drawback of critiquing approaches in which previously rec-
ommended products are eliminated. On the other hand, this
policy avoids another serious problem which we refer to as
the unreachability problem. Our solution to this apparent
dilemma is a new version of progressive critiquing
[McSherry and Aha, 2006] that leaves open the option of
repeating a previous recommendation while also ensuring
that a product which satisfies a given set of expressible con-
straints can always be reached if any such products exist.

As shown by our empirical results, the approach is most
effective when the user refrains from over-critiquing, with
only four critiques required on average to reach a target case
in the PC case base without the benefit of an initial query.
The problems caused by over-critiquing could perhaps be
avoided by offering users guidelines for more effective cri-
tiquing. Other possible solutions to be investigated in future
work include eliminating any product that the user critiques
for a second time.

References

[Bridge and Ferguson, 2002] Derek Bridge and Alex
Ferguson. An expressive query language for product re-
commender systems. Artificial Intelligence Review,
18:269-307, 2002.

[Burke, 2002] Robin Burke. Interactive critiquing for cata-
log navigation in e-commerce. Artificial Intelligence Re-
view, 18:245-267, 2002.

[Burke et al., 1997] Robin Burke, Kristian Hammond, and
Benjamin Young. The FindMe approach to assisted
browsing. I[EEE Expert, 12:32-40, 1997.

[Hammond et al., 1996] Kristian Hammond, Robin Burke,
and Kathryn Schmitt. A case-based approach to knowl-
edge navigation. In David Leake, editor, Case-Based
Reasoning: Experiences, Lessons & Future Directions,
pages 125-136. AAAI Press, Cambridge, Massachusetts,
1996.

[Linden et al., 1997] Greg Linden, Steve Hanks, and Neal
Lesh. Interactive assessment of user preference models:
The Automated Travel Assistant. In Proceedings of the
Sixth International Conference on User Modeling, pages
67-78, Chia Laguna, Sardinia, Italy, 1997. Springer
Wien New York.

[McCarthy et al., 2005] Kevin McCarthy, James Reilly,
Lorraine McGinty, and Barry Smyth. Experiments in
dynamic critiquing. In Proceedings of the Tenth Interna-
tional Conference on Intelligent User Interfaces, pages
175-182, San Diego, California, 2005. ACM Press.

[McGinty and Smyth, 2002] Lorraine McGinty and
Barry Smyth. Comparison-based recommendation. In
Proceedings of the Sixth European Conference on Case-
Based Reasoning, pages 575-589, Aberdeen, Scotland,
2002. Springer-Verlag.

[McSherry, 2003] David McSherry. Similarity and com-
promise. In Proceedings of the Fifth International Con-
ference on Case-Based Reasoning, pages 291-305,
Trondheim, Norway, 2003. Springer-Verlag.

[McSherry and Aha, 2006] David McSherry and David W.
Aha. Avoiding long and fruitless dialogues in critiquing.
In Proceedings of AI-2006, Cambridge, UK, 2006.
Springer-Verlag.

[Reilly et al., 2005] James Reilly, Kevin McCarthy,
Lorraine McGinty, and Barry Smyth. Incremental cri-
tiquing. Knowledge-Based Systems, 18:143-151,2005.

[Salamo6 et al., 2005] Maria Salamé, Barry Smyth, Kevin
McCarthy, James Reilly, and Lorraine McGinty. Reduc-
ing critique repetition in conversational recommenda-
tion. IJCAI-05 Workshop on Multi-Agent Information
Retrieval and Recommender Systems, pages 55-61, 2005.

I[JCAI-07

967

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

