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Abstract

Although there are some research efforts toward re-
source allocation in multi-agent systems (MAS),
most of these work assume that each agent has
complete information about other agents. This re-
search investigates interactions among selfish, ra-
tional, and autonomous agents in resource alloca-
tion, each with incomplete information about other
entities, and each seeking to maximize its expected
utility. This paper presents a proportional resource
allocation mechanism and gives a game theoretical
analysis of the optimal strategies and the analysis
shows the existence of equilibrium in the incom-
plete information setting. By augmenting the re-
source allocation mechanism with a deal optimiza-
tion mechanism, trading agents can be programmed
to optimize resource allocation results by updating
beliefs and resubmitting bids. Experimental results
showed that by having a deal optimization stage,
the resource allocation mechanism produced gen-
erally optimistic outcomes (close to market equi-
librium).

1 Introduction

In systems involving multiple autonomous agents, it is of-
ten necessary to decide how scarce resources should be al-
located. The allocation of resources within a system of au-
tonomous agents, is an exciting area of research at the in-
terface of computer science and economics [Johari et al.,
2005]. Market mechanisms have been advocated as an ef-
fective method to control electronic resources and been used
in resource allocation [Clearwater and Clearwater, 1996].
These resource allocation mechanisms which mostly rely
on derived concepts from cooperative game theory often
assume that agents share the same desires and have com-
plete information about the world [Clearwater and Clearwa-
ter, 1996; Maheswaran and Başar, 2003; Johari et al., 2005;
Bredin et al., 2003]. Under such settings, there is much re-
lated work concerning issues in resource allocation like com-
plexity, preference, procedure, etc [Chevaleyre et al., 2006;
Endriss et al., 2006; Endriss and Maudet, 2005].

Generally, agents are assumed to be self-interested and
have incomplete information. The assumption of incomplete

information is intuitive because in practice, agents have pri-
vate information, and for strategic reasons, they do not re-
veal their strategies, constraints, or preferences [Sim, 2005].
In [Rosenschein and Zlotkin, 1994, p.54], it was noted that
the strategy of a trading agent corresponds to its internal pro-
gram, and extracting the true internal decision process would
be difficult. Moreover, when selfish agents have competing
interests, they may have incentive to deviate from protocols
or to lie to other agents about their preferences.

Against this background, this paper studies resource allo-
cation in multi-agent systems in which each agent 1) is selfish
and 2) has incomplete information about the other entities in
the world. We consider divisible or share auctions as a market
mechanism to solve the resource allocation problem. Inherent
in the settings we are considering is the competition among
agents attempting to gain access to limited resources (e.g.,
sensor resources in distributed sensing networks). Trading
agents automatically select the appropriate strategies based
on their beliefs about other entities and we give a game-
theoretic analysis of selfish agents’ optimal strategies.

This paper also introduces a deal optimization mechanism
in which agents can recursively update their beliefs and resub-
mit bids. The result of resource allocation with incomplete
information may be not as good as that with complete infor-
mation. The intuition is that sometimes it may be prudent
to look for and consider other more promising opportunities
that may arise after a resource allocation game completes. To
optimize deals, each agent updates its belief about other enti-
ties based on past interaction and resubmits a new bid. After
getting the resource allocation result of the latest auction, an
agent reports how much it loses or wins in the past auction
and then the auctioneer reallocates utilities.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the resource allocation problem. Section 3
discusses trading agents’ optimal actions in resource alloca-
tion. In section 4, the deal optimization mechanism will be
presented and analyzed. Section 5 examines the performance
of the proposed mechanism through experimentation. Section
6 summarizes related work. In the final section, some conclu-
sions are presented and ideas for future work are outlined.

2 The resource allocation problem

This paper considers allocation of divisible resources (e.g.,
sensor resource or network bandwidth) among selfish intel-
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ligent agents. We begin with N agents competing for a re-
source with a fixed finite capacity C. The resource is allo-
cated using an auction mechanism, where the partitions de-
pend on the relative signals or bids sent by the agents. We
assume that each agent submits a signal si to the resource.
Then, s = [s1, s2, . . . , sN ] represents all bids of compet-
ing agents. A divisible auction consists of two mappings.
The first is from the bids, s, to a partition, x(s), where
xi(s) ∈ [0, C] is the resource share allocated to the ith bid-
ding agent. The second is from the bids, s, to a cost vector,
c(s, x) where ci(s, x) is the cost associated with the ith agent
obtaining xi(s).

In our auction mechanism design, we want our allocations
to be proportionally fair by weight. This holds if the alloca-
tion x∗ satisfies:

i=N∑
i=1

si

xi − x∗i
x∗i

≤ 0

for any x where
∑i=N

i=1 xi = C where si denote the weights.
This can be achieved by the following allocation rule:

xi(s) =
si∑
j sj

C (1)

In terms of cost of computation, we note that it takesO(N)
operations to perform the allocation presented in (1), which is
the minimal cost for making variable allocations to N agents.
The cost for each agent is

ci(s, x) = si (2)

In this auction mechanism, if the feedback from the re-
source is the sum of all bids, an agent can immediately verify
if it has been given an accurate allocation. If an agent knows
the received allocation xi and its own bid si, any bid total
suggested by the auctioneer other than

∑
j sj can be imme-

diately identified as a signal of an inaccurate allocation or a
lying auctioneer. Furthermore, under this cost structure, each
agent pays the same price per unit resource received.

We assume that each agent has a valuation vi(xi) for re-
ceiving an allocation xi. This valuation may be a characteri-
zation of the estimated performance as a function of a given
share of the resource. Each performance measure is trans-
lated to an equivalent value (money in this paper) that can
be compared with cost. Another derivation of the valuation
could come from the estimated value of the sales that could
be generated by obtaining a given share of the resource.

We also assume the valuation function vi(xi) is concave
(i.e., v′′i (xi) ≤ 0, ∀xi ∈ [0, C] ), strictly increasing (i.e.,
v′i(xi) > 0, ∀xi ∈ [0, C] ), and continuously differentiable,
with domain xi > 0, ∀xi ∈ [0, C]. Each agent’s utility is the
difference between the valuation and cost of its allocation:

ui(s) = vi

(
xi(s)

)
− ci(s, x) (3)

Definition 1 (Resource allocation problem) Given the cen-
tralized control of the system, a natural problem for the net-
work manager (auctioneer) to try to solve is the following
optimization problem:

maximize
i=N∑
i=1

ui(s)

under the constraints
∑i=N

i=1 xi(s) ≤ C and xi(s) ≥ 0.

Even though the resource allocation is accomplished via an
auction mechanism, we note that ultimately each agent pays
the same price per unit resource obtained. The auction can
then be interpreted as a resource sold at a uniform price where
the price is determined by the agents. The price per unit of the
resource is θ/C, where θ =

∑
j sj , and each agent receives

an allocation in proportion to that price.

Definition 2 (Demand function) The demand function, di(θ),
is defined as the quantity of resource that the agent would
desire if the price was θ. This is generated by an agent’s
unique optimal response in a way such that si = di(θ)θ is

the agent’s reaction to s−i =
(
C − di(θ)

)
θ. The demand

function is expected to be differentiable decreasing function
of its argument and the existence of one implies the existence
of a well-defined inverse.

We have a resource allocation mechanism where N users
are bidding to obtain a portion of an offered resource. If the
resulting allocation does not lie on the user’s optimal demand
curve, the user will change its bid. An immediate question
is whether there exists a set of bids {si} that is a Nash equi-
librium, i.e., a set of bids such that no single user wishes to
deviate from its bid given that the bids of all the other users
remain the same. To answer this question, we note that this
is equivalent to asking whether there exists a value for the

sum of total bids, θ, such that
∑N

i=1 di(θ) = C. This equiva-
lence is valid because all of the offered capacity is partitioned
among the users proportional to their bids and the optimal de-
mand function represents a percentage of the offered capacity.

Theorem 1 [Maheswaran and Başar, 2003] Given any set of

continuous functions di(θ)
N

i=1 where di(0) = C ∀θ > θi, and

di(θ1) > di(θ2)∀θ1 < θ2 < θi is true for i = 1, . . . , N , then

there exists a unique value θ∗ such that
∑N

i=1 di(θ
∗) = C.

Proof: Let d(θ) =
∑N

i=1 di(θ). Then d(θ) is a continu-

ously decreasing function whose maximum value is d(θ) =
NC > C. Let θmax = maxiθi. We have d(θmax) =

0. Applying the Intermediate Value Theorem for d(θ) on

[0, θmax], we know that there exists at least one θ∗ such that

d(θ) =
∑N

i=1 di(θ) = C. Let us assume that there are

at least two values of θ where d(θ) = C. Let us choose
two of these values, θ∗1 and θ∗2 where θ∗1 < θ∗2 . Then, we
have di(θ

∗
1) < di(θ

∗
2)∀i = 1, . . . , N which implies that

di(θ
∗
1) < di(θ

∗
2). But we have di(θ

∗
1) = di(θ

∗
2) = C, which

is a contradiction and thus we can have only one θ where

d(θ) =
∑N

i=1 di(θ) = C. ��

3 Agents’ optimal strategy with incomplete

information

This work assumes that agents have incomplete information
about the deadlines, reserve proposals, strategies, and time
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preferences of other agents. Each agent has two parameters
denoted as < ui, si >. The outcome of resource allocation
depends on each agent’s two parameters. The information
state, Υi, of an agent i is the information it has about the
resource allocation parameters. An agent’s own parameters
are known to it, but the information it has about another agent
is not complete. We define Υi as:

Υi =< ui, f−i >
where ui is the agent i’s utility function and f−i is a prob-
ability distribution function that denotes the agent i’s beliefs
about the sum of other agents’ bids. f−i(x) represents that
the agent i’s prior estimation of the probability of that the sum
of other agents’ bids is x. Here we assume that agents have
uncertain information about each other’s bids. Moreover, the
agents do not know other trading partners’ utility functions
or strategies and, therefore, an agent and another agent may
have different utility preferences.

We describe how optimal bids are obtained for players that
are utility maximizers. Since utility is a function of values
of allocated resource and bids, these strategies optimize both.
Without loss of generality, the discussion is from the perspec-
tive of the agent i (although the same analysis can be taken
from the perspective of another agent).

The outcome of resource allocation depends on all the
agents’ strategies. Given the agent i’s belief about other
agents’ bids, the expected utility it can gain with a bid si is
given as:

EUi(si,Υi) =

∫ +∞

0

f−i(x)dui(si, x) (4)

The optimal strategy for the agent i is the bid that generates
the highest expected utility for it. Therefore, the optimal bid
so

i for the agent i is:

so
i = arg maxsi

EUi(si,Υi)

Definition 3 (Optimal response function) Given the informa-
tion state Υi of the ith agent, we define the optimal response
function Γi(Υi) = so

i = arg maxsi
EUi(si,Υi) as the ith

agent’s optimal bid. Moreover, there is only one optimal bid
for the agent i with its belief Υi.

In the same way, we can get the optimal bid for all the
agents participating in resource allocation. It’s been shown
before that there is a unique Nash equilibrium when agents
have complete information about other entities. Given the op-
timal strategies of all the agents with incomplete information,
a natural question is whether there is still an allocation of the
resource such that no single agent wishes to deviate from its
bids given that the other agents remain the same.

Theorem 2 Given agents’ belief set [Υ1,Υ1, . . . ,ΥN ],
agents’ optimal bids [so

1, s
o
2, . . . , s

o
N ] constitute a unique

Nash equilibrium if and only if, given other agents’ bids
[so

1, . . . , s
o
i−1, s

o
i+1, . . . , s

o
N ], any agent i’s optimal bid is

so
i = Γi(Υ

′
i) where Υ′

i =< ui, f
′
−i > in which

f ′
−i(

∑
j �=i s

o
j) = 1 and f ′

−i(x �=
∑

j �=i s
o
j) = 0.

Proof: The proof is straightforward. Let Υ′
i =< ui, f

′
−i >

in which f ′
−i(

∑
j �=i s

o
j) = 1 and f ′

−i(x �=
∑

j �=i s
o
j) = 0.

Algorithm: Deal optimization mechanism

1. while t < Tmax do

2. for all agents i do

3. update information state Υt
i

4. resubmit bid Γt
i(Υ

t
i)

5. end for

6. auctioneer reports the auction result to all agents

7. for all agents i do

8. report the utility ρt
i it would like to contribute

or request

9. end for

10. if
∑N

i=1 ρ
t
i > 0

11. auctioneer redistributes utilities

12. end if

13. t+ +

14. end while

Figure 1: The deal optimization mechanism algorithm.

Given the other agents’ bids [so
1, s

o
2, . . . , s

o
N ], the agent i’s

optimal bid is Γi(Υ
′
i). If the agent i’s bid so

i �= Γi(Υ
′
i), it

has incentive to violate the bid so
i by proposing a new bid

Γi(Υ
′
i). Therefore, agents’ optimal strategies converge to a

Nash equilibrium if and only if so
i = Γi(Υ

′
i). ��

4 Deal optimization mechanism

We have analyzed the convergence condition of selfish
agents’ optimal strategies. Given agents’ optimal strategies,
the outcome (even the equilibrium result) of resource allo-
cation may be not as good as the equilibrium result when
agents’ have complete information about one another. There-
fore, we try to optimize the auction based resource allocation
mechanism in last section by continuing the auction. If a new
allocation of resource is better (each agent’s utility doesn’t
get worse) than the kept solution, replace the solution with
the current one.

The algorithm of deal optimization is given in Fig. 1. Tmax

is the maximum round of optimization. t is initially set to 0.
In each round of deal optimization, each agent i first updates
its belief about the bids of the other agents using Bayesian
learning mechanism. Then each agent re-submits its bid to
the auctioneer and the auctioneer reports the resource alloca-
tion result to all agents. Compared with the kept allocation of
resource, some agents may have higher utilities with the new
allocation and some may loose utilities. Each rational agent
will accept the new allocation if and only if its utility with the
new allocation isn’t worse than that with the kept allocation.
Thus each agent will report the utility ρt

i that it would like to
contribute (or request) to other agents in order to make every

agent accept the new allocation. If
∑N

i=1 ρ
t
i > 0, the auc-
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tioneer re-distributes all agents’ utilities and the new alloca-
tion can replace the old allocation; otherwise, the new alloca-
tion cannot replace the old allocation. After re-distribution of
agents’ utilities, deal optimization proceeds to another round
on the condition that t < Tmax.

1) Belief update (step 3): The agent i’s information state
Υt

i =< ui, f
t
−i > represents the agent i’s belief about itself

and other agents’ bids at the tth round deal optimization. The
utility function ui will be the same during deal optimization.
But the probability distribution f t

−i will evolve with the pro-

cess of resource allocation. Let the ith agent’s belief about
the other agents’ bids before resource allocation be f r

−i and
let sr = [sr

1, s
r
2, . . . , s

r
N ] be agents’ bids in resource alloca-

tion. Let st = [st
1, s

t
2, . . . , s

t
N ] be agents’ bids at round t.

At round t > 0, the ith agent updates its belief Υt−1
−i at

the t − 1th round of deal optimization using the sum st−1
−i =∑

j �=i s
t−1
j of other agents’ bids at the t − 1th round of deal

optimization. Note that at round t = 0, the ith agent updates
its belief Υr

−i during resource allocation using the sum sr
−i =∑

j �=i s
r
j of other agents’ bids in resource allocation.

This work utilizes a well known machine learning
mechanism–Bayesian learning mechanism. In classical
statistics, Bayesian theorem of continuous random variable
has the form as follows:

π(θ|x) =
p(x|θ)π(θ)∫

θ
p(x|θ)π(θ)dθ

(5)

where π(θ) is the prior distribution density function. π(x|θ)
is the conditional density of X when the random variable
θ is given, i.e., samples information. π(θ|x) is the condi-
tional distribution density function of θ when samples X =
(X1, X2, . . . , Xn) are given, i.e., posterior distribution of θ.
We make use of Bayesian learning mechanism for an agent to
get the sum of the other agents’ bids.

The conjugate prior distribution of the mean of normal dis-
tribution (variance is known) is normal distribution. Suppose
X1, X2, . . . , Xn are samples of normal distributionN(θ, σ2),
where σ2 is known and θ is unknown. Let another normal dis-
tribution N(θ, τ2) be the prior distribution of θ.

Assume that σ0
2 = σ2/n, x =

∑n

i=1 xi/n. The posterior
distribution of θ, i.e., π(θ|x), calculated by Bayesian theorem
is N(μ1, σ1

2), where

μ1 =
(xσ0

−2 + μτ−2)

(σ0
−2 + τ−2)

(6)

σ1
2 = (τ0

−2 + τ−2)−1 (7)

We can find that the posterior mean μ1 averages the prior
mean and the mean of the samples weighted according to
their precision. σ0

2 is the variance of the mean of samples
x, and σ0

−2 is the precision of the mean of samples x. τ2 is
the variance of the prior distributionN(μ, τ2), and τ−2 is the
precision of μ. The smaller τ2 is, the greater the proportion
of the prior mean to the posterior mean is. On the other hand,
the greater the number n of samples is, the smaller σ0

2/n is,
and the greater the proportion of x to the posterior mean is.
Especially if n increases infinitely, the proportion of the prior
mean to the posterior mean is little.

More reasonably, the posterior information combines the
prior information and the samples’ information. With the
premise of conjugate priors, the posterior can be used as
prior in successive combinations with new samples using the
Bayesian theorem. When the procedure is repeated, the im-
pact of samples is more and more important and the posterior
information is closer to fact with little noise of the samples.

To learn the sum s−i of the other agents’ bids of an agent
i using Bayesian learning mechanism, we just need to let s−i

be θ and the sum of other agents’ bids be X1, X2, . . . , Xn.
Finally, the sum s−i of the other agents’ bids we gain is closer
to the real value θ.

2) Bid generation (step 4): After updating its be-
lief, an agent i submits its optimal bid Γi(Υ

t
i) =

arg maxst
i
EUi(s

t
i,Υ

t
i) to the auctioneer.

3) Allocation result report (step 6): After agents report
their bids st = [st

1, s
t
2, . . . , s

t
N ]. The auctioneer allocates the

resource using the mechanism in (1) and reports the result
xt = [xt

1, x
t
2, . . . , x

t
N ] of allocation to all agents.

4) Agent response (step 8): Let the kept allo-
cation of resource is skept and agents’s utilities are

[ukept
1 , ukept

2 , . . . , ukept
N ].1 Each rational agent will agree to

accept the new allocation [xt
1, x

t
2, . . . , x

t
N ] of resource if and

only if ui(s
t) + pt

i ≥ ukept
i ,2 where pt

i is the payment the

agent i receives in the tth round of optimization. Here, pt
i < 0

means that agent i pays the amount of −pt
i to other agents,

while pt
i > 0 means that it receives the amount of pt

i from

other agents. It follows that
∑N

i=1 p
t
i = 0. The sum of all

payments is 0, i.e., the overall amount of money present in
the system does not change.

After notified the new allocation xt in the tth round of op-
timization, an agent i should make a decision on how much
(ρt

i < 0 means that an agent want to receive money ρt
i from

other agents and ρt
i > 0 means that an agent want to pay

money ρt
i to other agents) it should ask for or contribute

based on its utility of the kept allocation ukept
i and the util-

ity ui(x
t) of the current allocation. There are two scenarios:

1) ui(s
t) < ukept

i , i.e., the agent i’s utility decreases once
it accepts the new allocation without receiving money from
other agents. Therefore, the rational agent i should request
money from the system to make up its loss in utility, i.e.,

ρt
i ≤ ui(s

t)−ukept
i < 0. With the decrease of ρt

i (requests for
more outside utility), the agent has to face higher possibility

of failure of optimization; 2) ui(s
t) ≥ ukept

i , i.e., the agent i’s
utility remains the same or increases if it accepts the new allo-
cation without receiving (or paying) money from (or to) other
agents. The ith agent can request money from other agents
or pay to other agents to make every agent accept the new

allocation and it also follows that ρt
i ≤ ui(s

t) − ukept
i . Simi-

larly, the agent i has to face higher (especially when ρt
i < 0)

possibility of failure of optimization with the decrease of ρt
i.

1The kept allocation before the first round of deal optimiza-
tion is [xr

1, x
r
2, . . . , x

r
N ] and, correspondingly, agents’ utilities are

[ur
1, u

r
2, . . . , u

r
N ]

2We consider an agent i will accept the new allocation s
t if

ui(s
t) + p

t
i = u

kept
i in a semi-competitive environment.
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On the one hand, the increase of ρt
i ≤ ui(s

t) − ukept
i

will increase the ith agent’s utility if the optimization at
round t is successful; on the other hand, the increase of

ρt
i ≤ ui(s

t) − ukept
i will increase the possibility of the fail-

ure of the optimization. Thus, the ith agent has to make a
tradeoff between increasing its utility and lowering the fail-
ure probability of optimization. Let ζt

i (ρ
t
i) be the possibility

of the failure of the optimization if the ith agent reports ρt
i to

the auctioneer and ψt
i(ρ

t
i) be the utility increase the ith agent

gains if the optimization is successful while reporting ρt
i to

the auctioneer. We assume that the agent has knowledge of
the values of ζt

i (ρ
t
i) and ψt

i(ρ
t
i). Then the agent will report

the optimal value of ρt
i to the auctioneer and it follows that:

ρt
i = arg max

ρt
i
≤ui(st)−u

kept

i

ψt
i(ρ

t
i) ×

(
1 − ζt

i (ρ
t
i)

)

5) Utility reallocation (step 11):
After all agents report the utilities they want to contribute

or request, auctioneer decides to distribute the utilities among
all the agents. Let �

t
+ =

∑
ρt

i
>0 ρ

t
i be sum of the money all

agents intend to contribute and �
t
− =

∑
ρt

i
<0 −ρ

t
i be sum of

the money all agents intend to request. If �
t
+ < �

t
− (i.e.,∑N

i=1 ρ
t
i < 0), this round optimization fails due to the col-

lected money cannot satisfy the needs of the agents that re-
quest for payment. The kept allocation and agents’ utilities
remain the same.

If �
t
+ ≥ �

t
− (i.e.,

∑N
i=1 ρ

t
i ≥ 0), the collected money can

satisfy the needs of the agents that request for payment and
this round of optimization is successful. The amount pt

i of

utility the ith agent receives is defined as:

pt
i = −ρt

i +
|ρt

i|

�
t
+ + �

t
−

(8)

If �
t
+ ≥ �

t
−, the allocation xt = [xt

1, x
t
2, . . . , x

t
N ] of re-

source at round t replaces the kept allocation and each agent
has a new utility ui(s

t) + pt
i.

Theorem 3 The deal optimization mechanism is
individually-rational.

Proof: A mechanism is individually rational if there is an
incentive for agents to join it rather than opting out of it. For
rational agents, we just need to prove that each agent’s utility
will not be decreased at any round of optimization.

The statement is true for a round of unsuccessful optimiza-
tion as each agent’s utility remains the same. Assume the deal
optimization at round t is successful. The ith agent’s utility

before optimization is ukept
i and its utility after optimization

is ui(s
t)+pt

i. As it follows that ρt
i ≤ ui(s

t)−ukept
i when the

agent i reports it desire to the auctioneer. Considering (4), it
follows that

ui(s
t) + pt

i = ui(s
t) − ρt

i + |ρt
i|/(�

t
+ + �

t
−)

≥ ui(s
t) − ui(s

t) + ukept
i + |ρt

i|/(�
t
+ + �

t
−)

≥ ukept
i + |ρt

i|/(�
t
+ + �

t
−)

≥ ukept
i

��

Theorem 4 The social welfare will not be decreased at any
round of optimization.

Proof: We can gain the theorem directly from theorem 3.
��

5 Experimentation

In order to perform empirical evaluations, we have developed
a simulation testbed consists of a virtual e-Marketplace, a so-
ciety of trading agents and a controller (manager) was im-
plemented. The controller generates agents, randomly deter-
mines their parameters (e.g., their roles as auctioneers or bid-
ders, initial beliefs, reserve bids), and simulates the entrance
of agents to the virtual e-Marketplace.

To evaluate the performance of the proposed resource al-
location mechanism in a wide variety of test environments,
agents are subject to different market densities and different
optimization deadlines. Both market density and optimiza-
tion deadline are generated randomly following a uniform
distribution. Market density depends on average number of
agents generated per round. By experimental tuning, it was
found that when the number of agents is higher than 1000,
there was little or no difference in performance of resource al-
location. Therefore, the number of agents between the range
of 2− 20 (respectively, 100− 200 and 800− 1000) is consid-
ered as sparse (respectively, moderate range and dense).

The optimization deadline is randomly selected from
[0, 40]. The range of [0, 40] for deadline is adopted based
on experimental tuning and agents’ behaviors. In current ex-
perimental setting, it was found that for optimization dead-
line > 40, there was little or no difference in performance of
resource allocation and the results of resource allocation are
close to the optimal results.

Agents’ beliefs about other agents are affected by the above
two input data and evolve with the process of resource allo-
cation. For example, in a dense market, an agent will believe
that the higher probability of the sum of other agents’ bids is
higher than that in a sparse market.

We evaluate the efficiency of the mechanism in terms of
maximizing the total utility of agents participating in resource
allocation. The mean efficiency of the market (averaged over
2000 independent resource allocation scenarios) in different
environments and are shown in Figs. 2, 3, and 4. The re-
source allocation results without deal optimization are com-
pared with that with deal optimization and the optimal allo-
cation when agents have complete information.

From experimental results in Figs. 2, 3, and 4, it can be
found that, when agents are subject to different market den-
sities, agents’ utilities increase with the increase of the op-
timization deadline and the average utilities are close to the
optimal allocation when the optimization deadline is longer
than 30. For example, in Fig. 3, when the optimization dead-
line is between 31 and 35, the average utilities are 0.70, which
is close to the optimal utility 0.74 when agents have complete
information. We can also find that agents’ unities increase
more and more slowly with the increase of the optimization
deadline. In addition, with a same optimization deadline,
agents’ utilities in a dense market are better than that in a
moderate or sparse market. The results correspond to the in-
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Figure 2: Resource allocation in sparse market
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Figure 3: Resource allocation in moderate market

tuition that social welfare will increase with more and more
entities.

6 Conclusion

This research investigates a market based mechanism for re-
source allocation. The main contributions of this research in-
clude: 1) Unlike related work (e.g., [Clearwater and Clearwa-
ter, 1996; Maheswaran and Başar, 2003; Johari et al., 2005;
Bredin et al., 2003]) in which agents are assumed to have
complete information, this research investigates agents’ ratio-
nal strategies in resource allocation mechanism when agents
have incomplete information; 2) We propose a deal optimiza-
tion mechanism which can enhance the performance of re-
source allocation and trading agents can be programmed to
optimize transaction deals by updating beliefs and resubmit-
ting bids; 3) We evaluate the performance of the proposed ap-
proach by experimentation. Experimental results showed that
by having a deal optimization stage, the resource allocation
produced generally optimistic outcomes close to the optimal
outcome.

Finally, a future agenda of this work is considering other
variables or constraints (for example, budget constraint, time
constraint) into our mechanism.
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Figure 4: Resource allocation in dense market
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[Maheswaran and Başar, 2003] R. Maheswaran and
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