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Abstract

Although necessary, learning to discover new solu-
tions is often long and difficult, even for suppos-
edly simple tasks such as counting. On the other
hand, learning by imitation provides a simple way
to acquire knowledge by watching other agents do.
In order to learn more complex tasks by imitation
than mere sequences of actions, a Think Aloud pro-
tocol is introduced, with a new neuro-symbolic net-
work. The latter uses time in the same way as in
a Time Delay Neural Network, and is added basic
first order logic capacities. Tested on a benchmark
counting task, learning is very fast, generalization
is accurate, whereas there is no initial bias toward
counting.

1 Introduction

Learning to count is a very difficult task. It is well-known
that children do not learn only by themselves: their parents
and their teachers provide an important active help.

On the other hand, in the field of on-line machine learn-
ing where the teacher does not provide help, some Recur-
rent Neural Networks are interestingly successful, such as the
Long Short-Term Memory (LSTM) [Hochreiter and Schmid-
huber, 1997]. However, to learn some counters the network
still requires to be trained through tens of thousands of se-
quences, and it already contains a counting feature, although
it had not been specifically designed for this.

Between active teaching and automatic discovery stands
learning by imitation [Schaal, 1999]: the learner watches the
“teacher” solve the task, but the teacher may not be aware of
the presence of the learner. This is helpful for sequences of
actions, for example to make a robot acquire a complex motor
behavior [Schaal, 1999; Calinon et al., 2005]: the learner can
see what intermediate actions should be done.

Fewer studies on imitation focus on learning sequences that
are more complex than sequences of physical actions, i.e.,
algorithms. Programming by Demonstration [Cypher, 1993]
deals with this issue, but is more interested in human-machine
graphical interaction and thus makes many assumptions about
how tasks are represented. Maybe the work that is the clos-
est to the one presented in this paper is that of Furse [Furse,

2001]. He uses a paper-and-pencil approach to learn, by im-
itation, algorithms as complex as making a division. How-
ever, still many assumptions are made that clearly ease learn-
ing: the paper-and-pencil approach provides an external infi-
nite memory and useful recall mechanisms; the system also
already contains some basic arithmetic tools, such as the no-
tion of number, of numerical superiority, etc. Furthermore,
it is able to learn to make function calls (access to subrou-
tines), but the teacher has to explicitly specify which function
to use, with which inputs and outputs. Calling a function is
thus a special action.

In this paper, there is no specific action: the sequences are
composed of completely a priori meaningless symbols, i.e.,
all these symbols could be interchanged without changing the
task. Itis able to make basic automatic function calls, without
explicitly specifying it. There is also no initial internal feature
that biases the system toward counting.

In section 2, Think Aloud Imitation Learning is described,
with a usual neural network. The latter is superseded in
the next section by the Presence Network, a growing neuro-
symbolic network [Orseau, 2005a]. In section 4, the latter
is then augmented by special connections, and its develop-
ment is explained on a simple task. Then experiments such
as counting are given, showing that learning can be faster by
several orders of magnitude than with a usual neural network,
and that some important learning issues can be circumvented,
so that learning complex tasks on-line in a few examples is
possible.

2 Think Aloud Imitation Learning

In imitation, the environment, which gives the task to solve,
produces events env(T') and the teacher, who knows how to
solve it, produces tch(T'), where T denotes the present time.
During learning, the agent tries to predict the teacher’s next
action. When it succeeds a(T) = tch(T).

The agent is given sequences of events such as
/abcdEfgH/, where the events provided by the environment
are written in lowercase letters and those provided by the
teacher are in capitals, but should be seen as the same sym-
bols. The 26 letters of the alphabet are used as events all
along this paper. For better legibility only, spaces will some-
times be introduced in the sequences. The goal of the learner
is to predict the teacher’s events, so that once it is on its own,
it not only predicts but in fact acts like the teacher would do.
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In imitation, one problem with Recurrent Neural Networks
(for example) is that they have internal states; the learner can-
not “see” these states inside the teacher, which are thus diffi-
cult to learn.

Therefore, in the Think Aloud paradigm, the teacher is
forced to “think aloud”, this means that it does not have inter-
nal states but it can “hear” what it itself says: the recurrence
is external, not internal. Then it can be easily imitated by
the learner, who “listens” to the teacher when learning. Once
on its own, the agent, not learning anymore, also thinks aloud
and can hear itself. This allows the teacher to make intermedi-
ate computation steps that can be imitated by the learner. Dur-
ing learning, the agent thus receives the sequence of events of
the teacher and of the environment e(T") = env(T') +tch(T).
After learning, during testing, the agent is on its own, so
tch(T) = ¢ and the agent listens to itself, not to the teacher:
e(t) = env(T) + a(T'). This can be seen as some teacher
forcing technique [Williams and Zipser, 1989].

A first, simplified view of the architecture is now given.
In order to take time into account without having internal
states, we use a sort of Time Delay Neural Network (TDNN)
[Sejnowski and Rosenberg, 1988], that computes its outputs
given only the last 7 time steps. At present time 7', it com-
putes: Net(T) = f(e(T),e(T —1),...e(T — 7+ 1)).

In the sequel, the indices 4, j, k are used respectively only
for inputs, hidden neurons, output neurons. z; is the activa-
tion of input ¢. As with other variables, writing y; is a shortcut
for y;(T'), where T is the present time, with the only excep-
tion that z¢ stands for z;(T — d). Writing e(t) = i means
that input ¢ is activated at time ¢, where inputs are encoded in
a 1-of-N way.

Usually, the TDNN architecture is explained with delayed
copy sets of inputs; here we describe it as follows: each con-
nection (weight) w}ii from input unit ¢ to hidden unit 5 has a
delay d, so that if e(t) = 4, w}ii transmits this activation to
unit j at time ¢ 4+ d. A hidden neuron j is then connected
to input ¢ through a number 7 of connections w‘jii, each one
having a differentdelay 7 < d < 0. Such a network cannot
produce recurrent, infinite behaviors.

It is the fact that the agent can hear what it says during
testing that gives it recurrent capacities: since actions are re-
injected on inputs, the resulting recurrent network is quite
similar to a NARX neural network [Lin et al., 1996], with-
out learning considerations through the recurrence (no back-
propagation through time). For example, if the agent is given
sequences like /abABABAB. ../, it then learns to say a af-
ter any /ab/, and b after any /ba/. Then, once it hears /ab/,
it says a. It has therefore heard /aba/, and then says b, has
heard /abab/, says a, and so on. It then produces an infinite
behavior, but learning occurs only in the TDNN.

Instead of direct supervision of outputs, we use instant re-
inforcements [Kaelbling et al., 1996] on one single output.
This is more general for an autonomous agent like a robot
and may be used not only for imitation. While imitating, act-
ing like the teacher is innerly rewarding. Actions are selected
among the inputs. Thus, at each time step, to predict the next
action/input, each input is tested and the one that predicts the
best reinforcement for the next time step is chosen.

3 The Presence Network

In a TDNN, the number of input connections of a single hid-
den neuron j is |w;| = TNy, where Ny is the number of
inputs. It grows quickly when 7 or N; grows and makes
learning difficult: the number of training examples is often
said to be in |w|3. In the experiments described in section 5,
many time steps, neurons and inputs are needed, so that using
a mere TDNN is unpractical. TDNN and backpropagation
also have important limitations when learning several tasks
[Robins and Frean, 1998]. They are prone to catastrophic for-
getting: learning a concept B after a concept A often modifies
too much the knowledge of concept A. Another issue arises
with unmodified weights: the network will tend to provide an-
swers even before learning. Thus, even if weights are frozen
after concept A, adding new neurons may (sometimes not)
temporarily mask other already acquired knowledge. Learn-
ing must then be adapted to prevent this.

Instead of a mere TDNN, we use a Presence Network
[Orseau, 2005al, which is a neuro-symbolic network more
tailored for learning sequences of events such as those dealt
with here. It uses time in the same way as a TDNN and its
main properties are very fast learning, local connectivity and
automatic creation of neurons. A slight modification is made:
“specificity” is introduced to circumvent an issue of the ini-
tial network. The Presence Network is described below but
for its use in a less specific context, see [Orseau, 2005a].

The heuristic idea is that new hidden neurons are connected
only to inputs that were active in the short past (that are in
the short-term 7-memory), so that the number of connections
does not fully depend on the number of inputs. This is partic-
ularly useful when one event type is coded on a single input.
Since sequences are composed of mutually exclusive events,
there is only one event per time step, so a neuron would have
only one connection per time step in such a network. Initially
there is no hidden neuron, and new ones are added on-line
when errors occur.

First, the hidden neuron and its optimization rule is given,
in order to show what the network can represent. The action
selection scheme can then be given to show how to circum-
vent one issue of the representation capacities of the network.
Then the learning protocol follows.

3.1 Hidden Neuron

If, on a sequence e, a new neuron must be created (when spec-
ified in section 3.4), the new neuron j is connected to the in-
puts that were active in the short past with a corresponding
delay d. Its set w; of input connections is then:

w; = {w;-ii |Vt, T—T7 <t <T, El!w?i,

i=e(t), d=T—t}.

The sequence used to create j is called its sequence of ref-
erence, 7.

Let §; = 1/|w;|, which is not modifiable, and then set the
initial weight value Vw?; € w;, w¢; = 0;, which ensures that
D id w;-ii = 1. The output weight wy,; toward the reinforce-
ment output is set to 1.

Let o; be the weighted sum o; = > w%x¢. The activation
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function y; is:

0 ifo; <1-—0,; (inactive neuron)
Y; = % ifl1—0; <o; <1 (active neuron)
1 ifo; >1 (active neuron)

Note that 1 — 6, is the activation threshold. Thus, if r;
is presented again to the agent, j recognizes it and y; = 1.
Before optimization, only r; can activate j. If at least one
event is substituted for another one, y; = 0.

3.2 Optimization of a Hidden Neuron

To optimize the neuron j, each w can be seen as either infor-
mative (close to #) or not (close to 0). There is no negative
weight. If the neuron should be more activated, “quanta” of
weights are moved from inactive connections (that transmit-
ted no activation) to active ones. The converse is done if the
neuron should not be active.

Algorithm 1: Update rule for input weights of a hidden
neuron j. « is the learning rate. E'r is the error received
from Algorithm 3.
0 =a.b;Er
Vw € wj:
lf(:zcZ > 0and Er > 0) or (xf = 0 and Er < 0) then
A¢ = min(5, 1 — w
else A¢ = —min(6, w,)

St = Zie{i | z¢>0} |A§i|
ST = Zze{z | #¢=0} |A |
S =min(St,S7)

Y, € wj: if S # 0 then

1f:1: >OthenSd Stelse S¢ = S~

d d s
wﬂw—w + AL 57

// the maximum modification of w

This learning algorithm ensures 3, ; wj; = 1, i.e., the se-
quence or reference r; can always be recogmzed by j. All
weights also stay in [0, 1]: since corresponding events were
present when the neuron was created, it would not be logical
that the weights become inhibitory. A neuron is thus a fil-
ter that is active when it recognizes a conjunction of events
appearing at different time steps, which describes a poten-
tially general sequence of events, and where weights of non-
informative time steps are pushed toward zero.

The output weight of a chosen neuron j is updated by a
simple delta rule and is bounded in [0, 1]: wy; « wg; +nET,
where 7 is a learning rate, but its value is not critical. In fact,
the output weight has not much influence on the concept em-
bodied by the hidden neuron and may be used only to “dis-
card” a neuron/concept if statistically found wrong.

For example, a single neuron can represent the sequence
/abcZ/, meaning that if the agent receives the sequence /abc/,
this neuron proposes to answer z. After some examples such
as /adcZ/, /aecZ/, this neuron can get generalized to /a*cZ/,
where * means any possible symbol.

3.3 Action Selection

The action selection scheme is basically the same as in sec-
tion 2. In passive mode, a neuron is a filter that recognizes a
sequence and predicts a reinforcement value. In active mode,
the agent predicts an action (so that at the next time step the
sequence is recognized).

Since neurons only consider events that are present, i.e.,
active inputs, the main drawback of the Presence Network is
that inactive inputs are not taken into account, even if this in-
activity is important. Said in another way, the network cannot
distinguish exception cases from general cases. For example,
consider the sequences /abcZ/, /adcZ/, /aecZ/, etc. Suppose
now that there is also the exception case /aycX/. If one neuron
embodies this case, then after /ayc/, it naturally predicts X .
But at the same time, the neuron representing the general case
/a*cZ/ predicts Z. Then how to select the right action? The
neuron /a*cZ/ should then have an inhibitory link with input
y, but to preserve the interesting properties of the Presence
Network, i.e., not to connect inactive inputs (in potentially
great number) to a new neuron, precedence in action selec-
tion is automatically given to cases that are the most specific:
more specific neurons take more events into account, and thus
“explain” more accurately the given sequence.

First, the usefulness of a connection is defined: U (wjdl) =

min(1, w;iz /8;). Specificity ¢); means how well the neuron j

explains the current sequence: ¢); = ol U(wd;). Then
it is preferred to select the most specific neuron, among the
activated ones (see Algorithm 2).

The specificity of the neuron that recognizes /a*cZ/ is
1 = 3, because the middle weight has become 0; and the
specificity of the neuron that recognizes /aycX/, which has
not been optimized, is v = 4. This means that after the se-
quence /ayc/, the agent will always choose X preferentially.
A neuron representing an exception case similar to a general
case has more non-zero weights, which ensures it to be se-
lected in priority.

A interesting property is that the general case needs no
modification at all when learning one, or more specific cases.

Algorithm 2: Action selection.

// Find event that activates each 7 most at next time step:
Vj,e; = argmazeriy v (T + 1)

Compute corresponding specificity 1; (T + 1)

/I Keep only active and most specialized neurons:
A={jly(T+1)>0,9;(T+1) = maxp Yn(T+1)}
/I Select p, the most specialized and active neuron:

p =argmazjea y;(T + 1)

Select action a(T" + 1) = e, if p exists, ¢ otherwise

3.4 Learning Protocol

Catastrophic forgetting, e.g. with backpropagation, happens
partly because knowledge is shared between many neurons,
and many neurons can be modified at the same time. To
avoid this, here at most 3 neurons can be modified at the same
time. First, in order to compare two neurons on the present
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sequence, when a neuron is not active (y; = 0) preactivation
is defined!: §; = 0;/(1 — 0;).

Let N be the most preactivated neuron, which must have a
connection with d = 0 pointing to e(7T’), in order to be able
to predict it:

N = argmaz; {g; | y; =0,9; > 0and Hw.‘jii, d=0,
i = e(T)}. If none exists, N = ¢.

With an accurate selection mechanism of the nearest neu-
ron, a high learning rate can be used. Of course, the nearest
neuron may not always be the correct one to optimize, but it
then will probably be optimized again in the other way.

Algorithm 3 describes the learning protocol, to decide
when neurons must be created or modified. A neuron can be
added at the same time another one is modified, because the
latter may be wrongly optimized. If a neuron is already ac-
tive, it means it has recognized the sequence, can thus predict
the right answer, and no neuron needs to be added.

Algorithm 3: Learning protocol.

Time T': Predict teacher action: a(T + 1)
T—T+1
if a(T) = e(T) then // correct action selected
Optimize selected neuron p with error
Er=(1—wgp.yp)
else
Create new neuron on current specific case
if 3h, yp > 0, wipn.Yyn = max; wy;.y; then
/I'h should have been selected, not p
Optimize p if exists, Er = (0 — wgp.yp)
Optimize h, Er = (1 — wgp-yn)
else
Optimize N if exists, Er =1

4 Time Delayed Identity Connections

Time Delayed Identity Connections (TDIC) allows to know
when there has been a repetition of an event in the short term.
In [Orseau, 2005b], they are presented in the form of short
term memory special inputs. Here, they are dynamic connec-
tions, but it is the same. They enhance the network gener-
alization capacity, and allow both to compare two events in
passive mode, and to repeat a past event in active mode.

When creating a neuron j at present time 7" with a sequence
of events e, if two events e(t1) and e(t2) are identical such
that 7 > T —t; > T —to, a connection w}iiD is added (before
setting 6;) to the neuron with the following properties. In
addition to the normal delay d = T — t», it has another one
D = T — i, pointing to the event to compare with. This
connection is dynamic: at each time step 7', the target input
i of w;-iiD is changed” such that i = e(T — D). Then the
connection behaves exactly as a normal one of delay d. Note
that the special case D = d is a normal connection.

'(1—6;) = 0 never happens: the neuron has a single connection
and then either y; = 1 or i # e(T).
*If e(T — D) does not exists, 4 can be an idle input unit.

Now since a single event can be referred to by several con-
nections, the definition of specificity must be modified so that
at most one event by delay d is taken into account. For exam-
ple, on /abc/, initially ¢» = 3. On /aba/, there are 3 normal
connections plus one TDIC, thus 1) = 4, but should logically
be 3. Thus: ¢; = Y, max; (zf.U(ws)).

The resulting system can represent almost Prolog logic
programs [Muggleton, 1999] without lists, but in an on-line
way, and with no explicit function name and parameter. The
TDICs bind variables (through time) and allow comparison
between variables (here variables are events, or time steps), a
typical first order logic capacity.

4.1 A Simple Task: Equality

To give an example of how the network works, its develop-
ment is shown when trained on a simple equality task, where
the agent must answer True or False whether two given events
are identical or not. It is a static task in essence. Examples of
sequences: /ab F/, /dd T/, /ph F/, /cc T/, ivv T/, etc.

The network has 26 inputs and 7 = 3 (or higher). Initially
there is no hidden neuron.

The first sequence /ab F/ is provided to the agent. During
the 2 first time steps, nothing happens, except that the net-
work puts these symbols in its 7-memory. On symbol F, the
network should have predicted F, but did not, because there is
no neuron. Therefore, a new neuron [Ny is created, in order to
make it correlate F with /ab/. It is connected to input a with
a delay d = 2, to b with a delay d = 1, and to f with d = 0.
Input weights are set to 1/|wy, | = 1/3. If the sequence /ab/
is presented again to the agent, the network predicts F, then
the teacher says F, IV; is activated, expecting a reward, effec-
tively receives a reward, and no modification is needed.

The sequence /dd T/ is then provided to the agent. Once
again, there is no active or preactive neuron that could predict
T, so a new neuron Ny is added. Ny has 4 connections: 3
are similar to the previous case, and 1 is a TDIC. The latter
is created because of the repetition of d, with delays d = 1
and D = 2. N, can now answer correctly for /dd T/. Note
that the TDIC is not necessary to learn this case by heart; it is
useful only if IV is optimized.

The sequence /ph F/is presented. N2’s TDIC is now point-
ing to p, but does not transmit an activation. Again, no neuron
predicted F. So a new neuron N3 is added to answer correctly
to this sequence. But now N is preactivated, so it is chosen to
be slightly modified to predict F. The weight of its active con-
nections (those that transmitted an activation) are increased,
whereas the other input weights are decreased. Thus, input
connections from a and b of N; are considered as noise.

On the sequence /cc/, Ny predicts F because it would
slightly activate /V;, although there is a repetition. But the
teacher says T instead. No neuron is activated, so a new neu-
ron N4 is added, and N7 is not modified. And Na, being
the most preactivated neuron, is modified: in particular, the
weight of the TDIC is increased because it is pointing to C.

On the sequence /vv/, Ny predicts F and Ny predicts T.
Since ¥, = 1 (approximately) and v, = 2, N3 explains
more specifically this sequence and thus the network predicts
T. This is correct, so no neuron is added, and N5 is optimized
again to better predict T (with a higher value).
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Now the network predicts correctly any sequence like
/vy TI, recognized by Ns, and /v F/, recognized by N,
where v and 3 are any two letters.

S Experiments

The present work is close to the continual learning framework
[Ring, 1997] where the agent must re-use previously acquired
knowledge in order to perform better on future tasks. Here,
we are interested in tasks where the re-use of knowledge is
not only useful, but necessary to generalize, and is called as a
function. Thus, even for static tasks, using a temporal frame-
work can give access to these generalization capacities.

In order to show the usefulness of context and how the
agent can make automatic function calls, in section 5.1 we
use the task described in [Orseau, 2005b], where it is tested
with a TDNN with backpropagation and “TDIC” inputs.

The previous tasks can be seen as static tasks. In section 5.2
is given a typical dynamic one: in the domain of languages,
a sequence of x™y™ is a sequence of a finite number of x
followed by a sequence of the same amount of y.

Inputs are the 26 letters of the alphabet, « = 1 and n = 0.5.
T is set to 20, but shorter sequences may create less connec-
tions with the Presence Network (7 should be set to a suffi-
ciently high value so as to take enough events into account).
Learning stops after a given number of correctly predicted se-
quences. This number is not taken into account in the table.
Since learning in the Presence Network is deterministic, the
order of the training sequences is randomized. During test-
ing, the agent is on its own, so its predicted actions take the
place of the teacher’s events. 10 successive trials (learning
and testing) are done for each task (see results in Table 1).

Table 1: Average results for 10 successive trials. Tr (Ts) is
the number of training (testing) sequences; ETr (ETs) is the
number of sequences on which the agent made errors during
training (testing); #N is the number of neurons created only
for the task being learned; #W is the total number of weights
for the #N neurons; the * is for tasks trained with a normal

TDNN.

| Task || Tr [ ETr [ Ts | ETs | #N | #W |
ap* |[41600 [ NA. [100] 0 8] 968
p 975273100 0 273 139.8
is gp* 9300 | NA. | 100 2 5 605
is gp 15.8 7.6 | 100 0 14.9 140.5
flw 219.3 | 81.9 | 675 0 92.7 887
z"y" 13.2 6.4 10 0] 114.2 | 3082.5

The system could hardly be directly compared with other
methods. The closest one is [Furse, 20011, which has yet
many important differences (section 1). There are also some
similarities with Inductive Logic Programming [Muggleton,
19991, but the aims are different. ILP is not on-line, has ex-
plicit function names and uses global search mechanisms.

5.1 Groups

The alphabet is decomposed into 6 groups of consecutive let-
ters: @ to e are in group a, f to j are in group b, ...and z is

in group f. The agent must first learn by heart in which group
is each letter. Then, given a letter and a group, it must learn
and generalize to answer yes if the letter is in the group, and
no otherwise. B

This task nicely shows how intermediate computations to
re-use background knowledge is necessary to generalize.

On the first task, the agent is given the 26 sequences of
the type /gpaA/, /gpzF/, etc. Here, gp is the name of the
task, the context. Learning stops when the whole training set
is correctly processed. After learning, neurons are frozen to
facilitate learning on the second task.

On the second task, the agent is given sequences like
fis fo GPFB Y/ (“is f in the group b? The group of f is b,
so yes”), /is bc GPBA N/, etc. The context gp is used to
call the appropriate function. Also, without this context in
the first task, there would be conflicts between the two tasks:
neurons would be too general and would give answers most of
the time when not needed. The context also allows to choose
the nearest neuron more accurately. After a sequence /is bc/,
the agent makes intermediate computations by saying GPB.
Thus, since it has now heard GPB, it is auto-stimulated to
answer A, given its knowledge of the first task. The TDICs
allows to repeat the letter b given by the teacher to put it auto-
matically after GP. The agent has learned to call the function
gp. But there is no specific symbol to tell what is the function
or the parameter. The function call is only a consequence of
how knowledge is represented and used. Then the TDICs are
used to compare the group given by the teacher and the one
the agent knows.

During training, only the 10 first letters and the 4 first
group letters are used. Learning stops after 20 successive cor-
rectly processed sequences. With the TDNN used in [Orseau,
2005b] it is necessary to have 5 more letters, generalization
still induces some errors, and more importantly it is necessary
to force the agent not to say anything during 4 time steps after
the end of the sequences of the first task in order to prevent
these neurons from disturbing learning on the second task.
None of these problems arise with the Presence Network.

Furthermore, the results (see Table 1) show that learning is
much faster, which is important for on-line learning, general-
ization is perfect to any letter and any group.

5.2 Counting

The agent has no special internal feature that can generalize a
counter by itself, so it must acquire knowledge about numbers
beforehand. First, the agent needs to learn to increment any 2-
digit number, and then uses this incrementation as a function
to solve the task z"y".

Incrementation

In this task, given a 2-digit number the agent must answer
its successor: which number follows aa? ab. Examples of
sequences: /flw aa AB/, /flw ab AC/, ... /flw az BA/, /flw ba
BB/, .../flw zy ZZ/.

There are 25 general cases to learn (/flw va ~b/, /flw vb
~Cl, ... [flw vy ~z/), and 25 specific cases (/flw az ba/, /flw
bz cal/, .../flw yz za/), for a total of 675 cases.

The training set contains all the 25 specific cases and the
150 first cases, in which sequences are then chosen randomly
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in order not to have only small @y numbers. Training stops
after 170 correctly classified sequences. After learning, the
network has always generalized to the 675 cases. Finally,
weights are frozen.

Here, a minimal TDNN would have 26 inputs, 7 =7, 7
“TDIC” inputs, and probably at least 50 neurons would be
necessary. This would make a total of more than 10 000
weights. For this task and moreover for the next one, training
the TDNN does not seem reasonable.

Recurrence: 2-digit z"y"

The incrementation can now be used as a function inside a re-
current task. The outline is to initialize the counter to 0 at the
beginning of the sequence, and then to call the incrementation
function after each x and each y, and when the two numbers
match, stop. One difficulty is that during the whole sequence
of y, the number of x must be memorized. Since the teacher
does not have internal states, it must use its 7-memory to keep
track of it. One way to do that is to repeat it aloud at constant
intervals.

Example of a sequence: /start stpx FLW AA AB stpx
FLW AB AC ...FLW DF DG stpy DG FLW AA AB stpy
DG FLW AB AC ...stpy DG FLW DF DG STOP/, where
the number DG of X is repeated after each stpy. The context
stp (for “step”) is added to X and Y in order not to be confused
with anything else, since X and y appear also elsewhere.

After each stpx, the agent learns to say FLW, then to repeat
(with TDICs) the last number, and this automatically stim-
ulates itself to call the incrementation function and say the
following number. TDICs are also used to compare the num-
bers and end the sequence if they match: the activated TDIC
provides a higher specificity than the general case. Such se-
quences can have more than 14 000 events.

During training, the agent learns to use its TDICs for re-
currence instead of learning only specific cases by heart. The
training set contains the first 130 values of n. After 20 cor-
rectly classified sequences, learning stops. It is then tested on
10 randomly chosen sequences with n < 675.

Again, there is no single error (see Table 1), the network
has generalized very quickly to unseen sequence lengths.
This is far away from the tens of thousands of iterations
needed by the LSTM [Hochreiter and Schmidhuber, 1997] to
learn a™b", although the learning paradigms are completely
different.

Preliminary results also show that on z"y", about 90 neu-
rons can be automatically deleted afterwards, often with no
loss in generalization accuracy.

6 Conclusion

Within Think Aloud Imitation Learning, an agent can learn
on-line and accurately generalize complex sequences such as
counters in very few examples shown by the teacher. The
Presence Network can take long delays and many events into
account and its size grows automatically. For such tasks,
compared to a usual Time Delay Neural Network, learning
is faster by several orders of magnitude and no problem oc-
curs when re-using knowledge during learning. Time De-
layed Identity Connections allow to make automatic function
calls and provide some simple first-order logic capacities.

Current work focuses on the re-usability of knowledge so
that called functions can be of unbounded size to hierarchi-
cally learn such complex sequences.
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