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Abstract

Given a winning-bid withdrawal in a combinato-
rial auction, finding an alternative repair solution
of adequate revenue without causing undue distur-
bance to the remaining winning bids in the orig-
inal solution may be difficult or even impossi-
ble. This “bid-takers exposure problem” may be
preemptively addressed by finding a solution that
is robust to winning-bid withdrawal. We intro-
duce the concept of monotonicity-in-expectation.
We provide impossibility results concerning truth-
ful mechanisms for robust solutions with bounded
social-welfare losses in which the bid-taker cannot
rescind items from winning bidders to repair a solu-
tion. We also show that this result extends to com-
binatorial auctions that include a form of leveled-
commitment contract. However, we present a pos-
itive result regarding truthfulness for combinato-
rial auctions in a restricted setting that comprises a
computationally efficient allocation algorithm that
seeks to maximize expected social welfare.

1 Introduction

A combinatorial auction (CA) provides an efficient means
of allocating multiple distinguishable items amongst bidders
whose perceived valuations for combinations of items differ.
Such auctions are gaining in popularity and there is a prolif-
eration in their usage across a variety of industries. Revenue
is the most obvious optimization criterion for such auctions,
but another desirable attribute is solution robustness [Holland
and O’Sullivan, 2005a]. A robust solution to a CA is one
that can withstand winning-bid withdrawal (a break) by mak-
ing changes easily to form a repair solution of adequate rev-
enue. A brittle solution is one in which an unacceptable loss
in revenue is unavoidable if a winning bid is withdrawn. Ro-
bustness is a preventative measure that protects against future
uncertainty by trading-off revenue for solution stability.

The weighted super solutions (WSS) framework has been
proposed as a means of finding such solutions [Holland and
O’Sullivan, 2005al. A natural question that arises from
that work is whether it is possible to design truthful mech-
anisms for combinatorial auctions whose social welfare can

be risk-managed. It is possible to incentivize truthful bid-
ding in auctions by carefully designing the allocation and
payment mechanism so that they satisfy certain properties.
The Revelation Principle implies that in a wide variety of
settings, only “truthful revelation mechanisms” in which
agents truthfully announce their valuations need to be con-
sidered when the maximization of a social objective is re-
quired. In other words, there are no manipulable mecha-
nisms in which agents strategically report their types that
achieve superior outcomes than any non-manipulable mech-
anism. This principle allows us to focus our attention on
truthful mechanisms only. There has been considerable re-
search effort in this field by the computer science community
in recent years because of the computational challenges posed
by incentive compatibility [Nisan and Ronen, 2001; 2000;
Lehmann et al., 2002].

The contributions of this paper are twofold. Firstly, we
present impossibility results related to the non-existence of
mechanisms to incentivize truthful bidding when robust al-
locations are required in a combinatorial auction. These re-
sults hold for both irrevocable commitments and a form of
leveled commitment contract between the bid-taker and bid-
ders. Secondly, we propose an alternative approach to man-
aging risk in combinatorial auctions in which we maximize
expected social welfare. We present a positive result regard-
ing truthfulness for CAs in a restricted setting that features a
computationally efficient allocation algorithm.

2 Preliminaries

Combinatorial auctions involve a single bid-taker allocating
multiple distinguishable items amongst a set of bidders. The
bid-taker has a set of m items for sale, M = {1,...,m}, and
bidders submit a set of bids, B = {Bi,...,B,}. Abidisa
tuple B; = (b;,S;) where S; C M is a subset of the items
for sale and b; > 0 is a bid amount. The winner determi-
nation problem (WDP) for a CA is to label all bids as either
winning or losing so as to maximize the revenue from win-
ning bids without allocating any item to more than one bid,
and is formulated as follows:

Y xy<1vie{l...m}, z; €{0,1}.

inESj
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This problem is NP-complete [Rothkopf et al., 1998]
and inapproximable [Sandholm et al., 2003], and is other-
wise known as the Weighted Set Packing Problem. The for-
mulation above assumes the notion of free disposal. This
means that the optimal solution need not necessarily sell all
of the items. If the auction rules stipulate that all items
must be sold, the problem becomes a Set Partition Prob-
lem. The WDP has been extensively studied in recent years.
The fastest search algorithms that find optimal solutions (e.g.
CABOB [Sandholm et al., 2005]) can, in practice, solve
very large problems involving thousands of bids very quickly.
Given the possibility of a winning bid being withdrawn by
the associated bidder before the transaction has been com-
pleted, large losses in revenue are possible [Holland, 2005;
Holland and O’Sullivan, 2005al. Therefore, it is often impor-
tant to preempt bid withdrawal by finding a robust solution.

DEFINITION 1 (Robust Solution for a CA) A robust solu-
tion for a combinatorial auction is one in which any subset
of successful bids whose probability of withdrawal is at least
« can be repaired by reallocating items at a cost of at most
(B amongst other bidders, in order to form a repair solution
whose revenue is at least a fraction, vy, of optimal revenue.

DEFINITION 2 (1-robust Solution for a CA) A [-robust
solution for a combinatorial auction is one in which any sin-
gle bid whose probability of withdrawal is at least o can be
repaired by reallocating items at a cost of at most (3 amongst
other bidders, in order to form a repair solution whose
revenue is at least a fraction, v, of optimal revenue [Holland,
2005]. (The definition of a k-robust solution follows in an
obvious manner.)

A solution is considered robust if and only if the revenue of
a repair solution is is guaranteed to be at least -y times the op-
timum for every likely set of winning-bid withdrawals, whose
probability of failure is greater than or equal to . The max-
imum cost of repair (/3), in the case of CAs, reflects the size
of any fund for compensatory payments paid to/from the bid-
taker following the reassignment of items in order to find a
repair solution with satisfactory revenue. If item revocation
from bidders by the bid-taker is forbidden, then § = 0 and
compensatory payments to bidders are effectively co. Later,
we shall consider mutual bid bonds in which a reneging bid-
der forfeits a bond that is used by the bid-taker to fund com-
pensation to other non-reneging winning bidders when revok-
ing items to form an alternative repair solution [Holland and
O’Sullivan, 2005al.

As an example, consider three bids for two items
(100,{A, B}), (60,{A}) and (60,{B}). The independent
probabilities of each bid being withdrawn if successful are
0.1. If we set &« = 0.05, 8 = 0 and v = 0.75, so that all
bids are brittle, no non-reneging winning bidder can have an
item revoked, and we wish to ensure that a repair solution ex-
ists with a minimum revenue of 0.75 x 120. Then (1,0, 0)
is the optimal 1-robust solution! because it can be repaired
to form (0, 1, 1), should the winning bid be withdrawn. Note
that (0,1, 1) is not a robust solution because it results in a

'The notation (1,0, 0) means that only the first bids wins.

repair revenue of 60, which is below our threshold, should
either of the winning bids be withdrawn.

Most prior literature on the subject of combinatorial auc-
tions assumes that the probability of a winning bid withdraw-
ing from the auction is zero. Therefore, we contend that
relaxing this assumption so that the conditional probability
of withdrawal in a repair solution is negligible, given that a
withdrawal has already occurred in the initial allocation, is
a reasonable assumption. We can choose « to establish an
upper bound on the number of likely withdrawals that re-
quire repairs. A constraint programming approach, called
the weighted super solutions framework, for finding such ro-
bust solutions has been developed [Holland and O’Sullivan,
2005a; 2005b]. This framework enables us to find such so-
lutions in a computationally feasible manner by facilitating
satisfiability tests for repair solutions.

The design of truthful mechanisms for a computation-
ally hard problem such as winner determination in a CA is
made difficult by the fact that efficiently computable heuris-
tics cannot be employed whilst still maintaining their non-
manipulability characteristics. For example, the class of
Vickrey-Clarke-Groves (VCG) mechanisms guarantee that
each bidder’s dominant strategy is to tell the truth, but it re-
quires solving ¢ + 1 optimization problems, where the over-
all optimal solutions involves ¢ winning bidders. However,
non-optimal solutions compromise truthfulness [Nisan and
Ronen, 2001]. In this classic setting a necessary condition
for any truthful mechanism is that its allocation scheme be
monotone.

DEFINITION 3 (Monotone allocation algorithm) An allo-
cation algorithm is monotone iff whenever a bid v; wins, an

increase in the bid to vg- still wins, assuming all other bids are
fixed.

3 Non-monotonicity Results

In the case of truthful auctions, however, the payments do
not generally equal the declared valuations. For this reason,
risk management for such auctions involves managing po-
tential losses in social welfare rather than revenue. Hence-
forth, when we refer to solution robustness involving truth-
ful bidding we are referring to robustness in terms of social
welfare. Given exogenous probabilities of failure, we adopt
a concept of monotonicity-in-expectation to analyze alloca-
tions that support contingency planning. Clearly, in our set-
ting a necessary condition for any truthful mechanism is that
its allocation scheme be monotone-in-expectation.

DEFINITION 4 (Monotone-in-expectation allocation algorithm)

An allocation algorithm is monotone-in-expectation if when-
ever a bid v; wins with exogenous probability p, an increase
in the bid to ’U} means that it wins with at least probability p,
assuming all other bids are fixed.

3.1 Robust-Allocation Algorithms

We show that an increase in a bid amount may provide a re-
pair solution for a previously irreparable bid. This enlarges
the set of bids that may be considered when determining an
optimal robust solution. We shall later see how this can occur
in practice in Example 1. Lemma 1 provides an impossibility
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result regarding the monotonicity-in-expectation of robust-
allocation algorithms when finding an optimal 1-robust so-
Iution. The non-existence of a monotone-in-expectation al-
location algorithm implies that for some bidder a, if v, is a
winning declaration with some probability, p, then for some
higher declaration v/, > v, it is more likely to become a los-
ing declaration. The proof utilizes the fact that if v, becomes
a losing bid with a higher probability, then it must form part
of a repair allocation for another previously irreparable bid
that partakes in the subsequent winning allocation.

LEMMA 1 Any allocation algorithm for finding a social-
welfare maximising I-robust solution to a CA with irrevoca-
ble assignments of items is non-monotone-in-expectation.
Proof: Example 1 suffices to prove this result. |
EXAMPLE 1 Consider bids v1 (13, A), v2(12, B), v3(8,C),
v4(33, AB) and v5(24, BC) (Table 1). Let o = 0.1 and all
bids are robust, i.e. not likely to be withdrawn, except for
v4 whose probability of withdrawal, 0.15, exceeds the thresh-
old value of «. In this example we consider irrevocable as-
signments so we have no budget to revoke items from non-
reneging winning bidders and compensate them for such ac-
tions, so 3 = 0. We let y = %, so the minimum acceptable
social welfare is 34. The optimal robust solution is, therefore,
{v1, vs} with social welfare of 37, because {vs,v4}, the so-
lution with the highest aggregate declared value to bidders,
cannot be repaired to form a solution of at least 34 should
v4 be withdrawn. The optimal repair solution, {vy,ve, v3},
attains only 33.

Table 1: Combinatorial auction for Example 1.

Item Combinations

Bids A B C AB BC Withdrawal prob
vp 13 0 0 O 0 0.02(< o)
va 0 12 0 O 0 0.03(< a)
v 0 O 8 0 0 0.04(< o)
vy O O O 33 0 0.15(> )
vs 0 0 0 0 24 0.05(< o)

Let us suppose that v; becomes v} (16, A), so that the dec-
laration has increased by 3. A monotone-in-expectation al-
location algorithm requires that v; remains a winning bid in
the initial allocation because if it were to become part of a
repair allocation the bidder would have a lower probability of
receiving the item. However, allocation {vs, v4} can now be
repaired to form a solution with a social welfare of 36 should
vy be withdrawn. Therefore, the new optimal 1-robust solu-
tion becomes {v3,v4}. This implies that v} is less likely to
be awarded item A following the increase from vy, violating
the monotonicity-in-expectation requirement. A

Lemma 1 demonstrates that increasing a winning bid has
the possible side-effect of creating new robust solutions by
forming a repair solution for a previously irreparable alloca-
tion of higher social welfare. Example 1 shows how such
allocation algorithms can cause the probability of a decla-
ration’s success to decrease following an increase in its bid
amount.

THEOREM 1 A normalized® truthful mechanism is impossi-
ble for I-robust solutions where item assignments are irrevo-
cable.

Proof: A normalized mechanism is truthful if and only if
its allocation algorithm is monotone and its payment scheme
is based on the critical value [Mu’alem and Nisan, 2002].
When considering exogenous probabilities of contingency
allocations the algorithm must be monotone-in-expectation.
Lemma 1 shows that a monotone-in-expectation allocation al-
gorithm is impossible to achieve for 1-robust solutions where
item assignments are irrevocable. |

Theorem 1 shows that it is impossible to incentivize truth-
ful bidding to achieve 1-robust solutions. Monotonicity-in-
expectation is hindered by the fact that irreparable bids are
discounted from consideration when determining the win-
ners.

COROLLARY 1 A normalized truthful mechanism is impos-
sible for k-robust solutions where item assignments are irre-
vocable.

In prior work, the lower bound on tolerable revenue was in-
troduced to permit satisfiability testing for repairs in order to
improve computational feasibility [Holland and O’Sullivan,
2005a]. However, this constraint inhibits truthful mecha-
nisms because an increase in a bid amount for a bid partici-
pating in an optimal robust solution can simultaneously cause
a brittle allocation of higher revenue to become robust. We
need to circumvent this problem in order to find a truthful
mechanism for risk-managed solutions as opposed to robust
solutions that provide guarantees on the social welfare of re-
pair allocations.

The WEIGHTED-SUPER-SOLVE algorithm [Holland and
O’Sullivan, 2005b] is an example of an allocation algorithm
that finds such robust solutions. Although the allocation prob-
lem is A"P-complete when a fixed bound is placed on the size
of any break, its application within a VCG-based mechanism
would remain of the same asymptotic complexity. An obvi-
ous, yet interesting, question remained as to whether it could
induce truthful bidding. Theorem 1 informs us that such an
algorithm is non-monotone-in-expectation so the answer to
this question is negative.

3.2 Mutual Bid Bonds

Some auction solutions are inherently brittle and it may be
impossible to find a robust solution. We can alter the rules
of an auction so that the bid-taker can revoke items from
winning bidders, to be reallocated so that the reparability
of solutions to such auctions can be improved [Holland and
O’Sullivan, 2005a]. In this section we investigate whether it
is possible to allocate items in a robust solution using an auc-
tion model that permits bid and item withdrawal by the bid-
ders and bid-taker, respectively, whilst incentivizing truthful
bidding.

We adopt a model that incorporates mutual bid bonds to
enable solution reparability. Mutual bid bonds are a form of
insurance against the winner’s curse for the bidder whilst also
compensating bidders in the case of item withdrawal from

%A normalized mechanism ensures that non-winners pay zero.
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winning bids. Such “Winner’s Curse & Bid-taker’s Expo-
sure” insurance comprises a fixed, non-zero fraction, x, of
the bid amount for all bids. Mutual bid bonds are manda-
tory for each bid in our model. The conditions attached to the
bid bonds are that the bid-taker be allowed to annul winning
bids (item withdrawal) when repairing breaks elsewhere in
the solution. In the interests of fairness, compensation is paid
to bidders from whom items are withdrawn and is equivalent
to the penalty that would have been imposed on the bidder
should he have withdrawn the bid.

If the decommitment penalties are the same for both parties
in all bids, x does not influence reparability. It merely influ-
ences the levels of penalties and compensation transacted by
the agents. Low values of x incur low bid withdrawal penal-
ties and simulate a dictatorial bid-taker who does not ade-
quately compensate bidders for item withdrawal. Increased
levels of winning-bid withdrawal are likely when the penal-
ties are low in a common or affiliated-values model. High
values of « tend towards full-commitment. The penalties paid
are used to fund a reassignment of items to form a repair solu-
tion of sufficient value by compensating previously success-
ful bidders for withdrawal of items from them.

LEMMA 2 Robust-allocation algorithms for finding an op-
timal 1-robust solution to a CA with mutual bid bonds are
non-monotone-in-expectation.

Proof: Example 2 suffices to prove this result. ]

We present an example to demonstrate how an increase in
a declaration can result in its likelihood of success being de-
creased because it forms part of a repair solution for a previ-
ously irreparable solution. Note that Example 2 has different
bid amounts for v3 and vs than those in Example 1. These
were altered so that the withdrawal of v, would provide in-
sufficient funds to repair (vs,v4) by revoking items from vs.
Mutual bid bonds only permit revocation of items from a set
of winning bids whose summation of declarations is less than
that of the withdrawn bid.

EXAMPLE 2 Consider bids v1 (13, A), v2(12, B), v3(38, C),
v4(33, AB) and v5(54, BC') (Table 2). Again, we let o =
0.10 so that all bids are robust except for v4 whose probabil-
ity of withdrawal is 0.12. We let v = %, so the minimum
acceptable social welfare for a solution 1s 64. The bid-taker
would like to be able to award the items to {vs, v4 } but vy is a
brittle bid that cannot be repaired satisfactorily. The optimal
robust solution is, therefore, {v1, vs } with welfare of 67.

Table 2: Combinatorial auction for Example 2.

Item Combinations

Bids A B C AB BC Withdrawal prob
vi 13 0 O 0 0 0.01(< o)
v2 0 12 0 0 0 0.02(< a)
v 0 O 38 O 0 0.03(< «)
v 0 0 0 33 0 0.12(> «)
vs 0 0 O 0 54 0.04(< o)

Suppose that v; becomes v} (16, A), so the declaration has
increased by 3. The mutual bid bond provides a fund of

B = k x 33 if vy is withdrawn, but this is insufficient to al-
low revocation of items from vs who requires a compensatory
payment of k£ X 38. A monotone-in-expectation allocation
algorithm requires that v{ has least the same probability of
receiving item A as it did previously (Definition 3). How-
ever, v4 can now be repaired to form a solution, (v, va,v3),
of welfare 66 should the bid be withdrawn, therefore, the
new optimal 1-robust solution following the increase in v;
is {v3,v4}. This implies that v} becomes a losing declaration
with a greater probability following the increase from v, thus
violating the monotonicity-in-expectation requirement. A

THEOREM 2 A normalized truthful mechanism is impossi-
ble for I-robust solutions and mutual bid bonds.

Proof: Lemma 2 shows that a monotone-in-expectation al-
location algorithm is impossible to achieve for 1-robust solu-
tions with mutual bid bonds. |

COROLLARY 2 A normalized truthful mechanism is impos-
sible for k-robust solutions where items can be revoked based
on mutual bid bonds.

4 Truthful Risk-Managed Allocations

In this section we investigate ways in which we can com-
promise our allocation algorithm and restrict the CA set-
ting so that we can achieve a truthful mechanism. Various
polynomial-time approximation algorithms can provide good
or near optimal solutions very quickly. However, Nisan and
Ronen [2000] showed that a non-optimal solution can in fact
be degenerate so that results can be arbitrarily far from the
optimum, in terms of social efficiency. A seminal positive re-
sult, due to Lehmann et al. [2002], showed that by restricting
the set of agents’ preferences to be what they termed, single-
minded, i.e. agents are only interested in a single bundle of
items, it is possible to develop greedy mechanisms that are
both truthful and computationally efficient.

DEFINITION 5 (Single-minded bidder) Bidder j is single-

minded if there is a set of goods S; C M and a value vi >0
v¥ S ;) S Ji

such that v;(S) = { O7 otherwise.

Lehmann et al. showed, axiomatically, that a mechanism
is truthful, given single-minded bidders, if it fulfils the fol-
lowing requirements: the mechanism’s allocation algorithm
is monotone (Definition 3); the bidder is either awarded his
set of desired items and no more or nothing at all (exactness);
a winning bidder pays the lowest value he could have declared
to win the items (critical value); a bidder never pays less for
a superset of items in his bid (payment monotonicity); losing
bidders pay zero (participation constraints).

We adopt a similar model to Mu’alem and Nisan [2002]
to investigate possible mechanisms that incentivize truthful
bidding over a set U of m items. Each bidder j, of n bid-
ders in total, has a non-negative valuation function v; for a
subset §; C U of items. We assume that bidders’ valuation
functions are private, as is commonplace within mechanism
design [Archer and Eva Tardos, 2001] and probabilities of
withdrawal are exogenous.
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Informally, single-minded bidders are willing to pay v7,
a privately known valuation, on condition that they mini-
mally receive a set of items, S;. This condition is neces-
sary to satisfy the individual rationality constraints. Mu’alem
and Nisan [2002] introduced known single-minded bidders,
whereby the subsets S; are known to the mechanism. In fact,
only the cardinality of these subsets needs to be known to
the mechanism. This mechanism is composed of an alloca-
tion algorithm, A(v), whose inputs are the bid declarations
v = {v1,...,v,}, the respective desired items {51, ..., S, }
and a payment rule p(v). The output of A(v) is a subset of
pair-wise disjoint winning bids.

We present a positive result: a truthful approximation
scheme whose allocation scheme accounts for the risk of po-
tential single winning-bid withdrawals. We develop an ap-
proximation algorithm similar to the LP-based allocation al-
gorithm of Mu’alem and Nisan [2002] and show that it is
monotone-in-expectation. The IP formulation for maximiz-
ing expected social welfare, given the possibility of single
bid-withdrawal, is the following:

max Z(l — Pj)viT; +ZZkaj7’kj (1)

j=1 k=1 j=1

where 74,25 € {0,1},2; € {0,1}, 7 € {0} and is sub-
ject to the following constraints:

Z z; <1 Vie{l,.,m}

j‘iESj

Z zj+r; <1 Vie{l,.,m}ke{l,.,n}

ili€S; j#k
where 0 < p; < % is the probability of bid j being withdrawn
so that we do not expect the repair allocation to have higher
revenue than the initial allocation. x; is the decision variable
for bid j, v; the amount of bid j and ry; is 1 iff bidder j re-
ceives her bundle if bidder k£ withdraws but does noft receive it
if bidder k& does not withdraw. We assume conditional prob-
abilities of failure so that the likelihood of multiple winning-
bid withdrawals is zero. Notwithstanding this assumption, the
formulation still remains computationally infeasible because
of the size of the input, which requires O(n?) variables. A
branch and bound search to find an optimal solution quickly
becomes prohibitively expensive as n increases. The LP re-
laxation for Equation 1 relaxes the integrality constraints on
x; and 715 so that bids, in effect, can partially win. Although
this problem also has O(n?) input variables, it can be solved
in polynomial time. The LP formulation, denoted LP(v),
is the same as the integer formulation except that we denote
the decision variables as y; (instead of z;) and y;, ry; and
rii are € [0,1]. Note that prior work on robust optimiza-
tion concerns uncertainty about the precision in coefficients
in an ILP [Bertsimas and Sim, 2004], and is therefore not ap-
propriate for our problem that concerns uncertainty about the
validity of assignments to variables.

There are no constraints on minimum social welfare in
this model. These constraints were originally introduced

whilst still maintaining the integrality constraints on winning
bids [Holland and O’Sullivan, 2005al. By removing these
lower bounds on repair revenues and optimizing expected
utility using the LP relaxation, we need to then determine
the allocation from the results of this non-integer solution.
It is natural to assume that y;, representing the status of bid
v; in the optimal allocation of the linear relaxation, would
provide a good heuristic for guiding the choice of an approx-
imate solution because it reflects a fraction of how much that
bid should win in an optimal solution. In general, however,
such heuristics are not necessarily truthful.

Algorithm 1: LP-RISK-MANAGE

input : Bids V'

output: Allocation (X, R)

begin
Y «— LP(V) // Optimal LP solution
foreachj € {1...n} do

L if y;(1—p;) + >4 Tkjpr > 5 then

L X[l <1

foreach j, k € {1...n} do
L RIK][j] <0

end

Informally, LP-RISK-MANAGE (Algorithm 1) assigns any
bid whose value in the corresponding LP solution is expected
to be greater than 1, when considering the exogenous proba-
bilities of withdrawals, to be a winning bid. In order to prove
the monotonicity-in-expectation of Algorithm 1 it is neces-
sary to show that for any v_;, where v_; = v \ {v;}, y; isa
non-decreasing function of v;.

LEMMA 3 y,(1 — p;) + > p_, rkjPk is a non-decreasing
function of v; for any fixed v_;.

First let us define U(z,r,v) = Y7, (1—pj)vja; +
> k=1 2_j—1 Pk;Tk; for the purposes of notational brevity.
Proof:  Consider optimal feasible solutions ) and )’ to
the linear program, LP(v) and LP(v"), respectively, where
v; < v;- and A = v;- — v;. )’ is a feasible, though non-
optimal, solution to LP(v) and so U(y’,r",v) < U(y,r,v).
Y is also a feasible solution to LP(v") and so (1 — p;)Ay; +
Y one1 PEATE U (y,1,v) < (1=pj) Ay 4370 ) prATy,+
U(y/a T/a 1)) 0 S U(y,T,’U) - U(y/,T/,’U) S (y; - y])(l -
PI)A 4 Y5y (7} — Tkj)PeA. The expression on the very
right hand side is > 0 and we can rearrange it so that the
(Y, 71;) and (y;,7x;) components are on opposite sides,
Yi(L = pj) + 2y TP = Y (1= pj) + 2y rijpr. W

LEMMA 4 Algorithm 1 (LP-RISK-MANAGE) is monotone-
in-expectation.

Proof: v; is a winning declaration if and only if % <y;(1—
p;)+ 25:1 T%j k- From Lemma 3 we know that £ < y;(1—
Pi)+2 ey ThiPk < Y5(1=pi)+3 5y TPk SO any vf > v;

as a compromise on the original problem of utility maxi- s also a winning declaration. [
mization so that we could improve computational feasibility
[JCAI-07
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THEOREM 3 A normalized mechanism that assigns items
to bidders according to Algorithm 1 (LP-RISK-MANAGE)
is truthful-in-expectation when its payment scheme is based
upon the critical value.

Proof: We know from [Mu’alem and Nisan, 2002] that
for any v_; and monotone allocation algorithm there exists
a single critical value below which v; is always a losing
declaration and above which it is always winning. A nor-
malized mechanism is truthful when its payment scheme is
based upon the critical value, and the allocation algorithm
is monotone [Mu’alem and Nisan, 2002]. From Lemma 4
we can conclude that LP-RISK-MANAGE is monotone-
in-expectation, thereby weakening the solution concept to
truthfulness-in-expectation. |

The most important application of an approximation algo-
rithm is within a mechanism that can provide guarantees on
algorithm performance. Algorithm 2 provides a (m + 1)-
approximation for expected social-welfare maximizing CAs
when single winning-bid withdrawal is possible.

Algorithm 2: (m + 1)-APPROX-RISKMANAGE
input : Bids V
output: Allocation (X, R)
begin
/Highest expected bid amount
j <« argmax(p; X vj)
//Second Highest expected bid amount as a repair
J2  argmax(pj, X vj,, j2 # j)
X[a) =0, R[b][c] =0 Va,b,c={1l..n}
X[j] = L, R[j][j2] = 1
/lo(LP(V)): the optimal objective value

if U(%Jrq/)) < (1 —pj)Uj + pjv;, then
| return (X, R)

else return LP-RISK-MANAGE(V)

end

THEOREM 4 Algorithm 2 provides an m + 1 approximation
of the optimal outcome according to Equation 1.

Proof: (Sketch): In the worst-case situation for Algorithm 2,
the largest single bid amount is ﬁ times the optimal initial
allocation in terms of aggregate declared value. All repair
bids for the optimum will result in no loss in declared value,
and thus the second highest declaration will equal this amount
when there are two or more bids. ]

5 Conclusion

We proved a key negative result using the notion of 1-robust
solutions: robust-allocation algorithms are non-monotone-in-
expectation for the case in which no items can be revoked
from winning bidders. This result extends to k-robust solu-
tions. We also showed that they remain non-monotone-in-
expectation when mutual bid bonds, a class of leveled com-
mitment contract, are adopted.

We circumvented the impossibility results for the case in
which no items can be revoked by the bid-taker and bid-
ders are known single-minded, by removing the constraints

on minimal social welfare. When the conditional probabil-
ity of multiple withdrawals is set to zero, we used a linear
programming-based approximation algorithm to find approx-
imately utility-maximizing solutions. We outlined a com-
putationally efficient (m + 1)-approximation scheme that is
truthful-in-expectation for risk managed solutions. The weak
bound on the approximation ratio is indicative of the difficulty
in attaining truthful risk-managed allocations but serves as a
useful starting point for future work in this nascent research
area.
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