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Abstract

Kernel based nonlinear Feature Extraction (KFE)
or dimensionality reduction is a widely used pre-
processing step in pattern classification and data
mining tasks. Given a positive definite kernel func-
tion, it is well known that the input data are implic-
itly mapped to a feature space with usually very
high dimensionality. The goal of KFE is to find
a low dimensional subspace of this feature space,
which retains most of the information needed for
classification or data analysis. In this paper, we pro-
pose a subspace kernel based on which the feature
extraction problem is transformed to a kernel pa-
rameter learning problem. The key observation is
that when projecting data into a low dimensional
subspace of the feature space, the parameters that
are used for describing this subspace can be re-
garded as the parameters of the kernel function be-
tween the projected data. Therefore current kernel
parameter learning methods can be adapted to op-
timize this parameterized kernel function. Exper-
imental results are provided to validate the effec-
tiveness of the proposed approach.

1 Introduction

Feature extraction or dimensionality reduction is a widely
used pre-processing step for classification and data mining
tasks, since extracting proper features can reduce the effect
of noise and remove redundant information in the data that is
irrelevant to the classification or data analysis tasks.

Suppose that we are given a set of n data points, {x;}" ,,
where x; € X C R? is the input data, X is the input space.
Traditional feature extraction approaches, such as the Prin-
ciple Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) are linear methods and they project the input
data x; into a low dimensional subspace of the input space X'.

Recently, constructing nonlinear algorithms based on the
kernel methods [Scholkopf and Smola, 2002] have proved
successful. For a given positive definite kernel function
K : X x X — R, the input data x;, 1 < ¢ < n are im-
plicitly mapped to a feature space F with usually very high
dimensionality. Let ¢(-) denote the map from X to F, then

K(xi,x5) = (p(xi), 0(x5)), 1<i,5<n

A kernel based algorithm essentially applies linear methods
in F for the mapped data {(¢(x;)}? ;. For example, in
the Kernel Principal Component Analysis (KPCA) algorithm
[Scholkopf and Smola, 2002], PCA is used to extract a repre-
sentative subspace of F. Compared with the traditional linear
approaches, kernel methods are more powerful since they can
explore nonlinear structures of the data, and more flexible as
we can recover the linear algorithms by simply using the lin-
ear kernel in the kernel based methods.

Usually the dimensionality of F is very high or even infi-
nite, which is helpful for separating different classes of data.
However, such a high dimensional space F may contain some
redundancy that is irrelevant or even noisy for the given clas-
sification or data mining tasks. Hence, as is the case for fea-
ture extraction in the input space, it may be also helpful for
classification or data mining tasks to find a lower dimensional
subspace S of F.

Many Kernel based Feature Extraction (KFE) approaches
have been proposed to find a lower dimensional subspace S
of the feature space F. For example, KPCA [Schélkopf and
Smola, 2002] is widely used for this task. As mentioned
above, it essentially performs linear PCA in the feature space
JF. The goal is to find directions along which the data vari-
ance is the largest.

In this paper, we discuss feature extraction methods with
the focus on improving the classification accuracy. In the
c-class classification problem, each data point x; is associ-
ated with a label y; € R¢, where y; = [y;1,...,¥ic] ', and
yir = 1 (1 < k < ¢ if x; belongs to class &, and 0 oth-
erwise.! It can be seen that KPCA may be not effective for
classification problems since it is an unsupervised feature ex-
traction method, which ignores the labels of the given data.

Hence several supervised KFE algorithms have been pro-
posed, which make use of both the input data and the corre-
sponding labels. Like KPCA, they also perform linear feature
extraction or linear dimensionality reduction in the feature
space F.

The Kernel Fisher Discriminant Analysis (KFDA) [Mika
et al., 2001] aims to find a data projection by minimizing
the within-class variance and maximizing the between-class
variance simultaneously, thus achieving good discrimination

'Other strategies for constructing the label y; (1 < ¢ < n) are
also possible.

I[JCAI-07
1125



between different classes. An efficient variant of KFDA
based on QR decomposition, called AKDA/QR, is proposed
in [Xiong et al., 2005]. A distinct property of AKDA/QR is
that it scales as O(ndc). And in AKDA/QR, the number of
features extracted is fixed to the number of classes.

The Partial Least Squares (PLS) algorithm [Wold, 1975]
has been widely applied in the domain of chemometrics. Un-
like the PCA algorithm, which extracts features only based
on the variance of the input data, the PLS algorithm uses the
covariance between the inputs and the labels to guide the ex-
traction of features. The Kernel PLS (KPLS) algorithm is
proposed in [Rosipal and Trejo, 2001].

The Orthogonal Centroid (OC) [Park and Park, 2004] al-
gorithm is a linear dimensionality reduction method that pre-
serves the cluster structure in the data. In this algorithm, the
given data are firstly clustered, and then projected into a space
spanned by the centroids of these clusters. An orthogonal
basis of this subspace is computed by applying QR decom-
position to the matrix whose columns consist of the cluster
centroids. In [Kim et al., 2005], this method is applied for
dimensionality reduction in text classification tasks and ex-
hibits good results. Its kernel based nonlinear extension, i.e.
the Kernel Orthogonal Centroid (KOC) algorithm is also pre-
sented in [Park and Park, 2004]. To incorporate the label in-
formation, the KOC (and OC) algorithm treats input data in
the same class as one single cluster, therefore the number of
extracted features equals the number of classes. However this
method can be easily extended by allowing more clusters in
each class.

In this paper, we propose a subspace kernel, based on
which the nonlinear feature extraction problem can be trans-
formed into a kernel parameter learning problem.

The rest of this paper is organized as follows. In section 2,
we propose the basic idea of our approach and formulate the
subspace kernel. Some connections to the related methods are
described in section 3. In section 4, we present one possible
way to optimize the proposed subspace kernel. Experimental
results are provided in section 5 and we conclude the paper in
the last section.

2 Nonlinear Feature Extraction via Kernel
Parameter Learning

2.1 Basic Idea

As mentioned before, a given positive definite kernel K im-
plicitly introduces a mapping of the given data ¢(x;), 1 <
1 < n, to a usually high dimensional feature space F. When
projecting ¢(x;) (1 < i < n) into a subspace S of F, the
kernel function has to be modified correspondingly since the
feature space has changed from F to S. For convenience,
we call this modified kernel function the subspace kernel. As
will be shown later, the parameters that are used for describ-
ing S are also the parameters of the corresponding subspace
kernel. Therefore current kernel parameter learning methods
can be adapted to optimize this kernel function. This way we
can find a discriminating subspace S where different classes
of data are well separated. In the following, we will explain
the above idea in detail by formulating the aforementioned
subspace kernel.

2.2 The Subspace Kernel

Suppose S is an ny dimensional subspace of F and O =
[01,...,0n,]is amatrix whose columns constitute an orthog-
onal basis of S. Let 7 denote the subspace spanned by the
mapped data ¢(x;) (1 < i < n) in F, then each o; can be
uniquely decomposed into two parts, one is contained in 7°
and the other one is in the orthogonal complement of 7,

Il 1
0 = 04, + Oy,

1<k <ny
where 0‘,1 € T and (o;", #(x;)) = 0 for 1 < i < n. Therefore
for any ¢(x;), its projection into S can be computed as

0" ¢(x;) = (01) To(x:) (1)

where O/l = [0 .. .,0‘7|,f].2

Equation (1) indicates that to compute the projection of
¢(x;) in S, it is enough to only consider the case where S
is a subspace of 7, which implies that any vector in S can
be expressed as a linear combination of ¢(x;), 1 < i < n.
Therefore, for any n; vectors zq,...,2, ; € S, let Z denote
[Z1, ..., 2n,], and X denote [$(x1), ..., P(x,)], then Z can
be written as

Z =XW 2)
where W = [w;] € R™*"f is a matrix of combination coef-
ficients.

Moreover, if z1, ..., 2z, , are linearly independent, then the
ny dimensional subspace S can be spanned by these n; vec-
tors. Thus the elements of W introduce a subspace S of F,
for which we have the following lemma.

Lemma 1. When projecting the data ¢(x;) into S, the kernel
matrix of the projected data in S can be computed as,’

KY = (X'2)(z2'2)7'X"2)" 3)
= (KW)(WTKW) '(KW)' 4)

where K = [k;;] € R"*™ is the kernel matrix of the input
data, i.e. k;; = K(x;,%;).

Proof. For any ¢(x;), 1 < ¢ < n, in order to calculate its
projection into the subspace S, spanned by the columns of
Z = XW, we need an orthogonal basis U of S. We build U
as follows:

U=Z72T %)

In the above equation, T is computed as follows: Assume
K, = ZTZ then
T=VA? (6)

where A € R™/ %"/ is a diagonal matrix of eigenvalues of
matrix K, and V € R"f*"f is a matrix whose columns are
eigenvectors of K. Equation (6) leads to

K '=1T" (7

*More precisely, the result of equation (1) is the coordinate of
the projection of ¢(x;) in S. As is widely done in the literature of
feature extraction and dimensionality reduction, this coordinate will
be used as the extracted features for classification.

3Here the “kernel matrix of the projected data” refers to the ma-
trix whose elements equal the inner product of the projected data in
S.
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and

TK.T=1 ®)
where I is the unit matrix. The following equation follows
from (5) and (8),

U'U=T'K, T=1

So the columns of U form an orthogonal basis of the subspace
S.

Thus, for ¢(x;) € F, 1 < i < n, their projections into the
subspace S can be computed as

X,=U'X=T"2"X 9)

where X, is the matrix whose columns are the projections of
d(x;)inS, 1 <i<n.

Having obtained the projected data X,,, we can now com-
pute the inner product between points in the subspace as the
following:

KY = X/X,=X"UU"X (10)
= X'ZTT'Z2'X
= XK '(X'Z)"
= X'2)(z'2)'(X'Z)" (1)
(XTXW)(WTXTXW) H(XTXW)"
= (KW)(W'KW) YKW)" (12)

where we used equation (5) in the second line, equation (7)
in the third line and equation (2) in the fifth line. The equa-
tions (11) and (12) are identical to (3) and (4) respectively,
therefore the lemma is proven. O

The proof also tells that for a given W, the projection of the
data into the subspace S introduced by W can be computed
as equation (9).

Let K,(-,-) denote corresponding subspace kernel func-
tion. Then according to (3) and (4), for any x,x’ € X, the
subspace kernel K, (-, -) between them can be computed as

$(x)"Z(Z"Z)'ZT p(x) (13)
= P(x) " W(WTKW) "W Ty(x')(14)

Ku(x,%x)

where
Y(x) = [K(x,x1),..., K(x,%,)]"

is the empirical kernel map [Schélkopf and Smola, 2002].

Equation (14) illustrates that the elements of W, by which
the subspace S is described, also serve as the kernel parame-
ters of Ky, (-, -). So in order to find a discriminating subspace
S where different classes of data are well separated, we can
turn to optimize the corresponding subspace kernel K.

3 Connections to Related Work
3.1 Feature Selection via Kernel Parameter
Learning

In [Weston et al., 2000; Chapelle et al., 2002], kernel pa-
rameter learning approaches are adopted for feature selection
problem. The kernel of the following form is considered

Kop(u,v) = K(0.xu,0.xVv) (15)

where .x denotes the component-wise product between two
vectors.  Namely, for & = [0;,...,04]" and u =
[ug,...,ug)", 0. % u = [frus,...,0qus)". By optimizing
the kernel parameter 6 with margin maximization or Radius-
Margin bound [Chapelle et al., 2002] minimization, and with
a l-norm or 0-norm penalizer on 6, feature selection can be
done by by choosing the features corresponding to the large
elements of the optimized 6.

Feature selection locates a discriminating subspace of the
input space &X’. Similarly as the above approaches, we also
use kernel parameter learning algorithms to find a discrim-
inating subspace. However, in this paper, we address the
problem of feature extraction but not feature selection, and
the subspace we want to find is contained in the feature space
JF but not the input space X'

3.2 Sparse Kernel Learning Algorithms

The subspace kernel function given by (14) is in a general
form. As described before, each column in the matrix Z =
[Z1, ..., 2n,] (c.f(2)) is a vector in the feature space F. Now
we show that this kernel relates to the work of [Wu et al.,
2005] in the special case where each column of Z has a pre-
image [Schélkopf and Smola, 2002] in the input space X.
That is, for each z; € F, there exists a vector z; € X, such
that z; = ¢(2;). So now the subspace S can be spanned by
¢(21)7 BN ¢(inf)

For convenience, let Z = [¢(z1), ... ,@(Zn, )] (note that

7 = Z). Then in this case, according to (13), the subspace
kernel function now becomes:

$(x)"Z(ZZ) 2T H(x')
= P:(x)K; ¥ (x) (16)

where ¢:(x) = ¢(x)TZ = [K(x,21),..
andK: = Z'7Z.

In [Wu et al, 2005], an algorithm for building Sparse
Large Margin Classifiers (SLMC) is proposed, which builds
a sparse Support Vector Machine (SVM) [Vapnik, 1995] with
ny expansion vectors, where ny is an given integer. In [Wu
et al., 2005], it is pointed out that building an SLMC is
equivalent to building a standard SVM with the kernel func-
tion computed as (16). And the SLMC algorithm essentially
finds an ny dimensional subspace of J, which is spanned by
¢(21), ..., (2n, ), and where the different classes of data are
linearly well separated.

In [Wu et al., 20051, the kernel function (16) is obtained
with the Lagrange method, which is different from the one
adopted in the above. And the kernel function (16) is a special
case of the subspace kernel (14). Therefore it can be seen
that based on the general subspace kernel (14), useful special
cases can be derived for some applications.

Ky, (x,x")

K (%,20,)] T

4 Optimizing K,

We optimize K,, based on the Kernel-Target Alignment
(KTA) [Cristianini et al., 2002], which is a quantity to mea-
sure the degree of fitness of a kernel for a given learning task.
In particular, we compute W by solving the following KTA
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maximization problem:

K% KY
max A(W) = (K" K')r a7
WER™ X" f \/<Kw,Kw>F<Ky7Ky>F
where (-, -) p denotes the Frobenius product between two ma-

trices that are of the same size, i.e. for any two equally sized
matrices M and N, (M, N)r = . M;;N;;. In (17),
KY € R™*" is the gram matrix between the labels, defined
by

K'=Y'Y (18)

where Y = [y1,...,¥n] € RO™, and y; is the label of x;,
1< <n.

The elements in K reflect the similarities between labels,
as Klyj equals 1 if x; and x; belong to the same class, and 0
otherwise. Therefore aligning’” K* with KY will make the
similarities between the data points in the same class higher
than the similarities between the points in different classes.
Thus by maximizing A(W), we can find a subspace of F,
where points in the same class are closer to each other than
those in different classes. Hence a good classification perfor-
mance can be expected for the data projected into this sub-
space.

Note that the subspace kernel allows us to apply many ker-
nel parameter learning algorithms to the feature extraction
problem. Therefore apart from KTA, we can also choose
other approaches to compute W, such as the one based on
the Radius-Margin Bound [Chapelle et al., 2002]. For sim-
plicity, we use KTA in this paper.

Gradient based algorithms can be used to maximize
A(W). In our implementation, we use the conjugate gradient
algorithm to solve problem (17). To compute A(W), we uti-
lize the fact that K¥ = XX, (see (10)) and KY = Y'Y
(see (18)). Thus, we can decompose K and KV as follows

n

<

K" =

3@

x; (19)

s
Il
_

KY =

Mn
<>

el (20)

.
I
-

where %; € R™ (1 < i < ny) denotes the i-th column of X}
andy; € R" (1 < j < ¢) denotes the j-th column of YT
Based on the above two equations, we have

nf c
SN &y’ @1

<K“), Ky>F —
i=1 j=1
ny mng

(KY K" p = > ) (% %)) (22)
i=1 j=1

Equation (21) and (22) can be computed with time com-
plexity O(ncny) and O(nnfc) respectively. When beth ny
and c are small, they are more efficient than computing the
Frobenius product directly, which requires time complexity
of O(n?).

Similarly, to compute VA(W), we can use the following

equations:
OK™ ° OK™
y — )
(Go— K')r ;y Go ¥ @
oK L aKw
Bugy K = 2:: Gy % &4

where wy, (1 < u < n,1 < v < ny)is the element of
‘W. Inspired by (23) and (24), we investigate how to compute

aT(g;{ul ), where a € R™ is an arbitrary vector. Actually,

by performing linear algebra straightforwardly, we have

w

om B ots, 25)
OWyy

where (3, is the v-th element of a vector 3, computed as
B=(W'KW) }(W'K)a (26)
and in (25), t,, is the u-th element of a vector t, defined as:
t=Ka-KWg3 27)

Note that for any given «, the vectors 3 and t need to be
computed only once, according to (26) and (27) respectively,
then o " gfw « can be calculated as (25) for 1 < u < n and
1 <v< n}l Now we can apply (25) to (23) and (24), and

VA(W) can be calculated.

5 Experimental Results

5.1 Experimental Settings

We empirically investigate the performance of the follow-
ing KFE algorithms on classification tasks: KPLS, KOC,
AKDA/QR and the proposed Subspace Kernel based Feature
Extraction (SKFE) method. Following the same scheme in
[Xiong et al., 2005], the features extracted by each KFE al-
gorithm are input to a /-Nearest Neighbor (1-NN) classifier,
and the classification performance on the test data is used to
evaluate the extracted features. As a reference, we also re-
port the classification results of the 1-NN algorithm using the
input data directly without KFE.

As mentioned before, in a c-class classification problem,
the number of features ns extracted by both AKDA/QR and
KOC is fixed at c. To compare with these two algorithms,
the value of ny for SKFE is also set to ¢ in the experiments,
although the number of features extracted by SKFE can be
varied. For KPLS, three different values of ny are tried: c/4,
¢/2 and c. The best results are reported for KPLS.*

For our proposed SKFE algorithm, the function A(W) in
(17) is not convex, so the optimization result depends on the
initial choice of W. To get a good initial guess, we can use
the subspaces found by other KFE algorithms for initializa-
tion. In the experiments, for efficiency we use the KOC algo-
rithm to compute the initial W.

“When ¢ = 2, only two values of n are tried for KPLS: 1 and
2.
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5.2 Experiments on Microarray Gene Expression
Data

In this subsection, we take seven microarray gene datasets
to test various KFE methods: Brain Tumorl, Brain Tu-
mor2, Leukemial, Leukemia2, Prostate Tumor, DLBCL and
11_Tumors.’ Descriptions of these datasets are presented in
Table 1. As shown in Table 1, a typical characteristic of these
datasets is that the number of data n is much smaller than the
data dimensionality d.

Table 1: Datasets adopted in the experiments. The first seven
are microarray gene datasets, while the last seven are text
datasets. For each of them, the number of data n, the di-
mensionality d and the number of classes c are provided.

[ Dataset | tpe [ n [ d [ c |
B.Tumorl GENE 90 5920 5
B.Tumor2 GENE 50 10367 4
Leukemial GENE 72 5327 3
Leukemia2 GENE 72 11225 3

P.Tumor GENE 102 10509 2
DLBCL GENE 77 5469 2
11_Tumors | GENE 174 12534 | 11
trll TEXT 414 6424 9
tr23 TEXT 204 5832 6
trd1 TEXT 878 7454 10
tr45 TEXT 690 8261 10
lal TEXT 3204 31472 6

a2 TEXT | 3075 | 31472 6
hitech TEXT | 2301 10080 6

A Gaussian kernel is used in the experiments:
K(x,x') = exp(—7 || x — x' ||?) (28)

Five fold cross validation is conducted for parameter selec-
tion, and the best cross validation error rate is used to mea-
sure the performance of different algorithms. The experiment
is repeated 20 times independently. And the results in Ta-
ble 2 show the mean cross validation error and the standard
deviation over these 20 runs.

From Table 2, we can observe that SKFE and KPLS com-
pare favorably to the other KFE algorithms. In particular,
SKFE improves the results of KOC algorithm in all cases,
although KOC is used to initialize SKFE. It can also be
seen that SKFE and KPLS are competitive with each other.
They are are not significantly different (judged by t-test) on
Leukemial, Leukemia2, DLBCL and 11_Tumors, and KPLS
is better than SKFE on Brain Tumor2, while SKFE outper-
forms KPLS on Brain Tumor1 and Prostate Tumor.

5.3 Experiments on Text Classification

In this subsection, we investigate different KFE methods on
the text classification task. It has been observed that there
usually exist cluster structures in the text data. The OC al-
gorithm (or equivalently the KOC algorithm with the linear
kernel), which can keep these structures, is used for dimen-
sionality reduction in text classification tasks in [Kim er al.,
2005] and exhibits good results.

>They are available at http://www.gems-system.org.

Seven text datasets from the TREC collections are adopted:
trll1, tr23, tr41, tr45, lal, 1la2 and hitech. More information
about these seven datasets are available at Table 1.

Similar to the microarray gene data, the data used in text
classification tasks are also of very high dimensionality. An-
other characteristic of these seven datasets is that they are
highly unbalanced, which means that the number of data con-
tained in different classes are quite different. For example, in
the trl11 dataset, there are 132 data points contained in the
seventh class, while just 6 data points in the ninth class, only
4.6% of the former.

On each dataset, we randomly select half of the data from
each class to form the training set and use the remaining data
for test. As is done in the OC algorithm, the linear kernel is
used in this set of experiments. Similarly as before, for each
dataset, the experiment is repeated independently 20 times.
The average test error and the standard deviation over these
20 runs are reported in Table 3.

Table 3 illustrates that SKFE outperforms other KFE meth-
ods on most datasets. Also it can be seen from both Table 2
and 3 that in most cases, all the KFE algorithms obtain bet-
ter performances than the 1-NN algorithm with the raw data,
whilst reducing the data dimensionality dramatically from d
tony, where ny << d. (c.f. section 5.1 for the choice of n¢.)

Although SKFE compares favorably to the other KFE
methods in terms of the classification accuracy, its compu-
tational cost is higher than the others. For the problems re-
ported in Table 1, on a 2.2 GHz Pentium-4 PC, KPLS requires
from 0.15 to 39 seconds, AKDA/QR takes between 0.35 and
3 seconds, KOC requires between 0.11 and 5 seconds, while
SKFE takes between 0.38 to 69 seconds. The optimization
step of SKFE is implemented in C++, and the others are im-
plemented in Matlab.

6 Conclusion

We have presented a subspace kernel based on which nonlin-
ear feature extraction can be conducted by kernel parameter
learning. Connections to related work have been explained.
In particular, the comparison with the Spare Large Margin
Classifier (SLMC) [Wu et al., 2005] illustrates that useful
special cases can be derived from the proposed subspace ker-
nel for some applications. We have also described a method
to optimize the subspace kernel by Kernel-Target Alignment
(KTA) [Cristianini et al., 2002] maximization. But other ker-
nel parameter learning approaches can also be applied. Fi-
nally, experimental results have been provided to validate the
effectiveness of our approach.
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