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Abstract

We add a limited but useful form of quantification
to Coalition Logic, a popular formalism for rea-
soning about cooperation in game-like multi-agent
systems. The basic constructs of Quantified Coali-
tion Logic (QCL) allow us to express properties as
“there exists a coalition C satisfying property P
such that C can achieve ϕ”. We give an axioma-
tization of QCL, and show that while it is no more
expressive than Coalition Logic, it is exponentially
more succinct. The time complexity of QCL model
checking for symbolic and explicit state represen-
tations is shown to be no worse than that of Coali-
tion Logic. We illustrate the formalism by show-
ing how to succinctly specify such social choice
mechanisms as majority voting, which in Coalition
Logic require specifications that are exponentially
long in the number of agents.

1 Introduction

Game theoretic models of cooperation has proved to be
a valuable source of techniques and insights for the field
of multi-agent systems, and cooperation logics such as
Alternating-time Temporal Logic (ATL) [Alur et al., 2002]

and Coalition Logic (CL) [Pauly, 2001] have proved to be
powerful and intuitive knowledge representation formalisms
for such games. Many important properties of cooperative
scenarios require quantification over coalitions. However,
existing cooperation logics provide no direct facility for such
quantification, and expressing such properties therefore re-
quires formulae that are exponentially long in the number of
agents. Examples include expressing the notion of a weak
veto player [Wooldridge and Dunne, 2004] in CL, or solu-
tion concepts from cooperative game theory such as non-
emptyness of the core in Coalitional Game Logic [Ågotnes
et al., 2006]. An obvious solution would be to extend, for ex-
ample, ATL, with a first-order-style apparatus for quantifying
over coalitions. In such a quantified ATL, one might express
the fact that agent i is a necessary component of every coali-
tion able to achieve ϕ by the following formula:

∀C : 〈〈C 〉〉♦ϕ→ (i ∈ C )

However, adding quantification in such a naive way leads to
undecidability over infinite domains (using basic quantifica-
tional set theory we can define arithmetic), and very high
computational complexity even over finite domains. The
question therefore arises whether we can add quantification
to cooperation logics in such a way that we can express use-
ful properties of cooperation in games without making the re-
sulting logic too computationally complex to be of practical
interest. Here, we answer this question in the affirmative.

We introduce Quantified Coalition Logic (QCL), by mod-
ifying the existing cooperation modalities of CL in order to
enable quantification. In CL, the basic cooperation constructs
are 〈C 〉ϕ, meaning that coalition C can achieveϕ1; these op-
erators are in fact modal operators with a neighbourhood se-
mantics. In QCL, we replace these operators with expressions
〈P〉ϕ and [P ]ϕ; here, P is a predicate over coalitions, and
the two sentences express the fact that there exists a coalition
C satisfying property P such that C can achieve ϕ and all
coalitions satisfying property P can achieve ϕ, respectively.
Thus we add a limited form of quantification to CL without
the apparatus of quantificational set theory. We show that the
resulting logic, QCL, is exponentially more succinct than CL,
while being computationally no worse with respect to the key
problem of model checking.

The remainder of the paper is structured as follows. After
a brief review of CL, we introduce a language for expressing
coalition predicates, and show that the satisfiability problem
for this language is NP-complete. We then introduce QCL, and
give its complete axiomatization. We show that while QCL is
no more expressive than Coalition Logic, it is nevertheless
exponentially more succinct, in a precise formal sense. We
then extend the language of coalition predicates to talk about
the cardinality of coalitions, and show that the corresponding
completeness and succinctness results also hold for QCL over
this extended language. We illustrate QCL by showing how
it can be used to succinctly specify a social choice mecha-
nism, which in CL requires specifications that are exponen-
tially long in the number of agents; we then round off with
some conclusions.

1We adopt a notation which is in line with that in ATL: we use
〈C 〉 for ‘there is a coalition C such that . . . ’ where [Pauly, 2001]

uses [C ], and we write [C ] for Pauly’s 〈C 〉.
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2 Coalition Logic

Since QCL is based on Pauly’s Coalition Logic CL [Pauly,
2001], we first briefly introduce the latter. CL is a proposi-
tional modal logic, containing an indexed collection of unary
modal operators 〈C 〉 and [C ], where C is a coalition, i.e., a
subset of a given set of agents Ag . The intended interpreta-
tion of 〈C 〉ϕ is that C can achieve ϕ, or, that C is effective
for ϕ. Formulae of CL are defined by the following grammar
(with respect to a set Φ0 of Boolean variables, and a fixed set
Ag of agents):

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈C 〉ϕ

where p ∈ Φ0 is an atomic proposition and C a subset of Ag .
As usual, we use parentheses to disambiguate formulae where
necessary, and define the remaining connectives of classical
logic as abbreviations: ⊥ ≡ ¬�, ϕ → ψ ≡ (¬ϕ) ∨ ψ and
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ).

A model M for (over Φ0, Ag) is a triple M = 〈S , E , π〉
where

• S = {s1, . . . , so} is a finite non-empty set of states;

• E : 2Ag × S → 22S

is an effectivity function, where
T ∈ E(C , s) is intended to mean that from state s , the
coalition C can cooperate to ensure that the next state
will be a member of T ; and

• π : S → 2Φ0 is a valuation function.

Call the set of all models general models, denoted by Gen .
It is possible to define a number of constraints on effectivity
functions, depending upon exactly which kinds of scenario
they are intended to model [Pauly, 2001, pp.24–39]. Unless
stated otherwise, we will assume that our modelsM are weak
playability models M ∈ WP , where effectivity functions are
outcome monotonic, i.e., ∀C ⊆ Ag, ∀s ∈ S , ∀X ,Y ⊆ S , if
X ∈ E(C , s) and X ⊆ Y , then Y ∈ E(C , s), and moreover
that effectivity functions satisfy Pauly’s weak playability con-
ditions [Pauly, 2001, p.30]. An interpretation for CL is a pair
M, s where M is a model and s is a state in M. The satisfac-
tion relation “|=CL” for CL holds between interpretations and
formulae of CL. We say that coalition C can enforce ϕ in s if
for some T ∈ E(C , s), ϕ is true in all t ∈ T . That is, C can
make a choice such that, irrespective of the others’ choices,
ϕ will hold. Formally, the satisfaction relation is defined by
the following inductive rule (we assume the cases for p, �,
negation and disjunction are clear):

M, s |=CL 〈C 〉ϕ iff ∃T ∈ E(C , s) such that ∀t ∈ T ,
we have M, t |=CL ϕ.

The notions of truth of ϕ in a model (M |=CL ϕ) and validity
in a class of models C (C |=CL ϕ) are defined as usual. The
inference relation �CL for CL is given in table 1 (taken from
[Pauly, 2001], but adapted to our notation): it is sound and
complete with respect to the class of weak playability models
WP ([Pauly, 2001, p. 55]).

3 Quantified Coalition Logic

If we have n agents in Ag , and one wants to express that some
coalition can enforce some atomic property p, one needs to

Prop �CL ψ
Ag⊥ �CL ¬〈Ag〉⊥
� �CL ¬〈∅〉⊥ → 〈C 〉�
⊥ �CL 〈C 〉⊥ → 〈C ′〉⊥
Ag �CL ¬〈∅〉¬ϕ → 〈Ag〉ϕ
S �CL (〈C1〉ϕ1 ∧ 〈C2〉ϕ2) → 〈C1 ∪ C2〉(ϕ1 ∧ ϕ2)

MP �CL ϕ→ ψ, �CL ϕ ⇒ �CL ψ
Distr �CL ϕ→ ψ ⇒ �CL 〈C 〉ϕ→ 〈C 〉ψ

Table 1: Axioms and Rules for Coalition Logic. In (Prop), ψ
is a propositional tautology, in axiom (⊥), we require C ′ ⊆
C , and for (S ), C1 ∩C2 = ∅.

enumerate 2n disjunctions of the form 〈C 〉p. The idea be-
hind Quantified Coalition Logic (QCL) is to avoid this blow-
up in the length of formulas. Informally, QCL is a proposi-
tional modal logic, containing an indexed collection of unary
modal operators 〈P〉ϕ and [P ]ϕ. The intended interpretation
of 〈P〉ϕ is that there exists a set of agents C , satisfying pred-
icate P , such that C can achieve ϕ. We refer to expressions
P as coalition predicates, and we now define a language for
coalition predicates; QCL will then be parameterised with re-
spect to such a language. Of course, many coalition predicate
languages are possible, with different properties, and later we
will investigate another such language. Throughout the re-
mainder of this paper, we will assume a fixed, finite set Ag of
agents.

Coalition Predicates: Syntactically, we introduce two
atomic predicates subseteq and supseteq , and derive a stock
of other predicate forms from these. Formally, the syntax of
coalition predicates is given by the following grammar:

P ::= subseteq(C ) | supseteq(C ) | ¬P | P ∨ P

where C ⊆ Ag is a set of agents. One can think of the
atomic predicates subseteq(C ) and supseteq(C ) as a stock

of 2|Ag|+1 propositions, one for each coalition, which are then
to be evaluated in a given coalition Co. The circumstances
under which a concrete coalition Co satisfies a coalition pred-
icate P , are specified by a satisfaction relation “|=cp”, defined
by the following four rules:

Co |=cp subseteq(C ) iff Co ⊆ C

Co |=cp supseteq(C ) iff Co ⊇ C

Co |=cp ¬P iff not Co |=cp P

Co |=cp P1 ∨ P2 iff Co |=cp P1 or Co |=cp P2

Now we can be precise about what it means that “a coalition
Co satisfies P”: it just means Co |=cp P . We will assume
the conventional definitions of implication (→), biconditional
(↔), and conjunction (∧) in terms of ¬ and ∨.

Coalitional predicates subseteq(·) and supseteq(·) are
in fact not independent. They are mutually definable –
due to the fact that the set of all agents Ag is assumed
to be finite. We then have that ([Ågotnes and Wal-
icki, 2006]) subseteq(C ) ≡

∧
i∈Ag\C ¬supseteq({i}) and

supseteq(C ) ≡
∧

C ′⊆Ag,C �⊆C ′ ¬subseteq(C ′). The reason
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that we include both types of predicates as primitives is a
main motivating factor of this paper: we are interested in suc-
cinctly expressing quantification in coalition logic.

We find it convenient to make use of the following derived
predicates:

eq(C ) ≡ subseteq(C ) ∧ supseteq(C )
subset(C ) ≡ subseteq(C ) ∧ ¬eq(C )
supset(C ) ≡ supseteq(C ) ∧ ¬eq(C )

incl(i) ≡ supseteq({i})
excl(i) ≡ ¬incl(i)

any ≡ supseteq(∅)
nei(C ) ≡

∨
i∈C incl(i)

ei(C ) ≡ ¬nei(C )

The reader may note an obvious omission here: we have not
introduced any explicit way of talking about the cardinality
of coalitions; such predicates will be discussed in Section 4.

We say that a coalition predicate P is Ag-consistent if for
some Co ⊆ Ag , we have Co |=cp P , and P is Ag-valid if
Co |=cp P for all Co ⊆ Ag .

The model checking problem for coalition predicates is the
problem of checking whether, for given Co and P , we have
Co |=cp P [Clarke et al., 2000]. It is easy to see that this
problem is decidable in polynomial time. The satisfiability
problem for coalition predicates is the problem of deciding
whether P is consistent. We get the following.

Theorem 1 The satisfiability problem for coalition predi-
cates is NP-complete.

Quantified Coalition Logic: We now present QCL. Its for-
mulae are defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈P〉ϕ | [P ]ϕ

Models for CL and QCL are the same. The satisfaction relation
for the new operators is as follows.

M, s |=QCL 〈P〉ϕ iff ∃C ⊆ Ag: C |=cp P and ∃T ∈
E(C , s) such that ∀t ∈ T , we have M, t |=QCL ϕ.

M, s |=QCL [P ]ϕ iff ∀C ⊆ Ag: C |=cp P implies
∃T ∈ E(C , s) such that ∀t ∈ T , M, t |=QCL ϕ.

Readers familiar with modal logic may wonder why we did
not introduce the universal coalition modality [P ]ϕ as the
dual ¬〈P〉¬ϕ. In fact such a definition would not serve the
desired purpose. Consider the pattern of quantifiers in the
semantics of 〈·〉: ∃∃∀. Taking the dual ¬〈·〉¬ would yield
the quantifiers ∀∃∃, rather than the desired ∀∃∀ pattern. Of
course, this does not mean that [P ]ϕ is not definable from
〈P〉ϕ (and the propositional connectives) in some other way.
In fact:

[P ]ϕ ≡
∧

{C |C |=pcP}

〈eq(C )〉ϕ

Thus, for expressiveness, 〈C 〉 together with the proposition-
als are adequate connectives, and [P ]ϕ is definable. The rea-
son we introduce the box cooperation modality as a separate
construct is one of the main motivations in this paper, as dis-
cussed before for the different predicate operators: succinct-
ness of expression.

Example QCL Expressions: To get a flavour of the kind
of properties we can express in QCL, we present some exam-
ple QCL formulae. First, note that the conventional CL/ATL

ability expression is defined simply as: 〈C 〉ϕ ≡ 〈eq(C )〉ϕ.
We can also succinctly express properties such as the solution
concepts from Qualitative Coalitional Games [Wooldridge
and Dunne, 2004]. For example, a weak veto player for ϕ
is an agent that must be present in any coalition that has the
ability to bring about ϕ: WVETO(C , ϕ) ≡ ¬〈excl(i)〉ϕ.
Of course, if no coalition has the ability to achieve ϕ, then
this means that every agent is a veto player for ϕ. A strong
veto player for ϕ is thus an agent that is both a weak veto
player for ϕ and that is a member of some coalition that can
achieve ϕ: VETO(i , ϕ) ≡ WVETO(i , ϕ) ∧ 〈incl(i)〉ϕ.
A coalition C is weakly minimal for ϕ if no subset of C can
achieve ϕ: WMIN (C , ϕ) ≡ ¬〈subset(C )〉ϕ. And C are
simply minimal if they are weakly minimal and also able to
bring about ϕ: MIN (C , ϕ) ≡ 〈C 〉ϕ ∧ WMIN (C , ϕ). Fi-
nally, GC (C ) says that C is the grand coalition: GC (C ) ≡
[supset(C )]⊥.

Model Checking: Model checking is currently regarded as
perhaps the most important computational problem associ-
ated with any temporal/modal logic, as model checking ap-
proaches for such logics have had a substantial degree of suc-
cess in industry [Clarke et al., 2000]. The explicit state model
checking problem for QCL is as follows:

Given a model M, state s in M, and formula ϕ of
QCL, is it the case that M, s |=QCL ϕ?

Notice that in this version of the problem, we assume that
the components of the model M are explicitly enumerated
in the input. It is known that the corresponding problem for
Coalition Logic may be solved in polynomial time O(|M| ·
|ϕ|) [Pauly, 2001, p.50] (as may the explicit state ATL model
checking problem [Alur et al., 2002]). Perhaps surprisingly,
the QCL model checking problem is no worse:

Theorem 2 The explicit state model checking problem for
QCL may be solved in polynomial time.

Of course, this result is not terribly useful, since it assumes
a representation of M that is not feasible, since it is expo-
nentially large in the number of agents and Boolean vari-
ables in the system. Implemented model checkers use suc-
cinct languages for defining models; for example, the REAC-
TIVE MODULES LANGUAGE (RML) of Alur et al [Alur and
Henzinger, 1999]. Assuming an RML representation, Coali-
tion Logic model checking is PSPACE-complete [Hoek et al.,
2006], and thus no easier than theorem proving in the same
logic [Pauly, 2001, p.60]. It is therefore more meaningful to
ask what the model checking complexity of QCL is for such
a representation. We only give a very brief summary of RML

– space restrictions prevent a complete description; see [Alur
and Henzinger, 1999; Hoek et al., 2006] for details.

In REACTIVE MODULES, a system is specified as a col-
lection of modules, which correspond to agents. Here is a
(somewhat simplified) example of an RML module:
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module toggle controls x
init []� � x ′ := �

[]� � x ′ := ⊥
update []x � x ′ := ⊥

[](¬x ) � x ′ := �

This agent toggle, controls a single Boolean variable, x . The
choices available to the agent at any given time are defined
by the init and update rules. The init rules define the
choices available to the agent with respect to the initialisation
of its variables, while the update rules define the agent’s
choices subsequently. The init rules define two choices for
the initialisation of this variable: assign it the value � or the
value ⊥. Both of these rules can fire initially, as their condi-
tions (�) are always satisfied; in fact, only one of the avail-
able rules will ever actually fire, corresponding to the “choice
made” by the agent on that decision round. With respect to
update rules, the first rule says that if x has the value �,
then the corresponding choice is to assign it the value ⊥,
while the second rule ‘does the opposite’. In other words,
the agent non-deterministically chooses a value for x initially,
and then on subsequent rounds toggles this value.

The following can be proved by an adaption and extension
of the proof in [Hoek et al., 2006].

Theorem 3 The model checking problem for QCL assuming
an RML representation for models is PSPACE-complete.

This result, we believe, is potentially much more interesting
than that for explicit state model checking, since it tells us
that QCL model checking is no more complex than Coalition
Logic even for a realistic representation of models.

Expressive Power: We now argue that QCL is equivalent in
expressive power to Coalition Logic. To begin, consider the
following translation τ from QCL formulae to CL formulae.
For atoms p and �, τ is the identity, and it distributes over
disjunction, and moreover:

τ(〈P〉ϕ) =
∨

{C |C |=pcP}〈C 〉τ(ϕ)

τ([P ]ϕ) =
∧

{C |C |=pcP}〈C 〉τ(ϕ)

We already know from above that we have a translation
in the other direction: let us call it δ, with defining clause
δ(〈C 〉ϕ) = 〈eq(C )〉δ(ϕ).

As an example, suppose Ag = {a, b, c} and let P =
(supset({a})∨supset({b})∨supset({c}))∧¬eq({a, b, c}).
Now, consider the QCL formula ψ = 〈P〉q . Then
τ(ψ) = 〈{a, b}〉q ∨ 〈{a, c}〉q ∨ 〈{b, c}〉q while δ(τ(ψ)) =
〈eq({a, b})〉q ∨ 〈eq({a, c})〉q ∨ 〈eq({b, c})〉q . Hence, one
can think of δ(τ(ϕ)) as a normal form for ϕ, where the only
coalition predicate in ϕ is eq . That QCL and CL have equal ex-
pressive power follows from the fact that the two translations
preserve truth.

Theorem 4 Let M be a model, and s a state, and let ϕ be a
QCL formula, and ψ a CL formula. Then:

1. M, s |=QCL ϕ iff M, s |=CL τ(ϕ)

2. M, s |=CL ψ iff M, s |=QCL δ(ψ)

P0 �cp supseteq(∅)
P1 �cp supseteq(C ) ∧ supseteq(C ′)

↔ supseteq(C ∪ C ′)
P2 �cp supseteq(C ) → ¬subseteq(C ′)
P3 �cp subseteq(C ∪ {a}) ∧ ¬supseteq(a)

→ subseteq(C )
P4 �cp subseteq(C ) → subseteq(C ′)
Prop �cp ψ
MP �cp ϕ→ ψ, �cp ϕ ⇒ �cp ψ
δAx �QCL δ(Ax )
δ〈〉 �QCL 〈P〉ϕ↔∨

{C |C�cpP}〈eq(C )〉ϕ
δ[] �QCL [P ]ϕ↔∧

{C |C�cpP}〈eq(C )〉ϕ

δR δ(R)

Table 2: Axioms and Rules for Quantified Coalition Logic.
The condition of P2 is C �⊆ C ′, for P4 it is C ⊆ C ′, ψ
in Prop is a propositional tautology; Ax in δAx is any CL-
axiom, R in δR is any CL-rule

Axiomatization: The translations introduced above pro-
vide the key to a complete axiomatization of QCL. First, recall
Pauly’s axiomatization of Coalition Logic (Table 1). Given
this, and the translations defined previously, we obtain an ax-
iom system for QCL-formulae as follows. First, QCL includes
the δ translation of all the CL axioms and rules, and axioms
that state that the δ-translation is correct: see the lower part of
Table 2. On top of that, QCL is parametrised by an inference
relation �cp for coalition predicates. The axioms for this in

Table 2 are taken from [Ågotnes and Walicki, 2006].

Theorem 5

1. ([Ågotnes and Walicki, 2006]) �cp is sound and com-
plete: for any P , |=cp P ⇔ �cp P

2. For any CL formula ϕ, �CL ϕ ⇒ �QCL δ(ϕ)

3. Let ϕ be any QCL formula. Then �QCL ϕ ↔ δ(τ(ϕ))
and, in particular, �QCL ϕ iff �QCL δ(τ(ϕ)).

Theorem 6 (Completeness and Soundness) Letϕ be an ar-
bitrary QCL-formula. Then: �QCL ϕ iff |=QCL ϕ

Examples of derivable properties include:

|=QCL [P1]ϕ→ [P2]ϕ when |=cp P1 → P2

|=QCL ([P1]ϕ ∧ [P2]ϕ) → [P1 ∨ P2]ϕ

These illustrate that we not only have primitive modal oper-
ators, but also some kind of operations over them, like nega-
tion and conjunction. This of course is very reminiscent of
Boolean modal logic, where one studies algebraic operations
like complement, meet and join on modal operators [Gargov
and Passy, 1987]. We will not pursue the details of the con-
nection here.

Succinctness: Theorem 4 tells us that the gain of QCL over
CL is not its expressivity. Rather, the advantage of QCL is
in its succinctness of representation. For example, for the
QCL formula 〈any〉q , the translated CL formula τ(〈any〉q) is
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exponentially longer, since it has to explicitly enumerate all
coalitions in Ag . Is it however generally the case that τ(ϕ)
is shorter than ϕ? Since the translation does some computa-
tions under |=cp , this is in general not the case. For instance,
if P = supseteq({a}) ∧ supseteq({c}) ∧ supseteq({b}) ∧
(subseteq({a, b, c}) ∨ subseteq({a, b, d})), then ψ = 〈P〉q
would have as a τ -translation 〈{a, b, c}〉q , which is shorter
than the original QCL-formula ψ. But then again, δ(τ(ψ))
is a QCL formula that is equivalent to ψ, but that has a size
similar to τ(ψ).

To make this all precise, let us define the length �(ϕ) of
both QCL and CL formulas ϕ, as follows:

�(�) = �(p) = 1
�(ϕ1 ∨ ϕ2) = �(ϕ1) + �(ϕ2) + 1
�(¬ϕ) = �(ϕ) + 1
�(〈P〉ϕ) = �[P ]ϕ) = prsize(P) + �(ϕ)
�(〈C 〉ϕ) = coalsize(C ) + �(ϕ)

with

prsize(subseteq(C )) = coalsize(C ) + 1
prsize(supseteq(C )) = coalsize(C ) + 1
prsize(¬P) = prsize(P) + 1
prsize(P1 ∨ P2) = prsize(P1) + prsize(P2) + 1
coalsize(C ) = | C |

Let ϕ and ψ be X and Y formulas, respectively, where
X and Y both range over CL and QCL. Then we say that
they are equivalent with respect to some class of models if
they have the same satisfying pairs M, s , that is, for each
M, s in the class of models it is the case that M, s |=X ϕ
iff M, s |=Y ψ. This definition naturally extends to sets of
formulas.

In the following theorem we show that QCL is exponen-
tially more succinct than CL, over general models. This no-
tion of relative succinctness is taken from [Lutz, 2006], who
demonstrates that public announcement logis is more succinct
than epistemic logic.

Theorem 7
There is an infinite sequence of distinct QCL formulas
ϕ0, ϕ1, . . . such that, not only is the CL formula τ(ϕi) equiv-
alent to ϕi for every i ≥ 0, but every CL formula ψi that
is equivalent, with respect to general models, to ϕi has the

property �(ψi) ≥ 2|ϕi |.

4 Coalition Size

As we noted earlier, an obvious omission from our language
of coalition predicates is designated predicates for expressing
cardinality properties of coalitions. In this section, we ex-
plore extensions to the framework for this purpose. The ob-
vious approach is to introduce primitive coalition predicates
geq(n), where n ∈ N, with semantics as follows:

C |= geq(n) iff |C | ≥ n

Given this predicate, we can define several obvious derived
predicates (see also [Ågotnes and Alechina, 2006] for a dis-
cussion of a similar language).

gt(n) ≡ geq(n + 1)
lt(n) ≡ ¬geq(n)

leq(n) ≡ lt(n + 1)
maj (n) ≡ geq(�(n + 1)/2�)
ceq(n) ≡ (geq(n) ∧ leq(n))

The first natural question is whether geq(n) is definable in
QCL. Indeed it is:

geq(n) ≡
∨

C⊆Ag,|C |≥n

supseteq(C ) (1)

However, we again see that such a definition leads to expo-
nentially large formulae, which justifies extending the pred-
icate language of QCL with an atomic coalition predicate
geq(n) for every n ∈ N. Call the resulting logic QCL(≥),
and let |=cp≥ and |=QCL(≥) denote the satisfiability rela-
tions for QCL(≥) predicates and QCL(≥) formulae, respec-
tively. Once again, the gain is not expressiveness but suc-
cinctness. As another example of the added succinctness,
consider the CL formula 〈C 〉p. In QCL this cannot in general
be written by any less complex formula than 〈subseteq(C ) ∧
supseteq(C )〉p, but in QCL(≥) it can be simplified somewhat
to 〈supseteq(C )∧¬geq(|C |+1)〉p (which in general is sim-
pler since one of the enumerations of the agents in C is re-
placed by a number).

A subtle but important issue when reasoning with the logic
is the way in which the natural number argument of the
geq(. . .) predicate is represented. Suppose, (following stan-
dard practice in complexity theory), that we represent the
argument in binary. Now, we ask whether a given coali-
tion predicate P is satisfiable, where P contains a constraint
geq(n). Now checking the satisfiability of such constraints
is not obviously in NP. The problem is that the witness C
to the satisfiability of P is exponentially larger than the con-
straint geq(n). Of course, if we express the natural number
n in unary, then this is not an issue. But unary is not a realis-
tic or practical representation for numbers. It turns out, how-
ever, that we do in fact get NP completeness for the satisfiabil-
ity problem also for QCL(≥), although the argument requires
some more work. The reason is that we can use an efficient
encoding of the witness C . This was shown by [Ågotnes and
Alechina, 2006] for a similar problem (cf. Section 5).

Let Ag(P) and subp(P) denote the set of agents, and the
set of sub-predicates, respectively, occurring in a predicate P .

Lemma 1 Any satisfiable QCL(≥) predicate P is satisfied by
a coalition consisting of no more than 1 + maxP agents,
where 1 + maxP equals

max ({|Ag(P)|,max ({geq(n) : geq(n) ∈ subp(P)})})

Theorem 8 The satisfiability problem for QCL(≥) coalition
predicates is NP-complete.

It is straightforward to lift the translation τ from QCL to
CL to the case when also the additional predicates of QCL(≥)
are allowed, and it is easy to see that Theorem 4 holds also
for QCL(≥) formulae. For axiomatisation, we only need to
add axioms for the geq(n) predicates to the predicate calclu-
lus. That can be achieved simply by adding (1) as an axiom
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(MIN 0) �cp geq(0)
(MIN 1) �cp geq(n) → geq(m) (m < n)
(MIN 2) �cp supseteq({a1}) ∧ · · · ∧ supseteq({ak})

→ geq(k) ∀i �= j ai �= aj

Table 3: Extra predicate calculus axioms for QCL(≥).

schema. A more “direct” axiomatisation of geq(n) is shown

in Table 3, taken from [Ågotnes and Alechina, 2006]. Let
�cp≥ denote derivability in the QCL predicate calculus (from
Table 2) extended with the axioms in Table 3. The follow-
ing is easily obtained from a similar result in [Ågotnes and
Alechina, 2006]:

Lemma 2 The QCL(≥) predicate calculus is sound and com-
plete: for any QCL(≥) predicate P , |=cp≥ P ⇔
�cp≥ P

Let �QCL(≥) denote derivability in the system obtained by
replacing �cp with �cp≥ in the definition of �QCL (Table 2).

Theorem 9 (Completeness and Soundness) Let ϕ be a
QCL(≥)-formula. Then: �QCL(≥) ϕ iff |=QCL(≥) ϕ

To illustrate the use of QCL(C) for reasoning about multi-
agent systems, consider the expression of majority voting:

An electorate of n voters wishes to select one of
two outcomes ω1 and ω2. They want to use a sim-
ple majority voting protocol, so that outcome ωi

will be selected iff a majority of the n voters state
a preference for it. No coalition of less than ma-
jority size should be able to select an outcome, and
any majority should be able to choose the outcome
(i.e., the selection procedure is not influenced by
the “names” of the agents in a coalition). One out-
come must be selected, but both outcomes should
not be selected simultaneously.

We express these requirements as follows. First: any majority
should be able to select an outcome.

([maj (n)]ω1) ∧ ([maj (n)]ω2)

No coalition that is not a majority can select an outcome.

(¬〈¬maj (n)〉ω1) ∧ (¬〈¬maj (n)〉ω2)

Either outcome ω1 or ω2 must result.

〈any〉(ω1 ∨ ω2)

Both outcomes cannot be selected simultaneously.

〈any〉¬(ω1 ∧ ω2)

Notice that majority voting cannot be succinctly specified us-
ing regular Coalition Logic.

5 Related Work and Conclusions

Quantified Coalition Logic adds a limited but useful form of
quantification to Coalition Logic, which is computationally
tractable. The motivation is succinctness rather than expres-
siveness: QCL is exponentially more expressive than CL.

While first-order temporal logics have been studied in the
literature, and CL can be seen as the next-time fragment
of ATL which again is a generalisation of the branching-
time temporal logic Computational Tree Logic (CTL), we
are not aware of any other works on quantification in CL

or ATL. Lately, there has been some work on generalis-
ing the coalition modalities in another direction: to explic-
itly include actions and strategies [van der Hoek et al., 2005;
Ågotnes, 2006].

Opportunities for future work include a more detailed un-
derstanding of the relationship between QCL and Boolean
modal logic.
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[Ågotnes and Walicki, 2006] T. Ågotnes and M. Walicki.
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