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Abstract

In this paper, we perform an empirical study of the
impact of noise on cost-sensitive (CS) learning,
through observations on how a CS learner reacts to
the mislabeled training examples in terms of mis-
classification cost and classification accuracy. Our
empirical results and theoretical analysis indicate
that mislabeled training examples can raise serious
concerns for cost-sensitive classification, especially
when misclassifying some classes becomes ex-
tremely expensive. Compared to general inductive
learning, the problem of noise handling and data
cleansing is more crucial, and should be carefully
investigated to ensure the success of CS learning.

1 Introduction

Recently, a body of work has been attempted to address
cost-related inductive learning issues, with techniques
known as cost-sensitive learning (Tan 93, Turney 95, Paz-
zani et al. 94), where the “cost” could be interpreted as mis-
classification cost, training cost, and test cost (Turney).
Among all different types of costs, the misclassification cost
is the most popular one. In general, misclassification cost is
described by a cost matrix C, with C(i, j) indicating the cost
of predicting that an example belongs to class i when in fact
it belongs to class j. With this type of cost, the objective of a
CS learner is to form a generalization such that the average
cost on previously unobserved instances is minimized. Ob-
viously, this minimal cost is determined by two most impor-
tant factors: (1) the inductive bias of the underlying CS
learner; and (2) the quality of the training data. Existing
research has made significant progress in exploring efficient
CS learning algorithms (Bradford et al. 98, Zuberk & Diet-
terich 02, Tan 93, Geibel & Wysotzki 03, Brefeld et. al. 03,
Domingos 99, Chan & Stolfo 98, Zadrozny 03, Abe &
Zadrozny 04), with assumptions that the input data are
noise-free or noise in the datasets is not significant. In data-
driven application domains, many potential problems, such
as unreliable data acquisition sources, faulty sensors, and
data collection errors, will make data vulnerable to errors. It
is therefore important to understand how a CS learning algo-

* The support of the National Science Foundation of China un-
der Grant No.60674109 is acknowledged.

rithm behaves in noisy environments and how to handle
data errors in supporting effective CS learning. In this paper,
we report our empirical study on the impact of noise on CS
learning. It is hoped that our observations will be beneficial
to any real-world applications with cost concerns.

2 Related Work

The problem of learning from noisy data has been a focus of
much attention in data mining (Quinlan 86b), and most al-
gorithms have a mechanism to handle noise in the training
data. For example, pruning on a decision tree is designed to
reduce the chance that the tree is overfitting to noise in the
training data (Quinlan 86). In real-world applications, many
learning algorithms rely on a data cleaning model for data
enhancement (Brodley & Friedl 99). Although the problem
of error handling in supervised learning has been well stud-
ied, research in the area has been mainly focused on general
inductive learning for the minimization of zero-one loss or
error rate. In reality, many applications are not only charac-
terized by error rate, but also by various types of costs (Tur-
ney), such as misclassification cost and test cost.

Among all different types of costs, the misclassification
cost is the most popular one. Assume that examples of a
dataset are drawn independently from a distribution, d, with
domain XxYxC, where X is the input space to a classifier, ¥
is an output space, and C < [0, o) is the importance (mis-
classification cost) associated with misclassifying that ex-
ample. The goal of cost-sensitive (CS) learning, from the
misclassification cost perspective, is to learn a classifier 4: X
— Y which minimizes the expected cost (Zadrozny 03)

E i yole-I1(h(x) # y)] (1

Two important issues determine the minimization of the
expected cost: the total number of misclassifications and the
cost of each single misclassification. To minimize overall
costs, a compromise is often made by sacrificing cheap ex-
amples and enhancing the accuracy on classes containing
expensive instances. This is distinct from general inductive
learning, because the latter is biased towards larger classes
(likely the cheap examples in a CS scenario). To enhance a
CS learner trained from noisy data environments, Zhu and
Wu (04) have proposed a Classification Filter for data
cleansing. But the study of CS learners in noisy environ-
ments still lacks in-depth empirical and theoretical analysis.
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3 Experiment Setting

An empirical study needs a full control over noise levels in
the data, so that we can observe the behaviors of the under-
lying CS learners. For this purpose, we implement two
manual corruption mechanisms, Total Random Corruption
(TRC) and Proportional Random Corruption (PRC). With
TRC, when the users specify an intended corruption level
x-100%, we will randomly introduce noise to all classes. L.e.,
an instance with its label 7 has an x-/00% chance to be mis-
labeled as another random class (excluding class 7). TRC,
however, changes the class distribution in the dataset after
noise corruption, which raises a big concern in CS Learning,
because modifying the class distribution may change the
average cost considerably. We then propose PRC, which
keeps the class distribution constant during the noise corrup-
tion. Given a dataset with Y classes, assume the original
class distribution is 7, 7,..,77y, with ¥,Yz;=1, where 7 and
7y are the percentage of the most and least common classes
respectively. For any user specified corruption level, say
x-100%, we proportionally introduce random noise to differ-
ent classes with instances in class 7 having a (7zy /7)- x-100%
chance of being corrupted as another random class. That is,
we use the least common class as the baseline, and propor-
tionally introduce noise to different classes. It is obvious
that the actual noise level in PRC is less (or even much less)
than the intended corruption level.

For each experiment, we perform 10 times 3-fold cross-
validation. In each run, the dataset is divided into a training
set £ and a test set 7. We introduce a certain level of noise
to £ and generate a noisy dataset £’ Meanwhile, assuming a
noise cleansing technique is able to remove all noisy in-
stances from E’, we can therefore build a cleansed dataset
E”. We observe CS learners trained from E, E’, and E” to
study noise impact (assessed by using 7 as the test set). The
empirical study is made by the observation on three bench-
mark two-class datasets, Credit Screen Dataset (Credit),
Wisconsin Breast Cancer Dataset (WDBC), and Thyroid
disease dataset (Sick) (Blake & Merz 98), with their class
distributions varying from almost even to extremely biased
(as shown in Table 1). We use two-class datasets as our test
bed, because a two-class problem can explicitly reveal the
impacts of noise and cost-ratio on CS learning, whereas for
multiple-class problems, issues such as costs among classes,
class distributions, and errors in each class often make it
difficult to draw comprehensive conclusions. We use the
C5.0 CS classification tree (Quinlan 97) in all experiments.

To assign misclassification cost matrix values, C(i, j), i#],
we adopt a Proportional Cost (PC) mechanism: for any two
classes i and j (i#f), we first check their class distribution 7;
and 7. If 7 >7;, which means that class j is relatively rarer
than i, then C(j, /)=100 and C(i, j) equals to 100-r; otherwise
C(i, j)=100 and C(j, i)= 100-r, where r is the cost-ratio, as
defined by Eq. (2).

Table 1. Class distributions of the benchmark datasets

Dataset Class Distribution|Separability(c4.5)
Credit Screening (Credit) 0.56:0.44 82.8%
Wisconsin Diagnostic . 0
Breast Cancer (WDBC) 0.63:0.37 93.3%
Thyroid disease (Sick) 0.94:0.06 98.7%
Table 2. Major symbols used in the paper
Symbol Description
ETE E” E: Training set, 7: Test set, £ Noise corrupted
o training set, £” Noise cleansed training set
CS X The average misclassification cost from dataset X
Ac Cs X | The average classification accuracy of a CS and a
Ac Nm X normal classifier on dataset X respectively
h(t) vs H(t) A CS classifier vs a non-CS classifier
v e x: an input instance, y: class label of x, ¢: the cost
' associated to mislabeling x
- The cost ratio between the minor class and the major
class
K The number of instances in the test set 7
C(i.)) The cost of predicting that an example belongs to
»J class i when in fact it belongs to class j.
a;, o,  |The distribution of the major class vs the minor class
The classification error rate on the whole test set, the
& &, & | major class examples and the minor class examples
respectively
cs. . The cost of classifying a major class example into
min the minor class
CSye The average misclassification cost on the test set T
CSUpper_bound The upper bound of a CS classifier
dl X,1,C) The distribution of the noisy training set £’
d’(x,c) The distribution of a new set,constructed by sam-
pling £
Egiy 0 The expected average misclassification cost of the
[cd(h(x)#y)] instances drawn from the distribution d

4 Noise Impact

4.1 Misclassification Costs

In Figs. 1 to 2, we report the noise impact on the cost of CS
learners trained from the benchmark datasets, where Figs.
I(a) and 1(b), and Figs. 2(a) and 2(b) represent the results
from different noise corruption models of the WDBC and
Sick dataset respectively. Fig. 2(c) reports the results from
the Credit dataset (because the class distributions of the
Credit dataset are almost even, we only report its results on
the TRC model). In all figures, the first and the second rows
of the x-axis represent the intended and actual noise levels
in the dataset. The y-axis indicates the average cost of CS
classifiers. CS_E’and CS_E ”represent the average cost of a
CS classifier trained from E”and E” (before and after noise
cleaning).

As we can see from Figs. 1 to 2, for both noise corruption
models, the average cost of a CS classifier proportionally
increases with the value of », even if the dataset is noise-
free. This does not surprise us, because we fix the cost of
C(i, j) to 100 and set the cost of C(j, i) to 100-r. So raising
the value of » will surely increase the average cost. When
noise is introduced to the dataset, the average cost will in-

—C(, j C(i i ) evitably increase, regardless of the noise corruption model
r (@, J) / (/> 1) @ and the value of . On the other hand, removing noisy in-
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stances can keep average costs almost the same as that of
the noise-free dataset (£). This indicates that data cleansing
is an effective way to reduce the impact of noise on CS
learning.

Although noise increases the cost of a CS classifier re-
gardless of the cost-ratio (), when comparing the results
from three r values, we can find that their patterns of in-
crease are different. As shown in Fig. 1(a), Fig. 2(a), and
Fig. 2(c), when r is small, increasing noise levels will
gradually raise the average cost, and the impacts of noise are
less significant for low noise level data. On the other hand,
for large r values, introducing a small portion of noise will
elevate the average cost greatly, and increasing the noise
level further does not show significant extra impacts. How-
ever, TRC in Fig. 1(a), Fig. 2(a), and Fig. 2(c) have already
changed the class distribution of the dataset, it is not clear
that given the same amount of noise in the dataset which
one is responsible for the increase of the cost: the change of
the class distribution or the large cost-ratio ». We then turn
to Fig. 1(b) and Fig. 2(b) for answers, where the class distri-
bution is constant during noise corruption.

As shown in Figs. 1(b) and 2(b), depending on the bias of
the class distribution of the dataset, the actual noise level in
the dataset is lower (or much lower) than the intended cor-
ruption level. For example, in Fig. 2(b), when the intended
noise level is 0.1, the actual noise level in the database is
just about 0.012 (please refer to Section 3 and Tab. 1 for the
reason). At this noise level, the cost increase for =2 is 0.56
(from 1.91 to 2.47), but for =10 the increase is about 3.5
(from 5.8 to 9.31). One may argue that this increase may be
incurred by increasing the class-ratio r, because raising r
will make the minority class more expensive. Nevertheless,
even if we assume that the classification accuracy remains
the same, we can still see that the average increase from
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(a) WDBC dataset, total random noise (7RC)

=10 (3.5/10) is significantly larger than the increase from
=2 (0.56/2). It is obvious that given the same amount of
noise in the dataset, even if noise does not change the class
distribution, a dataset with a large cost-ratio tends to be
more error prone and therefore may receive a large misclas-
sification cost. These observations indicate that when the
dataset has a large cost-ratio value, the existence of noise
becomes fatal, and a small portion of noise can corrupt the
results significantly. Because of its sensitivity to minor data
errors, a dataset with a large cost-ratio will experience more
difficulties in data cleansing, if the overall goal is to mini-
mize the misclassification cost.

Another interesting finding in Figs. 1 to 2 is that when
applying CS learners to a noisy dataset, it seems that the
trained CS classifiers have a saturation point in reacting to
the actual noise in the dataset, regardless of whether errors
change the class distribution or not. When the noise level is
below this point, it will continuously impact the CS classi-
fier. But once the noise level is beyond this point, the classi-
fier becomes insensitive to noise. The following analysis
will reveal that this saturation point is determined by two
most important factors: the class distribution and the cost-
ratio . Given a two-class dataset, assuming its class distri-
bution is a;: a,, with ¢; and «;, denoting the distribution of
the major class and the minor class respectively. The cost of
predicting a minor class instance as the major class is
CS,inr, with CS,,;, indicating the opposite cost (from the
major class to the minor class). Assuming that we have built
a CS classifier from the dataset and, for a test set 7 with x
examples, the classification error rates of this classifier on
the whole test set and the major class are & and g
respectively. The error rate for the minor class &
is the number of incorrectly classified minor class examples
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(b) WDBC dataset, proportional random noise (PRC)

Fig. 1. Impacts of class noise on the average cost of a CS classification algorithm
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Fig. 2. Impacts of class noise on the average cost of a CS classification algorithm
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divided by the total number of minor class instances, as s-
hown in Eq. (3). Then, the average misclassification cost in
T, CS g 1s denoted by Eq. (4).

K-a-& K-a o, +a)-E—a, - &
gZ:(g_K_ 1 l) ( 2 ):( 1 2) 1< (3)
o +a, o +a a,

&, K &, 0, K
cs,, - (A Ky 0K, g /K

a, t+a, a, +a, (4)
& aCS  +(eatea,—g a)r-CS

a +a,
When the average error rate ¢ increases, it normally raises
the average misclassification cost CSy,,, with its value
bounded by an upper bound given by Eq. (5).

@,

——CS if rz—

a, +a, m a, &)
CS Upper bound a

—2 . r-CS ., Otherwise

a, +a,

Actually, the upper bound in Eq. (5) is the average cost of
predicting all instances belonging to the minor class when r
> a;/a,, or predicting all instances belonging to the major
class when r < &/, (which is the optimal solution for a CS
classifier with low confidence, because any cost higher than
this upper bound is not necessary). It is understandable that
CS.uve < CSupper bouna holds most of the time, which eventu-
ally produces the inequality denoted by Eq. (6). Since

. . o —¢g-q)r<a if r>
C5,5CS,m 3{«% GHearea-g-a)rsa i r2ale
& o+ o+eoy—g-0)-r<r-a, Otherwis
(I-&g) a +& -a, r

) if
re(a, +a,)
£ <

rza, /a, (6)

(a,+&-a)r—¢ a
re(a, +a,)

Otherwise

For two class problems a;+a,=1, so Eq. (6) becomes
5*:{81'a1+{(1_51)'a1}/r if rza/a, (7)

g <
a,+(1-1/r)-¢ -a ~a,

Otherwise

With the inequality in (7), we can finally analyze the rela-
tionship between the class distribution ¢;, a,, the cost ratio
r, and the error rate &, and reveal the following facts:

1. Given a test set 7, the average misclassification error
rate £ of a CS classifier, which is trained from a training
set equivalent to 7, is bounded by a critical value &* de-
fined by Eq. (7). When r > o,/ a, the higher the value of
the cost-ratio 7, the lower the £*, and the more likely the
classifier tends to approach the saturation point.

2. In theory, when r < a,/a, ¥ becomes «, +(1-1/r)g e,

which can be approximated as ;. This means that the
larger the number of minor class instances (a larger o),
the higher the £*, and the less likely the classifier tends
to approach the saturation point. However, this conclu-
sion crucially relies on the fact that the underlying CS
learner is “optimal” and indeed knows that sticking to
the major class will lead to the lowest cost, which is not
always the case in reality (as we will analyze next).

From Section 3 and Tab. 1, we know that a;:
a,=0.627:0373 (r > «aj/a; for any r=2, 5, 10) and
CS,.;=100 for the WDBC dataset. So according to Eq. (5)
CSupper bouna 18 62.7, which is consistent with the results in
Fig. 1(a). Now the interesting results come from the results
in Fig. 2(a), which also clearly poses a saturation point of
the misclassification cost. According to Table 1 and Eq. (5),
we know that for the Sick dataset «;: «,=0.94:0.06, so the
ratio between «a;/q; is far larger than the value of r. As a
result, the CSypper pouna should be o -r-CS, /(o +0) =61

(corresponding to the second item in Eq. (5)). Unfortu-
nately, the results in Fig. 2 (a) indicate that the real CSy,.
per_bound WE gOt is about 94, which actually equals the value
of having all instances classified into the minor class (the
first item in Eq. (5)). In reality, it is understandable that the
underlying CS learners are reluctant to stick to the major
class for minimal misclassification cost, especially when
noise has changed the apriori class distributions signifi-
cantly. Instead, the CS learners will tend to stick to the mi-
nor classes in high uncertainty environments. As a result,
the results from this seriously biased dataset are consistent
with the conclusion drawn from the first item in Eq. (5).
Based on the above observations, we know that given
datasets with the same noise level but a different cost-ratio
value r, the larger the cost ratio 7, the smaller the value of
&*, then the dataset is more likely to approach to a satura-
tion point, where the misclassification cost appears to reach
the maximum. Meanwhile, class noise does not continu-
ously make an impact on the CS classifier all the time, and
after noise reaches a certain level, the CS classifier may
simply stick to the minor class. As a result, the impact of the
noise in the system becomes constant. Given a dataset with
r 2 o,/0, (which is pretty common in reality), the higher the
cost-ratio, the more likely the classifier tends to do so. For
situations 7 < o.;/al,, the conclusions will also likely hold.

4.2 Classification Accuracies

The above observations conclude that a dataset with a
higher cost-ratio is sensitive to data errors, and learners built
from such data are most likely cost intensive. This conclu-
sion does not, however, solve the concerns like: (1) why is a
learner built from noisy data with large cost-ratio cost inten-
sive? and (2) given any noisy dataset D, if users were able to
build both a normal classifier or a CS classifier, which one
of them is more trustworthy in identifying noisy examples?
Now, let’s refer to the theoretical proof and empirical com-
parisons of the classification accuracies between a normal
classifier and a CS classifier for answers.

The following analyses are based on an existing Folk Theo-
rem’ (Zadrozny et. al. 03), which states that if we have
examples drawn from the distribution:

" It was called “folk theorem” in the literature, because the authors con-
cluded that the result appears to be known, although it has not been pub-
lished yet.
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d(x,y,¢)  (®
ateol€]
where d(x,y,c) represents the distribution of the original
dataset E, then the optimal error rate classifiers built for
newly constructed distribution d”are the optimal cost mini-
mizers for data drawn from d. This theorem states that if we
sample from the original distribution, d, of dataset £ and
constructing another distribution d, the efforts which try to
learn an optimal error rate classifier on d”actually leads to a
classifier which optimizes the misclassification cost for d.

THEOREM 1: For a dataset £ with a distribution d, assum-
ing we are able to use an optimal learning theory to build a
CS (h(?)), and a normal classifier (H(?)) respectively. Then
h(t) is inferior to H(?) in terms of the average classification
accuracy. That is, Err(H) < Errh), where Erry(-) represents
the classification error rate of the classifier on X.

Proof:

Assume a CS classifier 4(f) was built from d. Then with the
CS learning formula in Eq. (1), the expected cost of A(¢) on
d can be denoted by Eq. (9).

Eyyole I(h(x) £ y)]= > d(x,y,0)-c- I(h(x) = y) ©)

d'(x,y,c)=

X,y,c
With the folk theorem in Eq. (8), we know that
d'(x,y,c) = ¢ d(x,y,c),whered’lsthe sam-

Ed(x‘ y.c) [C]
pled distribution from d. Then Eq. (9) becomes.
E yole 1(h(x) # )= E ., o le]- D d'(x, p,0) I (h(x) # Y)(10)

=E . 0lc] Ed'(x,y,c)[l(h(x) # )]

We can transform Eq. (10) as follows.

Eypy o0 % )] = E, e T(h(x) % )]

Because /(f) was built on a biased distribution d’ sampled
from d, therefore Err,(H(t)) < Err, (h(t)); otherwise, there

is no need for H() to exist (we can directly use A(#) on d for
normal classification). Therefore, we have Eq. (14) and the
statement of Theorem 1 is true.

Err,(H(@)) < Err,(h(?)) (14)

Now let’s turn to the experimental results in Fig. 4 to
evaluate whether the empirical results indeed support our
theoretical analysis (the meaning of each curve in Fig. 4 is
denoted in Fig. 3). In Fig. 4, Ac Cs E’and Ac Nm_E’indi-
cate the classification accuracies of a normal and a CS clas-
sifier trained from E "respectively. As shown in Fig. 4, when
the cost-ratio is small (#=2), the differences between the
accuracies of the normal and CS classifiers are trivial, with
the accuracy of the CS classifier slightly worse. This is un-
derstandable, because a CS classifier likely sacrifices the
accuracy for minimal costs. When the cost-ratio gets larger
(=5 or higher), the accuracy of the CS classifier becomes
significantly worse than the normal classifier. If we compare
Fig. 4(a) with Fig. 1(a) and Fig. 4(c) with Fig. 2(a), we can
find that this is actually the reason a dataset with a large
cost-ratio is more willing to approach to the saturation
point. In this situation, a small portion of noise will make
the CS classifier ignore the classification accuracy and stick
to the “optimal” class.

Theorem 1 together with the results in Fig. 4 clearly indi-
cates that in general situations, a CS classifier is inferior to a
normal classifier, in terms of classification accuracy. Be-
cause removing mislabeled training examples was shown to
lead to a better CS learner (as shown in Figs. 1 to 2), class
noise handing for effective CS learning will crucially de-
pend on accurate noise identification mechanisms. As a re-
sult, in noisy environments, if we want to adopt a noise
identification mechanism for data cleansing, we shall trust a

dteyol] (11 normal classifier rather than a CS classifier, because the
¢ former always has a higher accuracy in determining the
< 7Ed(x,y,c)[1(h(x) * y)] 1 ht 1 f 5 t
Ey,0lc] right class of an instance.
Because Ed(x,y,c)[c] =argmax, {(x, v, C) 1= d} ,Eq.(11) —&—Ac_Cs_E' (=2) —#—Ac_Nm_E' (=2) —A—Ac_Cs_E' (=5)
becomes % Ac_Nm_E' (r=5) —¥—Ac_Cs_E' (r=10) —@—Ac_Nm_E' (=10)
Ed’(x,y.c)[](h(x) #y)] < Ed(x,y’c)[l(h(x) =] (12) Fig. 3. The meaning of each curve in Fig. 4
That is Err,(h(t)) < Err,(h(t)) (13)
9! 9 100 99,
85 85 80 :3
5 65 5 65 5 5 95
é((-" 55 § 55 ;3 40 § ::
45 § 45 20
e Y j e W X
b 0l 03° o5 04! 00 0.(;]71 0.12 : o.zg : 0.290 ¢ 8 o’ of 03? 03! % 0.8112 0.8'225 o,géga oo%‘
Noise Level Noise Level Noise Level Noise Level
(a) WDBC Dataset (TRC) (b) WDBC Dataset (PRC) (c) Sick Dataset (TRC) (d) Sick Dataset (PRC)

Fig. 4. Impacts of class noise on the classification accuracy of normal and CS classification algorithms
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4.3 Misclassification Costs and Accuracies

For a given example /;, assume we know the probability of
each class j, P(j|I;), the Bayes optimal prediction for J; is the
class i that minimizes the conditional risk (Domingos 99,
Duda & Hart 73), as defined by Eq. (15). The conditional
risk P(i|ly) is the conditional probability of predicting in-
stance /; belongs to class i. According to the Bayesian for-
mula, we can transform Eq. (15) to Eq. (17). The Bayes
optimal prediction is guaranteed to achieve the lowest pos-
sible overall cost (i.e., the lowest expected cost over all pos-
sible examples [;, weighted by their probabilities P(Z})).

With Eq. (17), it is clear that C(i, ), P(, | j), and ¢, to-
gether with the rule above imply a partition of the example
space with j regions, such that class j is the optimal (least-
cost) prediction in region j. The goal of cost-sensitive classi-
fication is to find the frontiers between these regions,
explicitly or implicitly. However, this is complicated by two
factors: (1) their dependence on the cost matrix C; and (2)
the changes of both likelihood P(/; | j) and prior probability
o; of different classes j, caused by the existence of noise. In
general, as misclassifying examples of class j becomes more
expensive relative to misclassifying others, the region where
j should be predicted will expand at the expense of the re-
gions of other classes, even if the class probabilities P(j|/})
remain unchanged. In noisy environments, the probability of
each class j, P(j|I;), becomes less reliable, due to the reason
that noise modifies the likelihood P(/;)j) and the prior prob-
ability ¢;. With Eq. (15), it is understandable that any error
introduced to the likelihood P(/})j) is going to be magnified
by the cost matrix C(i, j) (the CS classifier tends to favor
“expensive” classes), even if noise does not change the
apriori class distribution ¢;. As a result, the higher the cost-
ratio in the dataset, the more sensitive the CS classifier be-
haves to the data errors.

argmin, P(i| /,) = argmin, ZP(j [1,)-C(@,)) (15)
J
According to Bayesian formula, we have

PP _PUAD-PU)  (16)

D P, |i)- P() P

ieY

where P(I; | j) is the likelihood of instance [, given a par-

ticular class j, and P is the sum of all the likelihoods. As-

sume o=P(j) is the prior probability of class j. Then, Eq.

(15) can be transformed as follows:

P, 1 ))-CGJ)a, (17)
P

P(j‘lk):

arg min; P(i|1,) = arg minlz
J

5 Conclusions

This paper has empirically and theoretically studied the im-
pacts of mislabeled training examples (commonly referred
to as class noise) on cost-sensitive learning. We observed
behaviors of cost-sensitive learners trained from different
noisy environments and assessed their performances in
terms of average misclassification cost and classification

accuracy. Our quantitative study concludes that the exis-
tence of class noise can bring serious troubles (higher mis-
classification costs and lower classification accuracy) for
cost-sensitive learning, especially when misclassifying some
classes becomes extremely expensive. Removing noisy in-
stances will significantly improve the performance of a cost-
sensitive classifier learned from noisy environments. Our
observations suggest that cost-sensitive learning should be
carefully conducted in noisy environments. Comparing to
general inductive learning, the success of the cost-sensitive
learning crucially depends on the quality of the underlying
data, where system performances can deteriorate dramati-
cally in the presence of a small portion of data errors.
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