
Abstract 
The ability to learn from data and to improve its 
performance through incremental learning makes 
self-adaptive neural networks (SANNs) a powerful 
tool to support knowledge discovery. However, the 
development of SANNs has traditionally focused 
on data domains that are assumed to be modeled by 
a Gaussian distribution. The analysis of data gov-
erned by other statistical models, such as the Pois-
son distribution, has received less attention from 
the data mining community. Based on special con-
siderations of the statistical nature of data follow-
ing a Poisson distribution, this paper introduces a 
SANN, Poisson-based Self-Organizing Tree Algo-
rithm (PSOTA), which implements novel similarity 
matching criteria and neuron weight adaptation 
schemes. It was tested on synthetic and real world 
data (serial analysis of gene expression data). 
PSOTA-based data analysis supported the auto-
mated identification of more meaningful clusters. 
By visualizing the dendrograms generated by 
PSOTA, complex inter- and intra-cluster relation-
ships encoded in the data were also highlighted and 
readily understood. This study indicate that, in 
comparison to the traditional Self-Organizing Tree 
Algorithm (SOTA), PSOTA offers significant im-
provements in pattern discovery and visualization 
in data modeled by the Poisson distribution, such 
as serial analysis of gene expression data. 

1 Introduction 
Knowledge discovery has been defined as a nontrivial proc-
ess of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data [Fayyad et al., 1995]. 
Data mining is a particular step in this process, which in-
volves the application of specific algorithms for extracting 
patterns from data [Fayyad et al., 1996; Fayyad et al.,
1997]. There are a wide variety of techniques suitable for 
various data mining tasks. From the knowledge discovery 
perspective, unsupervised learning-based clustering analysis 
has become a fundamental approach, which has resulted in a 
large number of clustering techniques. Examples of power-
ful and meaningful techniques include the development of 

self-adaptive neural networks (SANNs)-based clustering 
models. This paper focuses on this clustering principle be-
cause SANNs have demonstrated several unique and inter-
esting features in data mining and knowledge discovery. 

1.1 SANNs: Overview of Principles, Applications 
and Limitations 

SANNs represent a family of unsupervised learning models, 
which follow the basic principle of the self-organizing fea-
ture map (SOM) [Kohonen, 1995] with a focus on adaptive 
architecture. A key advantage of these models is that they 
allow the shape, as well as the size, of the network to be 
determined during the learning process rather than by a pre-
determined grid of neurons. For example, the Growing Self-
Organizing Map (GSOM) [Alahakoon et al., 2000] is ini-
tialized with a map of 2 x 2 neurons and new neurons are 
incrementally grown from a boundary neuron where the 
network exhibits a large cumulative representation error. 
After learning, GSOM can develop into different shapes 
depending on the clusters present in the data. In the Grow-
ing Cell Structures (GCS) [Fritzke, 1994], the initial topol-
ogy consists of a two-dimensional output space where the 
neurons are arranged in triangles. A new neuron is inserted 
by the splitting of the longest edge emanating from the neu-
ron with maximum accumulated error. GCS performs an 
adaptation of the overall structure in those regions that rep-
resent large portions of the input data. Based on both the 
SOM and the GCS principles, Dopazo and Carazo [1997] 
proposed the Self-Organizing Tree Algorithm (SOTA). One 
of the main contributions of SOTA is that the output space 
is arranged following a binary tree topology, in which the 
number of output neurons is adapted to the intrinsic charac-
teristics of the input data [Dopazo and Carazo, 1997; 
Herrero et al., 2001]. 

Due to its dynamic, self-evolving nature, the resulting 
maps of SANN can reveal relevant patterns from the under-
lying data in a more meaningful fashion. For example, due 
to the ability to separate neurons into disconnected areas, 
the GCS can produce explicit representations of cluster 
boundaries. Thus, patterns hidden in the data become more 
apparent [Fritzke, 1994]. The GSOM, on the other hand, can 
indicate the patterns in the data by its shape and attract at-
tention to such areas by branching out. Such a flexible struc-
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ture may provide a meaningful visualization of clusters in 
the data [Alahakoon et al., 2000]. 

SANNs are well adapted to various application domains. 
For instance, they represent a promising way to improve 
biomedical pattern discovery and visualization. The Grow-
ing cell structure visualization toolbox [Walker et al.,
1999], for example, is an implementation of GCS networks 
in the MatLab 5 computing environment. This tool has been 
commonly used for the visualization of high-dimensional 
biomedical data. SOTA has been shown to be capable of 
performing pattern discovery across various biomedical 
domains. Dopazo and Carazo [1997] used SOTA to cluster 
aligned sequences. It has also been applied to the supervised 
[Wang et al., 1998a] and unsupervised [Wang et al., 1998b] 
classification of protein sequences. More recently, Herrero 
and colleagues [Herrero et al., 2001] extended its applica-
tion to the analysis of gene expression data derived from 
DNA array experiments. 

However, most of current SANNs are based on some heu-
ristic criteria that take the accumulated quantization error 
into account to guide the growth of neural networks.  For 
example, during the learning process GSOM [Alahakoon et
al., 2000] applies Euclidean distance to determine the win-
ning neuron for each input data and a cumulative error is 
calculated for each winning neuron using the Euclidean dis-
tance-based metric. In the growing phase, the network keeps 
track of the highest error value and determines when and 
where to grow a new neuron. Such a criterion, however, is 
not suitable for problems in which the data are better ap-
proximated by a Poisson distribution (i.e. a mixture of sepa-
rate Poisson-distributed data sources), such as phenomena in 
which events are observed a number of times over specific 
intervals. Emerging problem domains in bioinformatics 
such as the study of Serial Analysis of Gene Expression
(SAGE) data [Velculescu et al., 1997] may also be ap-
proximated by a Poisson distribution. Euclidean distance-
based clustering analysis has demonstrated poor perform-
ance in these domains [Cai et al., 2004]. Without taking into 
account the statistical nature of the data during the learning 
process, the full potential of SANNs may not be realized. 

1.2 Objectives of This Study 
This paper aims to present a new SANN model, which takes 
into account the specific statistical nature of data approxi-
mated by a Poisson distribution, to improve data mining and 
knowledge discovery. The main objective of this study is, 
based on the incorporation of a Poisson statistics-based dis-
tance function, to develop a SANN model tailored to the 
data approximated by a Poisson distribution. This required 
the implementation of new strategies for weight adaptation 
and network growth. 

The remainder of this paper is organized as follows. Sec-
tion II describes important statistical properties of the Pois-
son distribution, followed by a detailed description of the 
new SANN learning algorithm: Poisson-based Self-
Organizing Tree Algorithm (PSOTA). Two datasets, includ-
ing synthetic and real world data, are described in Section 
III. Results and a comparative analysis are presented in Sec-

tion IV. This paper concludes with the discussion of results 
and future research. 

2 Algorithms and Implementation Protocols 

2.1 Statistical Nature of a Poisson Distribution 
The Poisson distribution describes a wide range of natural 
phenomena. This distribution may be used to model the 
number of events occurring within a given time interval 
when such events are known to occur with an average rate. 
The formula for the Poisson probability mass function can 
be represented as: 

!)exp()( mmp m  (1) 

where p(m) is the probability of observing m occurrences, 
and  is the shape parameter that estimates the average 
number of events in a given time interval. 

The Poisson distribution has several unique features. 
Most distinctively, the mean of any Poisson distribution is 
equal to its variance. In other words, the larger the value of 
the mean, the less significant the deviation between a count 
value observed and its expected value. 

2.2 Description of PSOTA 
PSOTA is based on the same principle of the SOTA 
[Dopazo and Carazo, 1997]. Its structure is started by gener-
ating an initial network composed of two terminal neurons 
connected by an internal neuron, as shown in Figure 1(a).  
The output topology is incrementally constructed by gener-
ating two new terminal neurons from the leaf neuron having 
higher resources (measured as the mean distance between 
the weight of each neuron and all the data samples assigned 
to this neuron) after each cycle (Figure 1(b) and (c)). For a 
given training dataset, T, consisting of N samples, a learning 
cycle consists of a series of learning epochs, within which 
the network is sequentially presented with each training 
sample. However, by taking into account the statistical na-
ture of data closely following a Poisson distribution, 
PSOTA adopts novel matching criteria (1) to determine the 
winning neuron for each input sample and (2) to update the 
weight vectors of the winning neuron and its neighborhood. 

Figure 1: New neurons generation process for PSOTA. (a) The 
PSOTA initial topology; (b) The accumulation of resources (the 
heterogeneity of each neuron) during learning process, the neuron 
marked with a filled circle (neuron B) has the highest cumulative 
resource after a learning cycle; (c) Neuron B gives rise to terminal 
neurons D and E (leaf neuron). Thus, D and E are sister neurons, 
whose ancestor neuron is B. 
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Matching Criterion for Finding a Winning Neuron, wc,
for a Given Input Vector, xi

Traditional SANNs, e.g. SOTA, normally apply Euclidean 
or Pearson Correlation-based distance to determine the win-
ning neuron for each input data. These distance measures 
have achieved a great success for data approximately fol-
lowing a normal distribution. For data associated with a 
Poisson distribution, however, these measures have shown 
poor performance [Cai et al., 2004]. On the basis of the con-
sideration of the statistical nature of a Poisson distribution, 
two new criteria based on Chi-square statistics and a joint 
likelihood function are introduced here.  

Let xi be the input vector representing the ith input sam-
ple, wj be the associated weight vector of the jth neuron, and 
the index k indicate kth value of n-dimensional vector, the 
winning neuron represented by the subscript c can be deter-
mined by the following minimum Chi-square statistics–
based distance matching criterion.  
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Given that in the Poisson distribution, the probability of a 
number of events occurring within a given time interval is 
considered to be independent of events that occurred in pre-
vious time intervals, the winning neuron can be also deter-
mined by using the maximum joint likelihood function-
based matching criterion: 
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where kix ,ˆ  is the expected value of kix , . After completing a 
learning process, each weight vector in the SOTA coincides 
with the centroid of the respective cluster of the input data. 
Moreover, we are interested in grouping samples with simi-
lar relative values rather than the absolute values. Thus, the 
expected kth value of ith input given the weight vector of jth

neuron, jkix ,,ˆ , is calculated as follows: 

n

k
ki

n

k
kjkjjki xwwx

1
,

1
,,,, ))((ˆ (6)

This equation is used, together with Equations (2) and (3) 
or (4) and (5), to find a winning neuron. The matching crite-
ria expressed in Equations (2) to (6) suggests that when the 
expected values are large, the deviation between actual and 
expected count values become less significant. This is con-
sistent with an important property of the Poisson model, i.e. 
the variance of the dependent variable equals its mean, 
which is totally ignored by using Euclidean (or other tradi-
tional) distance-based error calculation approaches. 

Weight Adaptation for a Winning Neuron and Its Top-
logical Neighborhood 
Like other SANNs, once the winning neuron has been iden-
tified for each input sample, it is necessary to define a 
method to update the weight vectors of the winning neuron 
and its neighborhood in order to better match the input vec-
tors and fulfill the overall clustering goals. In PSOTA, the 
main goal is to assign an input data to a neuron with the 
most similar relative vector. Thus, instead of performing 
weight adaptation simply based on absolute values, like in 
other SANNs (e.g. traditional SOTA), we propose the fol-
lowing weight adaptation strategy, which updates all rela-
tive weight values within the neighborhood, )(tNc , of a 
winning neuron, c, according to the given ith input.   

where )(, tw kj  and )1(,, tw ikj  are the kth weight values of 
neuron j before and after the adaptation at iteration t.

)(tNc  and )(t  represent the neighborhood of the winning 
neuron c and learning rate at iteration t respectively. The 
reader is referred to [Dopazo and Carazo, 1997; Herrero et
al., 2001] for a more detailed description of the selection of 

)(tNc  and )(t for SOTA-based algorithms. The learning 
algorithm of PSOTA is summarized in Table 1. 

1: Initialization 
2: Repeat cycle 
3:   Repeat epoch 
4:     For each input sample, 
5:      Find the winning neuron for each input using (2) to (6)  
6:      Update the winner and its neighbors using  (7) 
7:      Calculate the resource for each neuron. 
8:   Until a cycle finishes: relative increase of the error between 

two consecutive epochs falls below a given threshold. 
9:    Grow new neurons from the one having higher resource 
10: Until The highest resource reaches a given threshold. 

Table 1: A summary of PSOTA learning algorithm 

2.3 Implementation Protocols 
Both PSOTA and SOTA models were implemented within 
the software development framework provided by the open-
source platform, TIGR MeV [Saeed et al., 2003]. Unless 
indicated otherwise, the learning parameters for PSOTA and 
SOTA are: the maximum number of learning cycles = 5, the 
maximum number of learning epochs = 1000, and the learn-
ing rates for the winning, ancestor and sister neurons are set 
to 0.01, 0.005, and 0.001 respectively [Herrero et al., 2001].   
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3 The Datasets Under Study 
Two datasets, including synthetic and real world data, were 
used to assess the PSOTA algorithm.  

3.1 Synthetic Data 
The dataset was obtained from a study published by Cai et
al. [2004]. It included 80 synthetic samples, each repre-
sented by five simulated values at five time points: T1, T2, 
T3, T4, and T5. All the simulated values are generated inde-
pendently using Poisson distributions. Based on the models 
they are generated from, the 80 samples are divided into 
four groups PA, PB, PC, and PD with 12, 16, 24 and 28 
samples respectively. Samples within the same group have 
similar profiles determined by the relative count numbers 
across different time points, as illustrated in Figure 2, which 
shows the profiles of Groups PA and PB. 

Figure 2: An example of profiles for synthetic data. (a) Group A 
(12 samples). (b) Group B (16 samples). Five time points are 
shown on the x-axis, while the y-axis represents the absolute simu-
lated count numbers.  Different greys stand for different samples. 

3.2 Mouse Retinal Gene Expression Data 
To further evaluate the algorithm, a real world dataset gen-
erated by SAGE in mature and developing mouse retina was 
analysed [Blackshaw et al., 2004]. SAGE is a global gene-
expression profiling technique designed to provide quantita-
tive measures of gene expression in a particular cell or tis-
sue obtained from different developmental stages or patho-
logical processes [Velculescu et al., 1997]. The result of a 
SAGE experiment, known as a SAGE library, is a list of 
tags and the number of times each tag is observed within a 
biological sample.  It has been suggested that the count val-
ues of SAGE tags observed in a specific library can be ap-
proximated by a Poisson distribution [Cai et  al., 2004]. 

Such distributions tend to be independent across different 
tags and libraries.  A detailed description of the SAGE tech-
nique and relevant applications can be found in Velculescu 
et al. [1997]. The dataset under study includes 10 murine 
SAGE libraries from developing retina taken at 2-day inter-
vals from embryonic day 12.5 to postnatal day 10.5 and 
adult retina: E12.5, E14.5, E16.5, E18.5, P0.5, P2.5, P4.5, 
P6.5, P10.5, and Adult. The reader is referred to Blackshaw 
et al. [2004] for a full description of the generation and bio-
logical meaning of these libraries. A subset of 92 tags with 
known biological functions and distinctive expression pat-
terns were analyzed. On the basis of their biological func-
tions and temporal expression patterns during retinal devel-
opment, these 92 tags may be divided into six distinctive 
clusters:  (1) P10Cluster (14 tags), which show high but 
transient expression at P10.5; (2) PrenrichedCluster, which 

includes 21 tags that were found to be highly enriched in 
photoreceptor (PR)-enriched genes; (3) PerinatalCluster (11 
tags), whose expression peak appears around P0.5; (4) Cys-
tallinCluster, which includes 12 cystallin proteins; (5) Em-
bryonicCluster (17 tags), which show strong expression 
levels during embryonic days, and (6) NeuroD4Cluster,
which includes 13 tags having similar expression patterns as 
gene NeuroD4. These “natural clusters” have been defined 
as key functional classes in previous studies [Blackshaw et
al., 2004; Blackshaw et al., 2001] 

4 Results 

4.1 Analysis of Synthetic Data 
We first implemented a comparative analysis using the syn-
thetic data with SOTA (Figure 3). By incorporating Poisson 
statistics-based distance into the learning process, PSOTA 
correctly constructed a dendrogram that reflect significant 
inherent relationships between the data samples. For exam-
ple, PSOTA with joint likelihood function-based distance 
produced a hierarchical topology with 6 terminal neurons, 
each neuron uniquely representing one natural class (see the 
class distribution over terminal neurons given in the right 
panel in Figure 3(a)). Moreover, by visualizing the whole 
hierarchical clustering process, a more comprehensive pic-
ture that highlights the similarity between all the data sam-
ples can be obtained. For instance, as can be seen from Fig-
ure 3(a), PSOTA first grouped 80 samples into 2 clusters 
(Branches A and B). All samples from Classes PA and PD 
are clustered together (Branch A), while all of samples from 
Classes PB and PC are grouped into Branch B. This is con-
sistent with the characteristics exhibited by this synthetic 
data. Similar results were obtained when using Chi-square 
statistic-based distance as shown in Figure 3(b).  Clustering 
analysis with traditional SOTA (based on Euclidean dis-
tance and Pearson correlation, Figure 3(c) and (d), however, 
fails to detect the underlying data structure. For example, 
SOTA with Euclidean distance groups Classes PA and PD 
into the same cluster. 

Figure 3: Data analysis for synthetic data by (a) PSOTA with joint 
likelihood function-based distance. (b) PSOTA with Chi-square 
statistic-based distance; (c) Traditional SOTA with Euclidean dis-
tance; (d) SOTA with Pearson correlation-based distance. The left 
panel on each figure shows the dendrogram obtained by each 
method, while the right panel shows the class distribution over 
each neuron. 
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4.2 Analysis of Mouse Retinal SAGE Data 
The outcomes of a comparative analysis of mouse retinal 
gene expression data with PSOTA and SOTA are illustrated 
in Figure 4. Only the dendrograms generated by PSOTA, 
with either joint likelihood function or Chi-square statistics-
based distances, correctly depict significant relationships 
encoded in the SAGE data (Figure 4(a) and (b)). This can be 
further demonstrated by the analysis of class distributions 
over the terminal neurons shown in the right panel in Figure 
4(a) and (b).  For example, 14 P10Cluster tags and 17 Em-
bryonicCluster tags were grouped together and assigned to 
the neurons A and E respectively (Figure 4(a)). By contrast, 
the dendrograms produced by using SOTA with traditional 
distance measures are less meaningful, especially with 
Euclidean distance (see Figure 4(c)). This highlights the 
clear advantages of PSOTA when dealing with datasets that 
follow Poisson distribution. 

Figure 4: Data analysis for Mouse SAGE data by (a) PSOTA with 
joint likelihood function-based distance. (b) PSOTA with Chi-
square statistic-based distance; (c) SOTA with Euclidean distance; 
(d) SOTA with Pearson correlation-based distance. The left panel 
on each figure shows the dendrogram obtained by each method, 
while the right panel shows the class distribution over each neuron. 

A closer examination of the dendrogram constructed by 
PSOTA (Figure 4 (a) and (b)) reveals that by monitoring the 
learning process of PSOTA the potential relevance of inter- 
and intra-cluster relationships hidden in the data can be 
readily detected and understood. For example, as shown in 
Figure 4(a), at the early learning stage, samples belonging to 
P10Cluster and PRenrichedCluster were actually grouped 
together, suggesting common patterns between these two 
classes. The heat maps shown in Figure 5(a) and (b) show 

that both clusters have strong expression levels at the P10.5 
time point. Significant relationships can also be obtained 
when analyzing relationships between other clusters. 

Figure 5: Heat maps (generated by PSOTA) for SAGE tags that 
fall into (a) Neuron A; (b) Neuron B; (c) Neuron C; (d) Neuron D; 
(e) Neuron E; (f) Neuron F; and (g) Neuron G, as shown in Figure 
4(a). Each row represents expression level of a SAGE tag across 
SAGE libraries shown as columns in each image. The absolute 
abundance of each SAGE tag correlates with color intensity, black 
with the expression level equal to zero. The SAGE tags are dis-
played on the right side. 

5 Discussion and Conclusions 
From the pattern discovery perspective, clustering-based 
techniques have received great attention. However, cluster 
analysis of data approximated by a Poisson distribution has 
not been rigorously studied. By incorporating Poisson statis-
tics-based distance functions into the learning process, this 
paper presented a new SANN model, PSOTA, specially 
designed to deal with problems modeled by Poisson statis-
tics, such as SAGE data analysis. The results obtained indi-
cate that PSOTA offers several advantages over traditional 
SANN techniques. Like SOTA [Dopazo and Carazo, 1997], 
PSOTA not only incorporates some of the advantages dem-
onstrated by hierarchical clustering and SOM, but also it 
implements unique features such as the generation of clus-
ters at different levels. Moreover, by using new matching 
criteria to determine the winning neurons and implement 
weight adaptation, significant improvements in pattern dis-
covery and visualization are accomplished. By visualizing 

IJCAI-07
1105



the dendrogram constructed by PSOTA, complex inter- and 
intra-cluster relationships encoded in the data may be high-
lighted and understood. 

The fundamental advantages of PSOTA over SOTA are 
driven by the fact that PSOTA is tailored to the statistical 
nature of Poisson-distributed data. Equations (6) and (7) 
include a factor determined by the sum over all the dimen-
sions of ith input and jth weight vectors, which aims to group 
samples with relative similar profiles (values) into one neu-
ron. 

One crucial problem that needs to be further addressed is 
the optimal determination of learning parameters. Currently, 
there is no standard way to define, a priori, the optimal 
learning parameters. One possible solution is to combine 
PSOTA with machine learning-based searching techniques, 
such as genetic algorithms, to determine optimal parameter 
values [Jin et al., 2003]. This is part of our future research. 

The Poisson distribution has been used to model a wide 
range of natural phenomena. For example, in bioinformat-
ics, transcription-factor binding sites and SAGE data may be 
modeled by Poisson statistics. The pattern discovery and 
visualization techniques described in this paper have the 
potential to contribute to the improvement of data mining 
and knowledge discovery in these areas, in which the data 
represent a number of events occurring within a fixed time 
interval and when such events are known to occur with an 
average rate. Nevertheless, if the data do not encode these 
types of situations other (traditional) methods may be 
equally recommended. 
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