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Abstract

In this paper we make a comprehensive study of
the complexity of the problem of deciding the ex-
istence of equilibria in strategic games with incom-
plete information, in case of pure strategies. In par-
ticular, we show that this is NP-complete in gen-
eral Bayesian Games in Standard Normal Form,
and that it becomes PP-hard (and, in fixed-precision
scenarios, PP-complete), when the game is repre-
sented succinctly in General Normal Form. Suit-
able restrictions in case of graphical games that
make the problem tractable are also discussed.

1 Introduction

Game theory has a very general scope, encompassing ques-
tions that are basic to all of the social sciences, and offer-
ing insights into any economic, political, or social situation
that involves multiple players that have different goals and
preferences. In its generality, game theory may be defined as
the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers, cf., e.g., [My-
erson, 1997]. Not surprisingly, in Artificial Intelligence the
framework of game theory has been immediately recognized
to be very appealing, being the means for an artificial agent
to act with rationality and intelligence when interacting with
others. Additionally, game theory demonstrated its effective-
ness in the recent results on algorithms for load balancing and
routing in large networks and the Internet, where it has been
extensively used for distributing the logic of the decision pro-
cesses among many nodes (cf., e.g., [Feldmann et al., 2003]).

The most well known form of games studied in the litera-
ture is that of strategic games. In this context, the main solu-
tion concept is that of equilibrium (called Nash equilibrium
in games with complete information [Nash, 1951]). Equi-
libria model scenarios in which no player can improve his
utility by unilaterally changing his strategy, or equivalently,
such that the strategy chosen by any player is the best re-
sponse to the strategies chosen by the others. Any strategy
which is not a best response indicates that the correspond-
ing player is not acting rationally, because he could improve
his utility by choosing a different one. Although the exis-
tence of equilibria in strategic games is guaranteed, when the
so called randomized strategies are allowed (cf. Section 2),

this is not true in the important case in which strategies are
forced to be pure [Gottlob et al., 2003]. In case of random-
ized strategies, the problem of computing an equilibrium was
recently shown to be PPAD-complete, even for two-player
games [Chen and Deng, 2006]; and, further results have been
established for strategic games under various restrictions (cf.,
e.g., [Gilboa and Zemel, 1989; Megiddo and Papadimitriou,
1991; Papadimitriou, 1994b; Conitzer and Sandholm, 2003;
Daskalakis and Papadimitriou, 2005]).

On the other hand, in this paper we consider games with
incomplete information (aka Bayesian Games) that have been
specifically introduced in the literature [Harsanyi, 1968] to
account for uncertainties in the knowledge that the single
players have about the games and their counterparts. Indeed,
in these games players’ payoff depends not only on the ac-
tions of the other players but also on their own private type,
for which a probability distribution is a priori known.

The equilibrium concept relevant for this kind of games is
that of Bayesian Equilibrium, in which each player plays a
best response to the other players in expectation over their
private types. The complexity of deciding the existence of
a Bayesian Equilibrium in case of pure strategies (short:
∃PBE problem) has been recently investigated by Conitzer
and Sandholm [2003], who proved its NP-hardness for sym-
metric two-players games, in the case where, for each player,
the utility function and the probability distribution over other
players’ types are represented extensively as tables (called
Standard Normal Form (SNF) in Section 2). Moreover,
tractable classes of Bayesian Games have also been singled
out in [Singh et al., 2004], where an efficient algorithm is
provided for finding approximate equilibria when the utility
function of each player depends only on the actions and re-
alized types of some neighbor players (cf. Graphical Normal
Form (GNF)), and when the kind of interaction formed by the
neighborhood relation is a tree.

However, a complete picture of the complexity of Bayesian
Games is still missing in the literature, both for pure and ran-
domized strategies. As an example, it is not known what
happens if, unlike [Conitzer and Sandholm, 2003], the utility
functions and the probability distributions are not explicitly
represented as tables (cf. General Normal Form (GenNF));
and it has been left open in [Singh et al., 2004] if the tractabil-
ity result holds for larger classes of games in GNF, e.g.,
for games whose players interactions have tree-like structure.
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The aim of this paper is precisely to shed lights on these as-
pects, by focusing on the case of pure strategies. Our contri-
butions are as follows:

� In Section 3 we show that the result of Conitzer and
Sandholm is tight, since ∃PBE is NP-complete, even if
only one among the utility function and the probability
distribution is represented as a table, for each player in
the game.

� We study ∃PBE on the class of games in GenNF, and
we show that the need of dealing with incomplete infor-
mation has a strong impact on the intrinsic complexity of
the games. Indeed, we show that the problem is PP-hard,
which is quite surprisingly given that deciding the exis-
tence of a Pure Nash equilibrium is NP-complete [Gott-
lob et al., 2003].

� We continue the analysis of ∃PBE on games in GenNF,
under the assumption that the utility functions and the
probability distributions range over real numbers with a
fixed-precision. In this scenario, we prove that the prob-
lem is, in fact, complete for the class PP.

� Given that it is not generally known how efficient heuris-
tics can be devised for problems hard for PP, it appears
crucial to identify tractable classes of games. In Sec-
tion 4, we face this problem and we show that ∃PBE
is feasible in polynomial time not only on classes of
acyclic games, but also on games of bounded hypertree
width [Gottlob et al., 2002] which is one of the broadest
known generalizations of hypergraph acyclicity.

2 Games of Incomplete Information

Preliminaries. Given sets S and R, a S-tuple with com-
ponents in R is a total function from S to R. A S-tuple is
denoted by a bold-face lowercase letter, e.g., t. Set R can be
either a set of atomic values or a set of functions. Given a
S-tuple t and an element s ∈ S (resp. a set S ⊆ S), we de-
note by t[s] (resp. t[S]) the value of the s-component of tuple
t (resp. the tuple obtained by taking only t’s s-components,
with s ∈ S). By t−s (resp. t−S) instead, we denote the

(S − {s})-tuple (resp. the (S − S)-tuple) obtained by t by
removing t’s s-component (resp. all t’s s-components, with
s ∈ S). Furthermore, given a S-tuple t, an element s ∈ S,
and an element r ∈ R, we denote by ts→r the tuple ob-
tained from t by replacing its s-component with r (i.e., the
S-tuple t

′ such that, for each i ∈ S − {s}, t
′[i] = t[i], and

t
′[s] = r), and by 〈t; tx〉, x �∈ S the (S ∪ {x})-tuple t

′ such
that, t

′[s] = t[s], ∀s ∈ S, and t
′[x] = tx.

Finally, for a set S, we denote by Δ(S) the set of all prob-
ability distributions over elements in S, i.e., the set of real-
valued functions τ : S → [0, 1] such that

∑
s∈S τ(s) = 1.

Bayesian Games. A strategic game G consists of a set of
players N and, for each player i ∈ N , of a set of possible
actions Ai and an utility function ui : ×i∈N Ai → �, that
describes the payoff of player i as a function of his own and
other players’ actions. The behavior of a strategic game is
as follows: each player i simultaneously chooses an action in
his set Ai. The tuple of actions chosen by all players is called

the action-profile, and it is denoted by â. As a consequence
of this choice, each player i receives a payoff of ui(â).

These games are also called games with complete infor-
mation, because players have all perfect information about
the game. Bayesian games [Harsanyi, 1968] have been in-
troduced to account for situations in which such assumption
cannot be made, since there may be information which is un-
certain, or unobservable by some players. This uncertainty
is modelled by introducing unknown parameters, the types of
the different players, into the utility functions.

Definition 1 (Bayesian Game [Harsanyi, 1968]). A
Bayesian Game G consists of a set of players N and, for each
player i ∈ N :

• A set of possible actions Ai;

• A set of possible types Ti;

• A probability function pi : Ti → Δ(×j∈N−{i} Tj),

assigning a probability distribution over ×j∈N−{i} Tj

to each possible type of player i. We write pi(·|ti) to
denote the belief that player i has over the types of the
other players when he has type ti ∈ Ti;

• An utility function ui : ×i∈N Ai × ×i∈N Ti → �,
that describes the payoff of player i as a function of the
actions of all players and their types (including i’s). �

Although probability functions pi(·|ti) can be given sepa-
rately for each player i, a common assumption is that a prior
joint distribution P (×i∈N Ti) over all the type profiles (i.e.,
N -tuples t) exists, and is common knowledge among all play-
ers. Under this assumption, the single functions pi(·|ti) can
be built by the single players according to the Bayes’ Rule.
Indeed, as for the reasonability of this assumption (called the
consistent beliefs assumption), it can be proven that every
Bayesian Game with finite type set can be transformed into
an equivalent game with consistent beliefs.

A Bayesian Game behaves as follows:

1. At the beginning, each player i “gets revealed” his re-
alized type t̂i ∈ Ti by an external entity (usually called
“Nature”). Under the consistent beliefs assumption, we
can think that the realized types for all players are drawn
from the joint prior distribution P (·).

Each player i knows only his realized type t̂i, and does
not know the realized types of the other players (this
realizes the incompleteness of information discussed so
far). The N -tuple of realized types of all players is called

the realized type-profile, and it is denoted by t̂.

2. According to their realized types, each player i simulta-
neously chooses an action, in his set Ai. The tuple of
actions chosen by all players is called the action-profile,
and it is denoted by â.

3. As a consequence of this choice, and depending on the
realized type-profile, each player i receives a payoff of

ui(â, t̂). We observe that, for the players to be able to
evaluate their actual payoffs, information about the real-
ized types of the other players must be observable after
the games terminates. Indeed, since this information is
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hidden when actions have to be decided, what the play-
ers can evaluate is their expected payoff, according to
the probability distribution P (·) on types.

Given a Bayesian Game G and a player i ∈ N , a random-
ized strategy for i is a probability function σi : Ti → Δ(Ai),
i.e., a total function assigning, to each type in Ti, a probability
distribution over the set of actions available to player i. We
write σi(·|ti) to denote the probability distribution over Ai

when the type of player i is ti ∈ Ti. Hence, σi(ai|ti) is the
probability with which player i will choose action ai ∈ Ai

in case his realized is ti. A randomized strategy profile is
a N -tuple σ of randomized strategies, one for each player.
In this paper we are interested in pure strategy profiles, i.e.,
strategy profiles σ such that, for each player i ∈ N , the strat-
egy for player i, σ[i] = σi(·) assigns, to each type ti ∈ Ti,
a single action in Ai (and not a probability distribution over
the actions). We write σi(ti) to denote the action ai ∈ Ai

chosen by player i when his type is ti. A pure strategy can
be equivalently regarded as a randomized strategy where all
probability distributions (one for each type ti ∈ Ti) assign 1
to action σi(ti), and 0 to the others.

Definition 2. A Pure Bayesian Equilibrium (PBE) is a strat-
egy profile σ, with each σi(·) = σ[i] being a pure strategy
for player i ∈ N , such that, for every type ti ∈ Ti:

σi(ti) ∈ argmax
ai∈Ai

X
t−i∈ ×

j∈N−{i}
Tj

pi(t
−i|ti)ui(a, 〈t−i; ti〉) (1)

where, to ease notation, we denoted by a the N -tuple such
that a[k] = σk(t−i[k]) for k �= i (i.e., the action expected to
be played by player k according to strategy profile σ when he
is of type t

−i[k]), and a[i] = ai. �

It is well known that, although every Bayesian Game has a
BE, it does not necessarily have a PBE.

It can be observed that games with complete information
are a particular case of Bayesian Games in which all play-
ers may assume only one type. All the definitions made
for Bayesian Games (strategies, strategy profiles and equi-
libria) are generalizations of analogous notions for games
with complete information. In particular, equilibria in games
with complete information are called (Pure) Nash Equilib-
ria [Nash, 1951].

Representing games. Games can be represented in differ-
ent ways. Below we briefly review the most used ones:

Standard Normal Form (SNF): In games of this form (cf.,
e.g. [Osborne and Rubinstein, 1994]),sets N and
Ai, Ti, i ∈ N are represented explicitly, P (t) and
ui(a, t), ∀i ∈ N are represented by tables of |N |+1 and
2|N | + 1 columns, having

∏
i∈N |Ti| and

∏
i∈N (|Ti| ×

|Ai|) tuples, respectively. This form is also known as
Strategic Form (cf., e.g., [Myerson, 1997]).

Graphical Normal Form (GNF): This form is suitable to
represent games in which the utility function of each
player depends only on the actions chosen and realized
types of a subset of the other players (cf., e.g., [Kearns
et al., 2001; Vickrey and Koller, 2002]). For each player
i, let Xi be the set of players j such that ui(t, a) does

not depend on t[j] and a[j]. Players in N − Xi − {i}
are called the neighbors of player i, and denoted by
Neigh(i). The representation is similar to SNF, but ta-
bles for utility functions ui(·) may have a reduced num-
ber of columns. In particular, for each player i, column
relative to actions and types of players in set Xi can be
omitted.

General Normal Form (GenNF): This is the most compact
representation for a game, since P (t) and ui(a, t), i ∈
N can be given by (succinctly encoded) functions that
can be computed in polynomial-time in the size of their
input (such form is a generalization of that defined
in [Gottlob et al., 2003] for games with complete infor-
mation). We also assume that a polynomial-time com-
putable function Neigh(·) : N → 2N that, for each
player, returns his neighbors, is part of the representa-
tion. We will see that such function is very useful in
case the interaction among players is restricted (cf. Sec-
tion 4). It can be observed that games in SNF and GNF
are trivially in GenNF (as for the former, the function
Neigh(·) would return the set N − {i} for any player
i ∈ N ).

3 Intractability results

In this section, we face the complexity of deciding whether
a Bayesian Game has a PBE (the ∃PBE problem). We start
with the class of games in SNF.

Theorem 1. ∃PBE for games in SNF is NP-complete. Hard-
ness holds even for symmetric, two-players games, while
membership holds even if only one among P (·) and the vari-
ous ui(·) is given explicitly as a table.

Proof. (Hardness) Hardness follows from [Conitzer and
Sandholm, 2003, Theorem 2], where the NP-complete Set
Covering problem is reduced to ∃PBE of a game in SNF with
only 2 players. Actually, the definition of a Bayesian Game
given there is more restricted than ours, since the utility func-
tion of player i does not depend on the realized types of the
other players.

(Membership) We prove the membership in NP for the
more general case of N unbounded and only one of the func-
tions among P (·) and ui(·) represented as a table. In this
case, the size of the input is exponential in the number of
players |N |. Problem ∃PBE can be solved by guessing a
strategy-profile σ in polynomial time (it consists in guessing
an action for every pair player/type), and checking whether
σ is a PBE. The latter task can be performed in polynomial
time in the size of the input, since, for each player and for
each type, formula (1) in Definition 2 can be evaluated in time
polynomial in the size of the table encoding P (·) (which, in
turn, is smaller than that encoding ui(·)).

By using the same line of reasoning as in the proof above,
we get a similar result for games in GNF.

Theorem 2. ∃PBE for games in GNF is NP-complete.

Let us now turn to games in GenNF. We next show that
∃PBE is hard for the class PP (aka majority-P) of languages
that can be decided by a nondeterministic Turing machine
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in polynomial time where the acceptance condition is that a
majority (more than half) of computation paths accept (cf.,
e.g., [Papadimitriou, 1994a]). This class contains NP and is
contained in PSPACE.

Theorem 3. ∃PBE for games in GenNF with unbounded
number of players is PP-hard. The result holds also for games
in which players can assume just two types.

Proof. We reduce the canonical PP-complete MAJ-SAT
problem (cf., e.g., [Papadimitriou, 1994a]) to ∃PBE. Given
a propositional formula ϕ over n variables as input, MAJ-
SAT(ϕ) is true iff more than half of its possible assignments
satisfies it.

Let V be the set of variables of formula ϕ. We build a
Bayesian Game G that has a PBE iff MAJ-SAT(ϕ) is true.
The game has a set of n+3 players N = V ∪{eval}∪{R, S},
with the following characteristics:

• Players in V (corresponding to the variables of formula
ϕ) may assume one of two types {true, false}, have only
one available action nop, and utility functions which
evaluate always to 0.

• eval (“evaluator”) may assume only one type, but has
two available actions: count and pass. His utility func-
tion ueval(·) is defined as follows:

ueval(a, t)=

8><
>:

if a[eval]=count:

(
if t−{eval,R,S}|= ϕ : 1

otherwise: 0

otherwise: 1/2

• Players R and S may assume only one type, and have
two available actions a1 and a2. Their utility func-
tions uR(·) and uS(·) are such that they evaluate to
0 if aeval = count, while, in the other cases (where
aeval = pass) they are defined as follows (independently
on the types and actions of players in V ):

(uR(aR, aS), uS(aR, aS)) =

8>>><
>>>:

(0, 1) if (aR, aS) = (a1, a1)

(1, 0) if (aR, aS) = (a1, a2)

(1, 0) if (aR, aS) = (a2, a1)

(0, 1) if (aR, aS) = (a2, a2)

The idea behind such choice for uR and uS is that, if
aeval = count both a1 or a2 are always best-responses
for players R and S; on the other hand, if aeval = pass,
their utility functions prevent the existence of a PBE.

• P (·) ∈ Δ(×i∈V ∪{eval}∪{R,S} Ti) is uniform: since

|Teval| = |TR| = |TS | = 1 and |Tv| = 2 for each v ∈ V ,
this means that, for each type-profile t, P (t) = 1/2n.

We now show that MAJ-SAT(ϕ) is true iff G has a PBE.
(only if)-part. If MAJ-SAT(ϕ) is true, we observe that any

strategy-profile σ such that σ[eval] = count is a PBE. In fact,
that strategy is an equilibrium for players in V ∪{R, S} since
their expected payoff cannot be different from 0. Moreover,
action count is a best-response for player eval, that achieves
an expected payoff of 1/2n · #ϕ > 1/2 (with #ϕ > 2n−1

being the number of models of formula ϕ and 1/2 being the

payoff that he would obtain by unilaterally changing his ac-
tion into pass).

(if)-part. As for the other direction, if MAJ-SAT(ϕ) is
false, eval would play pass, which guarantees him higher
utility, but in this case, it can be observed that the structure
of the utility functions for players R and S prevents them
from reaching an equilibrium.

The reader may now wonder whether the problem is, in
fact, complete for PP. While this might appears at a first sight
very natural, the formal proof has to take care of the fact that
both P (·) and ui(·) (for each i ∈ N ) are real-valued func-
tions. Hence, to prove the membership result, we next restrict
ourselves to real values with fixed-precision, i.e., we assume
that all the values of interest for the game comes as multiples
of a value ε = 10−c, for some fixed natural number c.

Theorem 4. In the fixed-precision setting, ∃PBE for games
in GenNF with unbounded number of players is PP-complete.

Proof. (Sketch.) Assume, wlog, that all such functions range
in the domain of reals in [0, 1]. Then, we can regard all
the functions in the game as ranging in the integer domain
[0, 1/ε]. We can now build a NP Turing Machine Mep (“ep”
stands for “expected payoff”) that, given as input i ∈ N , ti ∈
Ti, ai ∈ Ai, σ−i, and a boolean accept, behaves as follows:
guesses a tuple t

−i and then performs pi(t
−i|ti) · ui(a, t) ≤

(1/ε)2 additional branches (with a and t defined as in for-
mula (1)), accepting (resp. rejecting) on all of them if accept
is true (resp. false). Such machine will haveX

t−i∈ ×
j∈N−{i}

Tj

pi(t
−i|ti) · ui(a, t)

computation paths, all accepting or all rejecting, depending
on the value for accept. Build now a second Turing Machine
M that, given σ, behaves as follows: for each triple (i, ti, ai),
(i ∈ N, ti ∈ Ti, ai ∈ Ai − {σ[i]}) makes two branches,
on one invoking Mep(i, ti, σ[i], σ−i, true) and on the other
Mep(i, ti, ai, σ−i, false). Such machine will have a number
of accepting paths lower than that of rejecting ones if and only
if σ is not a PBE. Machine M clearly operates in NP.

Finally, we conclude this section by observing that the
number of players plays a crucial role in the PP-hardness
above.

Theorem 5. ∃PBE for games in GenNF is NP-complete, if
the number of players |N | is bounded by a constant.

Proof. (Hardness) The hardness follows from Theorem 1.

(Membership) Problem ∃PBE can be solved by guessing a
strategy-profile σ in polynomial time (it consists in guessing
an action for every pair player/type), and checking whether σ

is a PBE. In case of |N | bounded by a constant, formula (1)
clearly shows that such task can be performed in polynomial
time.
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4 Tractability results

In order to look for tractable cases of the ∃PBE problem,
we might think of issuing some suitable restrictions on the
games. For instance, one may think about restrictions on the
maximum number of neighbors of each player, on the max-
imum number of types of each player, and on the kinds of
interaction among players.

Results in Section 3 show that, exploiting only one of the
restrictions above is not enough: requiring the size of the
neighborhood, or the maximum number of types for each
player to be bounded by a constant does not lead to tractabil-
ity (cf., respectively, Theorem 1 and [Gottlob et al., 2003]

for the more restricted case of games with complete informa-
tion, i.e., games in which players can assume only one type).
On the other hand, it is possible to show that, by combining
orthogonal, but weaker restrictions, we can obtain somewhat
appealing tractable cases. To this end, we will exploit the
concepts of intricacy, hyper-graph and hypertree-width of a
game [Gottlob et al., 2003] below, and we show that the prob-
lem ∃PBE becomes polynomial in case of games G having
bounded intricacy (or, equivalently, the small neighborhood
property), bounded number of types, and whose associated
hypergraph H(G) has bounded hypertree-width.

Definitions of intricacy and hyper-graph have been pro-
posed for games with complete information only, but we
show that they can be used, without modification, also in the
context of Bayesian Games. Formally, given a game G, the
intricacy of G, i(G), is defined as

i(G) = max
j∈N

„
|Neigh(j)| × log |Aj |

log ||G||

«
(2)

where ||G|| is the size of the representation of G.
A game G that has bounded intricacy, i.e., for which

i(G) ≤ k for a fixed constant k, also enjoys the so-called
small neighborhood property: for each player j ∈ N ,
|Neigh(j)| ∈ O(log ||G||/ log |Aj |). It can be observed
that while bounded neighborhood implies bounded intricacy,
the reverse does in general not hold. Hence, bounding intri-
cacy could be a suitable restriction for those games in which
bounding the number of neighbors is too severe.

Moreover, given a game G, the hyper-graph H(G) =
(V, E) of G has players as vertices, i.e., V = N , and set of
hyper-edges defined as E = {{j ∪Neigh(j)} | j ∈ N}. For
a game G, its associated hypergraph encodes the structural in-
teractions among the players. In many cases, these interaction
are not too intricate, and the notion of hypertree-width helps
in singling out these scenarios.

Definition 3 ([Gottlob et al., 2002]). Given a hypergraph
H = (VH , EH), a hypertree decomposition of H is a hyper-
tree HD = 〈T, χ, λ〉 for H , where T = (VT , ET ) is a tree,
and χ and λ are labelling functions that associate to each ver-
tex p ∈ VT two sets χ(p) ⊆ VH and λ(p) ⊆ EH . Moreover,
HD satisfies all the following conditions:

1. For each hyper-edge h ∈ EH of H , there exists p ∈ VT

s.t. h ⊆ χ(p);

2. For each vertex v ∈ VH of H , the set {p ∈ VT | v ∈
χ(p)} induces a (connected) subtree of T ;

3. For each p ∈ VT , χ(p) ⊆
⋃

e∈λ(p) e;

4. For each p ∈ VT , (
⋃

e∈λ(p) e)∩ (
⋃

p′∈Tp
χ(p′)) ⊆ χ(p),

where Tp is the set of nodes in the subtree rooted at p.

The width of HD is maxp∈VT
|λ(p)|. The hypertree-width

hw(H) of an hyper-graph H is the minimum width over all
its hypertree decompositions. �

To prove our main tractability result, we will exploit a
transformation from a Bayesian Game into a game with com-
plete information, and show that it preserves important struc-
tural properties of the game. The transformation is called the
type-agent representation of a Bayesian Game, as it was orig-
inally discussed in [Harsanyi, 1968]. In the type-agent repre-
sentation there is a player (called, to avoid confusion, type-
agent) for every possible pair (i, ti), with i ∈ N and ti ∈ Ti.
The set of actions available to each type-agent (i, ti) is ex-
actly the set Ai of actions available to player i. The idea is
that type-agent (i, ti) is responsible for selecting the action
that player i would use in the original Bayesian Game if ti is
his realized type. Hence, an action profile for the new game
is a tuple a having a component a[(i, ti)] for each type-agent
(i, ti). Also the utility functions of each type-agent (i, ti)
are derived from that of player i, being defined as the condi-
tionally expected utility to player i given that ti is his real-
ized type. Formally, the utility function for type-agent (i, ti),
v(i,ti)(a), is as follows:

v(i,ti)(a) =
X

t−i∈ ×
j∈N−{i}

Tj

pi(t
−i|ti) ui

“
a

′, 〈t−i; ti〉
”

(3)

where, to ease notation, we denoted by a
′ the N -tuple having

a[(j, t[j])] as its j-component a
′[j], for all j ∈ N .

BEs of the original game are in one-to-one correspondence
with Nash Equilibria of the new game with complete infor-
mation.

Theorem 6. ∃PBE is feasible in polynomial time for the
class of games having bounded hypertree-width, bounded in-
tricacy, and bounded number of types, even with unbounded
number of players.

Proof. We exploit the transformation of the Bayesian Game
G into a game G′ with complete information described above.
We remind the PBEs of G are in one-to-one correspondence
with Pure Nash Equilibria of G′. G′ has a set N ′ of

∑
i∈N |Ti|

type-agents (i, ti) (with ti ∈ Ti), each one having utility
function v(i,ti)(·) defined as in (3).

Since, in the Bayesian Game G, player i has only set
Neigh(i) as neighbors, functions v(i,ti)(·) and ui(·) do not
depend on actions and types of players in set Xi = N −
Neigh(i) − {i}. Hence, a can be regarded as a tuple in

Ai × ×j∈Neigh(i) A
|Tj |
j . Moreover, by splitting tuple t

−i

into 〈t−i
Neigh(i); t

−i
Xi

〉, pi(t
−i|ti) = pi(t

−i
Neigh(i), t

−i
Xi

|ti) can

be rewritten as pi(t
−i
Neigh(i)|ti) · pi(t

−i
Xi

|t−i
Neigh(i), ti). Hence,

v(i,ti)(·) becomes:

v(i,ti)(a)=
X

t
−i

Neigh(i)
∈ ×
j∈Neigh(i)

Tj

pi(t
−i
Neigh(i)|ti)

0
BBB@

X
t
−i
Xi

∈ ×
j∈Xi

Tj

pi(t
−i
Xi

|t−i
Neigh(i), ti)

1
CCCAuì a

′, t́
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Since, the subexpression in parentheses evaluates to 1, the
formula can be rewritten as:

v(i,ti)(a) =
X

t
−i

Neigh(i)
∈ ×

j∈Neigh(i)
Tj

pi(t
−i
Neigh(i)|ti) ui

`
a

′ , t
´

On the other hand, from formula (2) we obtain, for every
player j ∈ N : i(G)×log ||G|| ≥ |Neigh(j)|×log |Aj |.Wlog,
we can assume that, for each j ∈ N , |Aj | ≥ 2, hence
log |Aj | ≥ 1. Thus, we have |Neigh(j)| ≤ i(G) · log ||G||.

We now show that, for every type-agent (i, ti), function
v(i,ti)(·) can be computed in polynomial time in ||G||. This is

because, given an action-profile a, computing v(i,ti)(a) ac-

counts to sum out
∏

j∈Neigh(i) |Tj| factors (each one evalu-

able in polynomial time), and, as we observed above, we have
that, for each j ∈ N , such value is polynomial in ||G|| if the
game has bounded intricacy and the number of types avail-
able to each player is bounded by a constant T .

Hence, we have shown how G can be transformed in poly-
nomial time into the game G′. In order to conclude the proof,
it remains to show that deciding whether Nash equilibria exist
in G′ can also be made in polynomial time.

Theorem 5.3 of [Gottlob et al., 2003] claims that this
problem is polynomial for games with complete information
which have bounded hypertree-width and bounded intricacy.
What we show next is that the reduction above is such that G′

meets all these conditions.

Bounded Intricacy: Any type-agent (i, ti) will have at most

Neigh(i) · T neighbors in G′. Hence, i(G′) ≤ i(G) · T .

Bounded hypertree-width: Given the hypergraph H(G) as-

sociated to G, with bounded hypertree-width hw(G), we can
build the hypergraph for G′ as follows: the nodes are the type-
agents (i, ti), and for each type-agent (i, ti), an hyper-edge

eG
′

(i,ti)
exists connecting (i, ti) to all the variables occurring in

v(i,ti)(·), i.e., all type-agents (j, tj) with j ∈ Neigh(i) and
tj ∈ Tj . Such a hypergraph has hypertree-width bounded by
hw(G) · T . To show this, we present a procedure that com-
putes an hyper-tree decomposition 〈T ′, χ′, λ′〉 of G′ from an
hyper-tree decomposition 〈T, χ, λ〉 of G of minimal width.
The transformation is as follows: (1) T ′ = T ; (2) For every

node v ∈ T , λ′(v) = {eG
′

(i,ti)
|eGi ∈ λ(v) ∧ ti ∈ Ti}, with eGi

being the hyper-edge in H(G) defined by {i}∪Neigh(i); (3)
For every node v ∈ T , χ′(v) = {(i, ti)|i ∈ χ(v) ∧ ti ∈ Ti};

It can be seen that 〈T ′, χ′, λ′〉 satisfies all the conditions
to be an hypertree-decomposition of H(G′), and has width
bounded by hw(G) · T .
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