
Managing Domain Knowledge and Multiple Models with Boosting

Peng Zang

College of Computing

Georgia Tech

Atlanta, GA 30332

pengzang@cc.gatech.edu

Charles Isbell

College of Computing

Georgia Tech

Atlanta, GA 30332

isbell@cc.gatech.edu

Abstract

We present MBoost, a novel extension to AdaBoost
that extends boosting to use multiple weak learners
explicitly, and provides robustness to learning mod-
els that overfit or are poorly matched to data. We
demonstrate MBoost on a variety of problems and
compare it to cross validation for model selection.

1 Introduction

Recent efforts in ensemble learning methods have shown em-
pirically that the use of many methods and models is more
powerful than using any single method alone. For example,
Caruana [2004] shows how constructing an ensemble classi-
fier from a library of around 2000 models ranging from de-
cision trees to SVMs produces classifiers that outperform the
best of any single model. Oddly, Boosting [Schapire, 1990]—
a particularly popular ensemble technique with strong theo-
retical and empirical support—is rarely used in such a fash-
ion. In principle, Boosting should be able to handle multi-
ple learning methods automatically simply by using a learner
that itself chooses among multiple weak learners. On the
other hand, such a learner introduces additional complexity
and may compound overfitting effects.

In this paper, we present a new boosting algorithm,
MBoost, that incorporates multiple models into Boosting ex-
plicitly. In particular, we extend AdaBoost [Schapire and
Singer, 1999; Freund and Schapire, 1995] to act as an arbi-
trator between multiple models. Our contributions are:

• A principled technique for extending Boosting to enable
explicit use of multiple weak learners.

• A technique for controlling weak learners that overfit or
are poorly matched to the data (e.g., embody poor do-
main knowledge).

In the sections that follow we first present MBoost itself,
comparing it to AdaBoost. We analyze the theoretical and
practical consequences of MBoost, and validate our analysis
by presenting several empirical results, including a compar-
ison of MBoost to model selection via cross validation. Fi-
nally, we situate our work in the literature and conclude with
some discussion.

2 MBoost

AdaBoost [Schapire and Singer, 1999; Freund and Schapire,
1995] is an ensemble learning technique that iteratively con-
structs an ensemble of hypotheses by applying a weak learner
repeatedly on different distributions of data. Distributions are
chosen to focus on the “hard” parts of the data space, that is,
where the hypotheses generated thus far perform poorly. If
h1,h2, . . . ,hT is a set of hypotheses generated by AdaBoost,
the final boosted hypothesis is then: H(x) = sign( f (x)) =
sign(∑T

t=1 αt ht(x)), where αt denotes the weighting coeffi-
cient for ht .

Although described as a single learner, the weak learner
could be a “bag” of several learning models. For example,
rather than choosing between a decision tree and a perceptron
as the weak learner, one could use a learner that contained
both, presumably choosing the better for any given iteration.

Using such a composite weak learner requires some atten-
tion to detail. Whether the bag chooses the best model or
combines the models in some way, it introduces additional
inductive bias: one is no longer boosting over a decision tree
and a perceptron, but over a potentially complex ensemble
learner that happens to include a decision tree and perceptron.
To ensure that no additional inductive bias is introduced, we
propose that the boosting algorithm itself should be the arbi-
trator, acting as the mechanism for choosing which model to
use.

The MBoost algorithm explicitly supports multiple weak
learners and formalizes the notion of boosting as the arbitra-
tor. In each round, each weak learner proposes a hypothesis
and MBoost selects the “best” one. Here, “best” is deter-
mined by how boosting would reweight the distribution from
round to round, allowing MBoost to arbitrate among the weak
learners without introducing any inductive bias not already
intrinsic to the boosting framework.

Boosting is known to be susceptible to overfitting when its
weak learner overfits. Imagine for example, that the weak
learner is a rote learner such as a hash table. The training er-
ror will be zero, but there will also be no generalization. No
matter how many rounds are run, the rote learner will gen-
erate the same hypothesis (assuming there is no noise in the
labels). As a result, the final Boosting classifier would show
the same (lack of) generalization capabilities. Using multiple
weak learners can only compound this problem.

Boosting’s susceptibility to this kind of overfitting lies in
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Algorithm 1 MBoost

Require: Weak learners b1, . . . ,bm

Data (x1,y1), . . . ,(xn,yn) where xi ∈ χ,yi ∈ {−1,+1}
1. Initialize D0(i) = 1/n
2. for t = 1, . . . ,T −1 do
3. Split the data randomly into two parts Dtraint and

Dvalt .
4. Train learners b1 . . .bn with Dtraint , generating hy-

potheses h1 . . .hn.
5. Choose hypothesis ht = argminZt (hi, . . . ,hn)
6. Choose αt for ht per usual

7. Update: Dvalt+1(i) = Dvalt(i)e
−αt yiht(xi)

8. Normalize Dt+1 = Dt+1/Zt such that ∑
i

Dt+1(i) = 1

9. end for

10. return Final hypothesis: H(x) = sign(
T

∑
t=1

αt ht(x))

Where χ is the input space and Zt is the normalization con-
stant.

part in its use of training error for hypothesis evaluation.
Training error can be an overly-optimistic and poor measure
of true performance. Rather than avoid “stronger” learners,
MBoost divides the data every round into training and vali-
dation sets, using the latter to evaluate generated hypotheses.
This approach yields a more accurate measure of the hypothe-
ses’ performance which in turn is used to choose the best hy-
pothesis and its weight. Additionally, MBoost only reweights
the distribution on data from the validation set. Points from
the training set are suspect as their prediction may be due to
overfitting causes. Reweighting these points may incorrectly
imply that they have been learned. Reweighting only the val-
idation set avoids making such a mistake. Note that the con-
vergence of the algorithm does not change. All points will
eventually be reweighted since points in the training set of
one round may very well be in the validation set of the next.

The combination of these two techniques means MBoost
has a much more accurate measure of the hypotheses’ gener-
alization errors. Further, by being “inside” the bag of compet-
ing models, MBoost can choose the hypothesis that directly
minimizes the loss function. The net effect is that users can
insert a variety of models into boosting to take advantage of
the empirical power of using multiple models while mitigat-
ing the effects of poor weak learners that either overfit or em-
body incorrect domain knowledge.

Algorithm 1 shows pseudo-code for MBoost. We note that
while MBoost as shown is derived from AdaBoost, any boost-
ing scheme can be similarly adapted.

3 Analysis and Implications

3.1 Using multiple weak learners

Boosting can be viewed as a coordinate gradient descent
method that searches for the set of hypotheses which, when
combined with their weights, minimizes some loss. In each
round of AdaBoost, a hypothesis ht (the coordinate) is given,
and AdaBoost optimizes the weight αt for that coordinate to
minimize the loss function. An interpretation of this process

is that given the coordinate, AdaBoost is taking the largest
possible loss-minimizing step along that coordinate.

When Boosting is extended to multiple weak learners, not
only must the optimal weight be chosen, but the optimal hy-
pothesis (among a set of proposed hypotheses) must be cho-
sen as well. In other words, we must find the best coordinate
(the one with the largest component in the direction of the
gradient) in addition to optimizing the loss-minimizing step.

Because we do not know our learning models a priori, we
are precluded from analytical optimizations that find the best
hypothesis. Instead, we perform an exhaustive search. For
each hypothesis proposed by the different models, we find its
optimal weight and calculate the resulting loss. The hypoth-
esis with the lowest loss is chosen. Because the number of
weak learners is typically small and computation of the loss
requires only hypothesis predictions and not training, the cost
of this step is low.

Applying this technique to AdaBoost, we see that the

best hypothesis is the one minimizing G( f ) = ∑N
i=1 e−yi f (xi),

where yi is the true label and f (x) = ∑T
t=1 αt ht(x) is the hy-

potheses ensemble classifier. The cost of this minimization
grows linearly with the number of rounds run. Over many
rounds, it can become expensive. Fortunately, minimizing
G( f ) is equivalent to minimizing Zt , the normalization con-
stant in AdaBoost, in that round.

Proof. In any particular round t, the update rule gives us:

Dt+1(i) = Dt(i)e
−yiαt ht(xi)/Zt (1)

=
e∑t −yiαt ht(xi)

m∏t Zt

(2)

=
e−yi f (xi)

m∏t Zt

(3)

Because Zt must normalize Dt+1(i) = 1, we have:

Zt = ∑
i

Dt(i)e
−yiαtht(xi) (4)

= ∑
i

Dt+1(i)Zt (5)

= ∑
i

e−yi f (xi)

m∏
t−1
j=1 Zj

(6)

Thus

argmin(G( f )) = argmin(
N

∑
i=1

e−yi f (xi)) (7)

= argmin(
1

m∏
t−1
j=1 Zj

∑
i

e−yi f (xi)) (8)

= argmin(Zt) (9)

We note that in the MBoost formulation, Zt is defined
somewhat differently than in AdaBoost. This is because
MBoost’s use of a validation set changes the loss function;
however, the difference is slight and the proof still applies.
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Finally, it is worth noting that because MBoost is choosing
among multiple hypotheses, the weak learner requirement (in
the PAC sense) can be relaxed. The ensemble of learners must
act as a weak learner but no individual learner must.

3.2 Using an internal validation set

MBoost needs an accurate error estimate for candidate hy-
potheses each round. Following [Langford, 2005], we model
hypothesis error as a biased coin flip where the bias is the
true error, the number of tails is the number of correct pre-
dictions and the number of heads is the number of incorrect
predictions.

The probability that one makes k or fewer mistakes in n
predictions given that the true error rate is ε is given by the
binomial cumulative distribution function: CDF(k,n,ε) =

∑k
i=0

(
n
i

)
εi(1− ε)n−i.

The largest true error rate r such that the probability of
having k or fewer mistakes in those n predictions is at least
δ, is then: maxr(r : CDF(k,n,r) ≥ δ). We will refer to this
as the maximum reasonable true error: mrte(k,n,δ). A bound
on the true error can then be formed as: P(ε≤mrte(k,n,δ))≥
1− δ.

In MBoost, a hypothesis is only used if its mrte(k,n,δ) is
less than 0.5. That is, a hypothesis is only used if the upper
bound of its true error is less than 0.5, suggesting with high
confidence that the hypothesis is better than random.

Recall that we can view Boosting as a coordinate gradient
descent method optimizing a particular loss function. Use of
the validation set for hypothesis selection, weighting and dis-
tribution reweighting essentially amounts to a different loss

function: ∑N
i=1 e−yi ∑t ht(x)I(xi /∈Dtraint ). MBoost’s loss function

reflects our understanding that the real goal of interest is the
ensemble’s generalization error. We want to avoid being mis-
led by atypical results on training data. Use of the test set for
evaluation allows MBoost to effectively apply weak learners
prone to overfitting (as a “strong” learner may do).

One could easily imagine extending the use of a single in-
ternal validation set to perform full 10-fold cross-validation
per round of boosting. We note however, that such a treat-
ment aims towards finding the best weak learner, not the best
hypothesis. In building an ensemble of hypotheses, our goal
is to find the best hypothesis per round.

Finally, we note that internal validation is also mildly help-
ful when overfitting is due to noise. Such error is a side effect
of boosting’s emphasis on “hard” examples, or in noisy situa-
tions, noise. If noise is non-systematic, MBoost should deter-
mine that the generated hypotheses cannot predict the noise
better than random. As we note in the next section, this will
cause MBoost to halt.

3.3 Automatic stopping condition

It is natural for MBoost to stop when none of its weak learners
perform better than random. Standard boosting uses training
data for evaluation so it may be easier for weak learners to
perform better than random than in MBoost. In running our
experiments, MBoost usually stops due to this condition.

For MBoost to determine that none of its weak learners
can perform better than random, a single round in which no
generated hypotheses perform is insufficient as the training

and validation sets are chosen randomly. To determine that
the learners are indeed “exhausted”, many consecutive rounds
in which no hypothesis beats random is required.

We note that in these rounds, the distribution is static.
MBoost is essentially performing an internal Monte-Carlo
cross-validation on each of its weak learners. As we run more
rounds, we acquire tighter bounds on each learner’s true error.
Eventually, this will either show that at least one of the weak
learners does better than random, in which case MBoost will
continue, or that none of the weak learners can do better than
random (with some confidence), in which case MBoost halts.

3.4 Error bounds

MBoost can be approximately reduced to AdaBoost. To see
this, consider the weak learner L which when trained on data
set Dt in round t does the following:

• Splits the data set into a training set and a validation set,
Dtraint and Dvalt .

• Trains each of its member learners b1 . . .bm on Dtraint ,
generating hypotheses h1 . . .hm.

• Simulates for each hypothesis the boosting reweighting
on Dvalt and chooses the hypothesis hbest,t with the low-
est hypothetical normalization constant Z.

• Returns h′t(x) = hbest,t(x)I(x /∈ Dtraint), where I(p) ∈
0,1 is the indicator function that returns 1 when the pred-
icate p is true, and 0 otherwise. In other words, return
h′t(x) as a copy of hbest,t(x) except that when asked to
predict on data it has been trained on it abstains.

Applying AdaBoost to the weak learner L, we con-
struct a learner Lada. This is essentially MBoost. The
sole difference is that MBoost’s final hypothesis is H(x) =
sign(∑T

t=1 αt hbest,t(x)) instead of H ′(x) = sign(∑T
t=1 αt h

′
t(x));

however, h′t(x) and hbest,t(x) differ only in predictions
on a randomly-drawn finite set, namely, Dtraint . Thus,
H ′(x) and H(x) can differ only on points in the union of
Dtrain1 . . .DtrainT , a subset of the overall training data D. In
the limit, as the size of the instance space approaches infin-
ity, the probability of predicting on a data point seen in train-
ing is vanishingly small. More formally, lim

|χ|→∞
Pr(x ∈ D) = 0

and therefore lim
|χ|→∞

|H ′(x)−H(x)|= 0 where χ is the instance

space and x is a point randomly drawn from χ. Further:

• The sum of all errors is bounded by the size of the train-
ing set: ∑

x∈χ

|H ′(x)−H(x)| < |D|.

• H ′(x) and H(x) differ only on a randomly drawn, finite
set, and the errors |H ′(x)− H(x)|, are not systematic.
In other words, ∑ |H ′(x)−H(x)| ≈ 0. H ′(x) and H(x)
represent the same decision boundary.

H ′(x) ≈ H(x) and thus, Lada is approximately MBoost.
This reduction now allows us to inherit the generalization

error bounds that have been derived for AdaBoost. In par-
ticular, both the VC-theory based generalization error bound
found in [Freund and Schapire, 1995], as well as the margin-
based generalization bounds in [Schapire et al., 1997] and
[Schapire and Singer, 1999] can be applied straightforwardly.
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4 Empirical evaluation

We performed four sets of experiments to examine MBoost’s
performance.

4.1 Effects of domain knowledge

This set of experiments focus on exploring MBoost’s basic
ability to exploit multiple domain knowledge sets, as encoded
by the weak learners; the validation set is not used. We used
a 2D synthetic dataset composed of three Gaussians whose
points are labeled according to three different lines, one for
each Gaussian. Two weak learners were used. The first is a
simple perceptron. The second is a Gaussian estimator com-
bined with a perceptron. This represents the accurate domain
knowledge case.

As we can see in Figures 1a and 1b, this is an easy dataset
and both AdaBoost and MBoost are able to approach perfect
classification. MBoost, however, by leveraging the additional
domain knowledge in the second weak learner, is able to do
so five times faster.

To explore the effect of inaccurate domain knowledge, we
replace the second weak learner with one that learns vertical
bands of width 0.1. This hypothesis class can yield no help-
ful hypotheses, simulating poor domain knowledge. In this
case, MBoost discards the hypotheses generated by the sec-
ond weak learner. MBoost and AdaBoost perform identically
from round to round.

4.2 MBoost versus AdaBoost on individual
learners

In this set of experiments, we explore the effect of boost-
ing multiple models together, versus boosting each model in-
dividually. We want to determine if heterogeneous ensem-
bles are superior to homogeneous ones. We performed the
experiments on five of the largest binary classification UCI
datasets1. A set of twenty-five weak learners were used:

• Five Naive Bayes learners. One uses empirical probabil-
ities, the other four use m-estimates with m at 4, 16, 64,
and 256. We used the Naive Bayes learner provided in
the Orange data mining package.

• Five kNN learners with k at 1, 4, 16, 64, and 256. We
used the kNN learner provided in the Orange data min-
ing package.

• Five C4.5 decision tree learners with minOb js, the min-
imum number of examples in a leaf, set at 1, 4, 16, 64
and 256. All other options were set to defaults. We used
R8 of Quinlan’s implementation.

• Ten SVM learners with C, the parameter for the cost of
misclassification, set at 0.125, 0.5, 2, 8, 32, 128, 512,
2048, 8192, and 32768. The SVMs used a RFB kernel.
All other options were set to defaults. We used the lib-
svm library by Chih-Chung Chang and Chih-Jen Lin.

We compared two learners. The first, MBoost10, is given all
twenty-five weak learners and set to run for ten rounds. The
second is a learner that runs AdaBoost for 10 rounds with

1The full ADULT data set is quite large, we used a subsample of
1000 examples.

Table 1: CV Accuracy for MBoost and BestAda

Dataset/Learner MBoost10 BestAda p-value

ADULT 0.837 0.765 0.0000
BREAST-CANCER 0.751 0.706 2.12e-04

CRX 0.874 0.809 0.0000
HORSE-COLIC 0.816 0.777 0.0016

IONOSPHERE 0.947 0.883 2.89e-12

Table 2: CV Accuracy for MBoost10 and BestCV-Ada

Dataset/Learner MBoost10 BestCV-Ada p-value

ADULT 0.837 0.812 0.0038

B-CANCER 2 0.751 0.731 0.0213

CRX 2 0.874 0.861 0.0323

HORSE-COLIC 0.816 0.818 0.9601
IONOSPHERE 0.947 0.946 0.6145

each of the weak learners in turn (for a total of twenty-five
runs). The best AdaBoosted model (according to their re-
ported training error) is chosen and used. We call this second
learner BestAda. Note that the computational complexity of
the two learners are equivalent, they are O(nm) where n is the
number of rounds and m is the number of weak learners.

Table 1 shows the accuracy results on the five datasets. All
reported accuracy scores use subsample cross-validation 50
times; that is, in each cross validation round we randomly
split the data into training and validation sets with 90% in the
training set. We use this variation of cross validation through-
out our evaluation because it can be performed any number of
times. We find that 50 rounds typically produce enough sam-
ples for our significance tests.

We used one-way ANOVA tests to determine if the
reported accuracies are statistically significant, pvalue =
F(1,98). All datasets show MBoost performing statistically
significantly better.

These results are quite surprising. Detailed analysis shows
that BestAda suffered from significant overfitting. For exam-
ple, AdaBoosted SVM would report a higher accuracy rate
than AdaBoosted C4.5 when in fact AdaBoosted C4.5 gener-
alized better.

One might imagine using cross-validation to avoid this
problem. To this end, we create a third learner, BestCV-Ada,
that is the same as BestAda but uses ten-fold cross validation
to select the best AdaBoosted weak learner. Note that this in-
creases the computational cost of BestCV-Ada by a factor 10.
We present results comparing BestCV-Ada and MBoost10 in
Table 2.

These results are in line with expectations. As commonly
reported in the literature, the best single-model booster is
quite effective. Nevertheless, we see that MBoost, using one
tenth of the computational cost, can perform better on three
of the five data sets and as good on the rest. Heterogeneous
ensembles appear to perform better than homogeneous ones.
MBoost is able to take advantage of this effect and combine

2Additional CV rounds were performed to ascertain statistical
significance.
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(a) (b)

Figure 1: Comparing AdaBoost and MBoost on Gaussian dataset. Left shows training accuracy and theoretical bound, right
shows training and testing accuracy. Averaged over 50 runs

Table 3: CV Accuracy for MBoost and MBoostAcc

Dataset/Learner MBoost MBoostAcc p-value

ADULT 0.837 0.836 0.8685

B-CANCER 0.751 0.739 0.1752

CRX 0.874 0.876 0.8494
HORSE-COLIC 0.816 0.815 0.8867

IONOSPHERE 0.947 0.945 0.7399

the ensembles appropriately.

4.3 MBoost as weak learner arbitrator

Here, we perform a set of experiments to explore the effects
of using MBoost’s loss function as a weak learner arbitrator.
We compare two versions of MBoost. The first is standard
MBoost using its exponential loss function as the arbitrator,
the second, MBoostAcc using validation accuracy of the weak
learners. Both boosters are run for 10 rounds.

Table 3 shows that the two versions’ performance are quite
similar. Only one dataset shows any difference that might be
statistically significant with MBoost outperforming MBoost-
Acc. In further exploration, we ran the same experiment but
allowed both versions to run until exhaustion. In this experi-
ment, all performance differences disappeared. This is unsur-
prising as the performance difference should be in terms of
speed of convergence, not final asymptomatic performance.
The exponential loss function is more aggressive, so it is rea-
sonable that it might show some early gains.

4.4 MBoost versus the best individual learners

Here we perform a series of experiments comparing MBoost
with the best individual model as selected via 10 fold cross
validation (BestCV-Ind). We ran two versions of MBoost,
one running for 10 rounds and one with the automatic stop-
ping condition, though never more than 50 rounds. MBoost10
has the same computational complexity as selecting the best

Table 4: CV Accuracy for MBoost-10 and BestCV-Ind

Dataset/Learner MBoost10 BestCV-Ind p-value

ADULT 0.837 0.833 0.5162

B-CANCER 0.751 0.745 0.5233

CRX 2 0.874 0.862 0.0326
HORSE-COLIC 0.816 0.813 0.7761

IONOSPHERE 0.947 0.947 0.9294

Table 5: CV Accuracy for MBoost10 and MBoostAuto

Dataset/Learner MBoost10 MBoostAuto p-value

ADULT 0.837 0.838 0.8142
B-CANCER 0.751 0.750 0.9362

CRX 0.874 0.876 0.7147

HORSE-COLIC 0.816 0.818 0.8454
IONOSPHERE 0.947 0.949 0.7518

individual model via 10-fold cross validation. MBoost-Auto
typically requires two to five times the computational cost.

Table 4 shows MBoost10 performing better on one of the
five datasets and equivalently on the rest. Further, as we can
see in Table 5, the accuracy scores do not degrade even as
we run MBoost to exhaustion. MBoost is quite resistant to
overfitting. These factors combined with MBoost’s low com-
putational complexity lead us to suggest it as an alternative to
cross-validation for model selection. Instead of trying many
models and finding the best, we suggest Boosting the models
together and synthesizing an ensemble whole.

5 Related Work

MBoost’s use of multiple weak learners is similar to a boost-
ing extension known as localized or dynamic boosting ([Mo-
erland and Mayoraz, 1999; Meir et al., 2000; Avnimelech and
Intrator, 1999; Maclin, 1998]) where αt—the weight on the
hypothesis in round t–is generalized to be a function depen-
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dent on the data, x. Localized boosting can be viewed as a
way to boost across two weak learners: one in the hypothe-
sis and one in the αt(x). Our work aims to explicitly enable
multiple weak learners in general, where any number of weak
learners are allowable. MBoost can emulate localized boost-
ing by treating αt (x)ht(x) as one weak learner, but we point
out that—ignoring MBoost’s use of internal validation—both
extensions are mathematically reducible back to boosting.
The difference lies in that MBoost makes boosting across
multiple learners explicit. We hope that this formulation is
easier to reason about, and that at the very least, provides a
clearer mechanism for the user to apply multiple weak learn-
ers and the domain knowledge they embody.

We know of no other work in boosting for controlling weak
learner overfitting that is similar to our use of internal vali-
dation; however, there is general work in ensemble learning
(again, see [Caruana et al., 2004]). Our work differs in that it
is integrated into the boosting framework, and so we leverage
boosting’s distribution perturbation and the use of hypotheses
trained on different parts of the data space.

MBoost’s ability to mitigate the effects of poor weak learn-
ers also makes it suitable for arbitrating between and merging
different sets domain knowledge embodied in the weak learn-
ers. There has been some prior work focused on incorporating
knowledge into Boosting, eg. [Schapire et al., 2002]. Their
approach is to add a prior model, informed by domain knowl-
edge, mapping each instance of the data to a probability over
the possible label values. The Boosting process is modified
to also fit the prior. Requiring a prior can be burdensome.
Further, if the prior is incorrect, performance will suffer. Pri-
ors also offer no way to reconcile different sets of domain
knowledge. MBoost relaxes these constraints. Weak learn-
ers provide a very flexible domain knowledge insertion point.
MBoost can further mitigate any negative effects should in-
corporated knowledge be inaccurate. Finally, MBoost can
merge the knowledge sets into an ensemble whole.

6 Conclusion

We have introduced a novel boosting algorithm, MBoost, that
explicitly chooses among multiple models, controlling for
those weak learners that overfit or are otherwise poor model
fits for the data. MBoost takes advantage of results in en-
semble learning while retaining the theoretical and empirical
strengths of boosting. It provides us an effective way to man-
age and use multiple models and the domain knowledge they
embody.

Empirical evaluations show MBoost can outperform any
single model and any boosted single model on some data
sets and performs at least as well on the rest. Furthermore,
MBoost provides a natural stopping criterion that appears ro-
bust to overfitting. Favorable performance and MBoost’s low
computational complexity also lead us to suggest it as an al-
ternative to model selection via cross validation.
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