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Abstract

A new algorithm, Neighborhood MinMax Projec-
tions (NMMP), is proposed for supervised dimen-
sionality reduction in this paper. The algorithm
aims at learning a linear transformation, and fo-
cuses only on the pairwise points where the two
points are neighbors of each other. After the trans-
formation, the considered pairwise points within
the same class are as close as possible, while those
between different classes are as far as possible. We
formulate this problem as a constrained optimiza-
tion problem, in which the global optimum can be
effectively and efficiently obtained. Compared with
the popular supervised method, Linear Discrimi-
nant Analysis (LDA), our method has three signif-
icant advantages. First, it is able to extract more
discriminative features. Second, it can deal with
the case where the class distributions are more com-
plex than Gaussian. Third, the singularity problem
existing in LDA does not occur naturally. The per-
formance on several data sets demonstrates the ef-
fectiveness of the proposed method.

1 Introduction

Linear dimensionality reduction is an important method when
facing with high-dimensional data. Many algorithms have
been proposed during the past years. Among these algo-
rithms, Principal Component Analysis (PCA) [Jolliffe, 2002]

and Linear Discriminant Analysis (LDA) [Fukunaga, 1990]

are two of the most widely used methods. PCA is an unsu-
pervised method, which does not take the class information
into account. LDA is one of the most popular supervised di-
mensionality reduction techniques for classification. How-
ever, there exist several drawbacks in it. One drawback is that
it often suffers from the Small Sample Size problem when
dealing with high dimensional data. In this case, the within-
class scatter matrix Sw may become singular, which makes
LDA difficult to be performed. Many approaches have been
proposed to address this problem [Belhumeur et al., 1997;
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Chen et al., 2000; Yu and Yang, 2001]. However, these vari-
ants of LDA discard a subspace and thus some important dis-
criminative information may be lost. Another drawback in
LDA is its distribution assumption. LDA is optimal in the
case that the data distribution of each class is Gaussian, which
can not always be satisfied in real world applications. When
the class distribution is more complex than Gaussian, LDA
may fail to find the optimal discriminative directions. More-
over, the number of available projection directions in LDA is
smaller than the class number [Duda. et al., 2000], but it may
be insufficient for many complex problems, especially when
the number of class is small.

For the distance metric based classification methods, such
as the nearest neighbor classifier, learning an appropriate
distance metric plays a vital role. Recently, a number of
methods have been proposed to learn a Mahalanobis dis-
tance metric [Xing et al., 2003; Goldberger et al., 2005;
Weinberger et al., 2006]. Linear dimensionality reduction
can be viewed as a special case of learning a Mahalanobis dis-
tance metric(see section 5). This viewpoint can give a reason-
able interpretation for the fact that the performance of nearest
neighbor classifier can always be improved after performing
linear dimensionality reduction.

In this paper, we propose a new supervised linear di-
mensionality reduction method, Neighborhood MinMax Pro-
jections (NMMP). The method is largely inspired by the
classical supervised linear dimensionality reduction method,
i.e., LDA, and the recent proposed distance metric learning
method, large margin nearest neighbor (LMNN) classifica-
tion [Weinberger et al., 2006]. In our method, we focus
only on the pairwise points where the two points are neigh-
bors of each other. After the transformation, we try to pull
the considered pairwise points within the same class as close
as possible, and take those between different classes apart.
This goal can be achieved by formulating the task as a con-
strained optimization problem, in which the global optimum
can be effectively and efficiently obtained. Compared with
LDA, our method avoids the three drawbacks in LDA dis-
cussed in above. Compared with the LMNN method, our
method is computationally much more efficient. The perfor-
mance on several data sets demonstrates the effectiveness of
our method.
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Figure 1: In the left figure, point A and B belong to the same
class i, and the two circles denote the within-class neighbor-
hood of A and B respectively. A is B’s within-class neighbor-
hood and B is A’s within-class neighborhood. After the trans-
formation, we try to pull the two points as close as possible;
In the right figure, point A belongs to class i, point B be-
longs to class j, and the two circles denote the between-class
neighborhood of A and B respectively. A is B’s between-class
neighborhood and B is A’s between-class neighborhood. Af-
ter the transformation, we try to push the two points as far as
possible.

2 Problem Formulation

Given the data matrix X = [x1, x2, ..., xn], xi ∈ R
d, our

goal is to learn a linear transformationW : R
d → R

m, where
W ∈ R

d×m and W
T
W = I. I is m ×m identity matrix.

Then the original high-dimensional data x is transformed into
a low-dimensional vector:

y = W
T x (1)

Let each data point of class i have two kinds of neighbor-
hood: within-class neighborhood Nw(i) and between-class
neighborhood Nb(i), where Nw(i) is the set of the data’s
kw(i) nearest neighbors in the same class i and Nb(i) is the
set of the data’s kb(i) nearest neighbors in the class other than
i. Obviously, 1 ≤ kw(i) ≤ ni − 1, and 1 ≤ kb(i) ≤ n− ni,
where ni is the data number of class i.

Here, we focus only on the pairwise points where the two
points are neighbors of each other. After the transformation,
we hope that the distance of the considered pairwise points
within the same class will be minimized, while the distance
of those between different classes will be maximized. (see
Figure 1).

After the transformation W, the sum of the Euclidean dis-
tances of the pairwise points within the same class can be
formulated as:

sw = tr(WT
S̃wW) (2)

where tr(·) denotes the trace operator of matrix, and

S̃w =
∑

i,j:xi∈Nw(Cj)&xj∈Nw(Ci)

(xi − xj)(xi − xj)
T (3)

Here, Ci denote the class label of xi, and Cj denote the

class label of xj . Obviously, Ci = Cj , and S̃w is positive
semi-definite.

Similarly, the sum of the Euclidean distances of the pair-
wise points between different classes is:

sb = tr(WT
S̃bW) (4)

where

S̃b =
∑

i,j:xi∈Nb(Cj)&xj∈Nb(Ci)

(xi − xj)(xi − xj)
T (5)

Here, Ci �= Cj , and S̃b is positive semi-definite too.
To achieve our goal, we should maximize sb while mini-

mize sw. The following two function can be used as objec-
tive:

M1(W) = tr
(
W

T (S̃b − λS̃w)W
)

(6)

M2(W) =
tr(WT

S̃bW)

tr(WT S̃wW)
(7)

As it is difficult to determine a suitable weight λ for the for-
mer objective function, we select the latter as our objective to
optimization. In fact, as we will see, the latter is just a spe-
cial case of the former, where the weight λ is automatically
determined.

Therefore, we formulate the problem as a constrained op-
timization problem:

W
∗ = arg max

WT W=I

tr(WT
S̃bW)

tr(WT S̃wW)
(8)

Fortunately, the globally optimal solution of this problem can
be efficiently calculated. In the next section, we will describe
the details for solving this constrained optimization problem.

3 The Constrained Optimization Problem

We address the above optimization problem in a more general
form which is described as follows:

The constrained optimization problem: Given the real sym-
metric matrix A ∈ R

d×d and the positive semi-definite ma-
trix B ∈ R

d×d, rank(B) = r ≤ d. Find a matrix
W ∈ R

d×m that maximize the following objective function
with the constraint of W

T
W = I:

W
∗ = arg max

WT W=I

tr(WT
AW)

tr(WT BW)
(9)

At first, we propose Lemma 1, which shows that when
W

T
W = I and m > d − r, the value of tr(WT

BW) will
not be equal to zero.

Lemma1. Suppose W ∈ R
d×m, WT

W = I, B ∈ R
d×d is

a positive semi-definite matrix, and rank(B) = r ≤ d, m >
d− r, then it holds that tr(WT

BW) > 0.
proof. According to the result of Rayleigh quotient [Golub

and van Loan, 1996], min
WT W=I

tr(WT
BW) =

∑m

i=1 βi,

where β1, β2, . . . , βm are the first m smallest eigenvalues
of B. As B is positive semi-definite, rank(B) = r, and
m > d− r, then

∑m

i=1 βi > 0. Therefore, with the constraint

of W
T
W = I, tr(WT

BW) ≥ min tr(WT
BW) > 0.

Thus we discuss this optimization problem in two cases.
Case 1: m > d− r,
Lemma 1 ensures that the optimal value is finite in this case.

Suppose the optimal value is λ∗, Guo [2003] has derived that
max

WT W=I

tr(WT (A− λ∗
B)W) = 0.
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Note that tr(WT
BW) > 0, so we can easy to see,

max
WT W=I

tr(WT (A − λB)W) < 0 ⇒ λ > λ∗, and

max
WT W=I

tr(WT (A− λB)W) > 0⇒ λ < λ∗.

On the other hand, max
WT W=I

tr(WT (A − λB)W) = γ,

where γ is the sum of the first m largest eigenvalues of A −
λB. Given a value λ, if γ = 0,then λ is just the optimal value,
otherwise γ > 0 implies λ is smaller than the optimal value
and vice versa. Thus the global optimal value of the problem
can be obtained by an iterative algorithm. Subsequently, in
order to give a suitable value λ, we need to determine the
possible bound of the optimal value. Theorem 1 is proposed
to solve this problem.

Theorem 1. Given the real symmetric matrix A ∈ R
d×d

and the positive semi-definite matrix B ∈ R
d×d, rank(B) =

r ≤ d. If W1 ∈ R
d×m1 , W2 ∈ R

d×m2 and m1 > m2 >

d− r, then max
WT

1 W1=I

tr(WT
1 AW1)

tr(WT
1 BW1)

≤ max
WT

2 W2=I

tr(WT
2 AW2)

tr(WT
2 BW2)

.

The proof of Theorem 1 is based on the following lemma:
Lemma 2. If ∀i, ai ≥ 0, bi > 0 and a1

b1
≤ a2

b2
≤ · · · ≤ ak

bk
,

then a1+a2+···+ak

b1+b2+···+bk
≤ ak

bk
.

Proof. Let ak

bk
= q. So ∀i, ai ≥ 0, bi > 0, we have ai ≤

qbi. Therefore a1+a2+···+ak

b1+b2+···+bk
≤ ak

bk

Now we give the proof of Theorem 1 in the following.
Proof of theorem 1. Suppose W1

∗ = [w1, w2, ..., wm1 ]

and W
∗
1 = arg max

WT
1 W1=I

tr(WT
1 AW1)

tr(WT
1 BW1)

. Let Cm2
m1

= h,

without loss of generality, we suppose
tr(WT

p(1)AWp(1))

tr(WT
p(1)

BWp(1))
≤

tr(WT
p(2)AWp(2))

tr(WT
p(2)

BWp(2))
≤ · · · ≤

tr(WT
p(h)AWp(h))

tr(WT
p(h)

BWp(h))

where Wp(i) ∈ R
d×m2 is the i-th combination of

w1, w2, ..., wm1 with m2 elements(note that m1 > m2), so
the number of combinations is h.

Let Cm2−1
m1−1 = l, note that each of wj(1 ≤ j ≤ m1) occurs

l times in {Wp(1),Wp(2), ...,Wp(h)}. According to Lemma
2, we have

max
WT

1 W1=I

tr(WT
1 AW1)

tr(WT
1 BW1)

= l·tr(W1
∗T

AW1
∗)

l·tr(W1
∗T BW1

∗)
=

tr(WT
p(1)AWp(1))+tr(WT

p(2)AWp(2))+···+tr(WT
p(h)AWp(h))

tr(WT
p(1)

BWp(1))+tr(WT
p(2)

BWp(2))+···+tr(WT
p(h)

BWp(h))

≤
tr(WT

p(h)AWp(h))

tr(WT
p(h)

BWp(h))
≤ max

WT
2 W2=I

tr(WT
2 AW2)

tr(WT
2 BW2)

According to Theorem 1 we know, with the reduced
dimension m increases, the optimal value is decreased
monotonously. When m = d, the optimal value is equal to
tr(A)
tr(B) . So max

WT W=I

tr(WT
AW)

tr(WT BW)
≥ tr(A)

tr(B) .

On the other hand, max
WT W=I

tr(WT
AW) =

∑m

i=1 αi, and

min
WT W=I

tr(WT
BW) =

∑m

i=1 βi, where α1, α2, . . . , αm

are the first m largest eigenvalues of A, and β1, β2, . . . , βm

are the first m smallest eigenvalues of B. Therefore,

max
WT W=I

tr(WT
AW)

tr(WT BW) ≤
α1+α2+···+αm

β1+β2+···+βm
.

As a result, the bound of the optimal value is given by
tr(A)
tr(B) ≤ max

WT W=I

tr(WT
AW)

tr(WT BW)
≤ α1+α2+···+αm

β1+β2+···+βm

Now, we obtain an iterative algorithm for obtaining the op-
timal solution, which is described in Table 1. From the al-
gorithm we can see, only a few iterative steps are needed to
obtain a precise solution. Note that the algorithm need not
calculate the inverse of B, and thus the singularity problem
does not exist in it naturally.

Case 2: m ≤ d− r,
In this case, when W lies in the null space of ma-

trix B, then tr(WT
BW) = 0, the value of the objec-

tive function becomes infinite. Therefore, we can rea-
sonably replace the optimization problem with V

∗ =
arg max

VT V=I

tr(VT (ZT
AZ)V), where V ∈ R

(d−r)×m, and

Z = [z1, z2, ..., zd−r] are the eigenvectors corresponding to
d− r zero eigenvalues of B.

We know that V
∗ = [μ1, μ2, ..., μm], where

μ1, μ2, ..., μm are the first m largest eigenvectors of
Z

T
AZ. So, in this case, the final solution is W

∗ = Z ·V∗

Input:

The real symmetric matrix A ∈ R
d×d and the positive

semi-definite matrix B ∈ R
d×d, rank(B) = r ≤ d. The

error constant ε.

Output:

Projection matrix W
∗, where W

∗ ∈ R
d×m and

W
∗T

W
∗ = I.

In the case of : m > d− r.

1.λ1 ←
tr(A)
tr(B) , λ2 ←

α1+α2+···+αm

β1+β2+···+βm
, λ ← λ1+λ2

2 ,

where α1, α2, ..., αm are the first m largest eigenvalues
of A, β1, β2, ..., βm are the first m smallest eigenvalues
of B.

2.While λ2 − λ1 > ε, do

a) Calculate γ, where γ is the sum of the first m
largest eigenvalues of A− λB.

b) If γ > 0, then λ1 ← λ, else λ2 ← λ.

c) λ← λ1+λ2

2 .

End while.

W
∗ = [ν1, ν2, ..., νm], where ν1, ν2, ..., νm are the

first m largest eigenvectors of A− λB.

In the case of : m ≤ d− r.

W
∗ = Z · [μ1, μ2, ..., μm], where μ1, μ2, ..., μm are

the first m largest eigenvectors of Z
T
AZ, and Z =

[z1, z2, ..., zd−r] are the eigenvectors corresponding to
d− r zero eigenvalues of B.

Table 1: The algorithm for the optimization problem

4 Neighborhood MinMax Projections

The method of Neighborhood MinMax Projections(NMMP)
is described in Table 2 . In order to speed up, PCA can be
used as a preprocessing step before performing NMMP.

Denote the covariance matrix of data by St, and denote the
null space of St by φ, the orthogonal complement of φ by φ⊥.
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0. Preprocessing: eliminate the null space of the co-
variance matrix of data, and obtain new data X =
[x1, x2, ..., xn] ∈ R

d×n, where rank(X) = d

1. Input:

X = [x1, x2, ..., xn] ∈ R
d×n, kw(i), kb(i), m

2. calculate S̃w and S̃b according to Eq.(3) and Eq.(5)

3. calculate W using the algorithm described in Table 1

4. Output:

y = W
T x, where W ∈ R

d×m and W
T
W = I.

Table 2: Algorithm of NMMP

It is well known that the null space of St can be eliminated
without lose of any information. In fact, it can be easy to
prove that the null space of St comprises the null space of

S̃w and the null space of S̃b defined in Section 2. Suppose
w ∈ φ⊥ and ξ ∈ φ, then

(w + ξ)T
S̃b(w + ξ)

(w + ξ)T S̃w(w + ξ)
=

wT
S̃bw

wT S̃ww
(10)

Eq.(10) demonstrates that eliminating the null space of the
covariance matrix of data will not affect the result of the pro-
posed method. Thus we use PCA to eliminate the null space
of the covariance matrix of data.

5 Discussion

Our method is closely connected with LDA. Both of them are
supervised dimensionality reduction methods, and the goals
are also similar. They both try to maximize the scatter be-
tween different classes, and minimize the scatter within the
same class. The matrix S̃b defined in Eq.(5) and S̃w defined
in Eq.(3) are parallel to the between-class scatter matrix Sb

and within-class scatter matrix Sw in LDA respectively. In
fact, when the number of neighbors reaches the number of the
total available neighbors(kw(i) = ni−1, and kb(i) = n−ni,
where ni is the data number of class i, and n is the number
of total data), we have S̃b + S̃w = n2

St, which is similar to
Sb + Sw = St in LDA.

However, in comparison with LDA, we do not impose the
faraway pairwise points within the same class to be close to
each other, which makes us focus more on the improvement
of the discriminability of local structure. This property is
especially useful when the distribution of class data is more
complex than Gaussian. We give a toy example to illustrate
it(Figure 2).

The toy data set consists of three classes(shown by dif-
ferent shapes). In the first two dimensions, the classes are
distributed in concentric circles, while the other eight dimen-
sions are all Gaussian noise with large variance. Figure 2
shows the two-dimensional subspace learned by PCA, LDA
and NMMP, respectively. It illustrates that NMMP can find
a low-dimensional transformation preserving manifold struc-
ture with more discriminability.

Moreover, compared with LDA, our method is able to ex-
tract more discriminative features and the singularity problem
existing in LDA will not occur naturally.
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Figure 2: (a) is the first two dimensions of the original ten-
dimensional data set; (b),(c),(d) are the two-dimensional sub-
space found by PCA, LDA and NMMP, respectively. It illus-
trates that NMMP can find a low-dimensional transformation
preserving manifold structure with more discriminability.

Distance metric learning is an important problem for
the distance based classification method. Learning a Ma-
halanobis distance metric is to learn a positive semidefi-
nite matrix M, and using the Mahalanobis distance met-
ric (xi − xj)

T
M(xi − xj) to replace the Euclidean

distance metric (xi − xj)
T (xi − xj), where M ∈

R
d×d, xi, xj ∈ R

d. Note that M is positive semidefinite,

with the eigen-decomposition, M = VV
T , where V =

[σ1v1, σ2v2, ..., σdvd], σ and v are eigenvalues and eigen-
vectors of M. Therefore, the Mahalanobis distance metric
can be formulated as (VT xi−V

T xj)
T (VT xi−V

T xj). In
this form, we can see that Learning a Mahalanobis distance
metric is to learn a weighted orthogonal linear transformation.
NMMP learns a linear transformation W with the constraint
of W

T
W = I. So it can be viewed as a special case of learn-

ing a Mahalanobis distance metric, where the weight value
σi is either 0 or 1. Note that directly learning the matrix M

is a very difficult problem and it is usually formulated as a
semidefinite programming (SDP) problem, where the com-
putation burden is extremely heavy. However, if we learn the
transformation V instead of learning the matrix M, the prob-
lem will become much easier to solve.

6 Experimental Results

We evaluated the proposed NMMP algorithm on several data
sets, and compared it with LDA and LMNN method. The data
sets we used belong to different fields, a brief description of
these data sets is list on Table 3.

We use PCA as the preprocessing step to eliminate the null
space of data covariance matrix St. For LDA, due to the sin-
gularity problem existing in it, we further reduce the dimen-
sion of data such that the within-class scatter matrix Sw is
nonsingular.

In each experiment, we randomly select several samples
per class for training and the remaining samples for testing.
the average results and standard deviations are reported over
50 random splits. The classification is based on k-nearest
neighbor classifier(k = 3 in these experiments).
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Iris Bal Faces Objects USPS News

class 3 3 40 20 4 4

training number 60 60 200 120 80 120
testing number 90 565 200 1320 3794 3850

input dimensionality 4 4 10304 256 256 8014
dimensionality after PCA 4 4 199 119 79 119

Table 3: A brief description of the data sets.

data set method Projection number Accuracy(%) Std. Dev.(%) Training time(per run)

Iris baseline 4 95.4 1.8 –
LDA 2 96.6 1.6 0s

LMNN 4 96.2 1.5 4.91s
NMMP 3 96.5 1.6 0.02s

Bal baseline 4 61.6 2.8 –
LDA 2 74.9 3.2 0s

LMNN 4 70.1 3.7 3.37s
NMMP 2 72.9 4.2 0.02s

Faces baseline 199 86.9 2.1 –
LDA 39 92.2 1.8 0.15s

LMNN 199 95.9 1.6 399.03s
NMMP 60 96.6 1.6 2.84s

Objects baseline 119 76.8 1.8 –
LDA 19 78.2 2.0 0.04s

LMNN 119 84.1 1.8 221.29s
NMMP 60 86.5 1.6 0.66s

USPS baseline 79 93.2 1.1 –
LDA 3 84.2 2.6 0.01s

LMNN 79 86.2 2.2 70.83s
NMMP 60 94.5 0.9 0.12s

News baseline 119 30.9 2.8 –
LDA 3 46.9 5.7 0.05s

LMNN 119 62.1 7.3 73.38s
NMMP 60 58.5 5.0 0.40s

Table 4: Experimental results in each data set.

It is worth noting that the parameters in our method are not
sensitive. In fact, in each experiment, we simply set kb(i) to
10, and set kw(i) to ni/2 + 2 for each class i, where ni is the
training number of class i.

The experimental results are reported in Table 4. We use
the recognition result directly performed after the preprocess-
ing by PCA as the baseline.

In the following we describe the details of each experiment.
The UCI data sets
In this experiment, we perform on two small data sets, Iris

and Balance, taken from the UCI Machine Learning Reposi-
tory1. As the class distributions of this two data sets are not
very complex, LDA works well, and our method also demon-
strates the competitive performance.

Face recognition
The AT&T face database (formerly the ORL database) in-

cludes 40 distinct individuals and each individual has 10 dif-
ferent images. Some images were taken at different times,

1Available at http://www.ics.uci.edu/ mlearn/MLRepository.html

and have variations [Samaria and Harter, 1994] including ex-
pression and facial details. Each image in the database is of
size 112× 92 and with 256 gray-levels.

In this experiment, no other preprocessings are performed
except the PCA preprocessing step. The result of our method
is much better than those of LDA and the baseline. LMNN
have a good performance too, but the computation burden is
extremely heavy.

We also perform the experiments on many other face
databases, and obtain the similar results, say, our method
demonstrates the much better performances uniformly.

Object recognition

The COIL-20 database [Nene et al., 1996] consists of im-
ages of 20 objects viewed from varying angles at the interval
of five degrees, resulting in 72 images per object.

In this experiment, each image is down-sampled to the size
of 16× 16 for saving the computation time.

Similar to the face recognition experiments, the results of
our method and LMNN are much better than those of LDA
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and the baseline. Note that both face images and object im-
ages distribute on an underlying manifold, the experiments
verify that NMMP can preserve manifold structure with more
discriminability than LDA.

Digit recognition
In this experiment, we focus on the digit recognition task

using the USPS handwritten 16×16 digits data set2. The dig-
its 1,2,3,and 4 are used in this experiment as the four classes.
There are 1269, 929, 824 and 852 examples for each class,
with a total of 3874.

On this data set, the baseline already works well, and our
method still makes a little improvement. LDA fails in this
case, which demonstrates that the available projection num-
ber of LDA may be insufficient when the data distributions
are more complex than Gaussian.

Text categorization
In this experiment, we investigated the task of text cat-

egorization using the 20-newsgroups data set3. The topic
rec which contains autos, motorcycles, baseball, and hockey
was chosen from the version 20-news-18828. The articles
were preprocessed with the same procedure as in [Zhou et
al., 2004]. This results in 3970 document vectors in a 8014-
dimensional space. Finally the documents were normalized
into TFIDF representation.

Our method and LMNN both bring significant improve-
ments comparing with the baseline on this data set. In com-
parison, the performance of LDA is limited in that the avail-
able projection number of it is only 3, which is insufficient
for this complex task.

7 Conclusion

In this paper, we propose a new method, Neighborhood Min-
Max Projections (NMMP), for supervised dimensionality re-
duction. NMMP focuses only on the pairwise points where
the two points are neighbors of each other. After the dimen-
sionality reduction, NMMP minimizes the distance of the
considered pairwise points within the same class, and max-
imizes the distance of those between different classes. In
comparison with LDA, NMMP focuses more on the improve-
ment of the discriminability of local structure. This property
is especially useful when the distribution of class data is more
complex than Gaussian. Toy example and real world experi-
ments are presented to validate it. Moreover, other disadvan-
tages of LDA i.e., the singularity problem of Sw and the lim-
itation of the available number of dimension are also avoided
in our method.

As a linear dimensionality reduction method, NMMP can
be viewed as a special case of learning a Mahalanobis dis-
tance metric. Usually, the computation burden of learning a
Mahalanobis distance metric is extremely heavy. Our method
formulates the problem as a constrained optimization prob-
lem, and the global optimum can be effectively and efficiently
obtained. Experiments demonstrate that our method has a
competitive performance compared with the recent proposed
Mahalanobis distance metric learning method, LMNN, but
the computation cost is much lower.

2Available at http://www.kernel-machines.org/data
3Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
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