Multi-issue Negotiation Protocol for Agents:
Exploring Nonlinear Utility Spaces

Takayuki Ito
Department of Computer Science,

Department of Techno-Business Administration,

Nagoya Institute of Technology.
ito.takayuki@nitech.ac.jp

Abstract

Multi-issue negotiation protocols have been studied
widely and represent a promising field since most
negotiation problems in the real world involve in-
terdependent multiple issues. The vast majority
of this work has assumed that negotiation issues
are independent, so agents can aggregate the util-
ities of the issue values by simple summation, pro-
ducing linear utility functions. In the real world,
however, such aggregations are often unrealistic.
We cannot, for example, just add up the value of
car’s carburetor and the value of car’s engine when
engineers negotiate over the design a car. These
value of these choices are interdependent, result-
ing in nonlinear utility functions. In this paper,
we address this important gap in current negotia-
tion techniques. We propose a negotiation protocol
where agents employ adjusted sampling to gener-
ate proposals, and a bidding-based mechanism is
used to find social-welfare maximizing deals. Our
experimental results show that our method substan-
tially outperforms existing methods in large non-
linear utility spaces like those found in real world
contexts.

1 Introduction

Multi-issue negotiation protocols represent a important field
of study since negotiation problems in the real world are of-
ten complex ones involving multiple issues. While there has
been a lot of previous work in this area ([Faratin et al., 2002;
Fatima et al., 2004; Lau, 2005; Soh and Li, 2004]) these ef-
forts have, to date, dealt almost exclusively with simple ne-
gotiations involving independent mltiple issues, and there-
fore linear (single optimum) utility functions. Many real-
world negotiation problems, however, involve interdepen-
dent multiple issues. When designers work together to de-
sign a car, for example, the value of a given carburetor is
highly dependent on which engine is chosen. The addition of
such interdependencies greatly complicates the agent’s util-
ity functions, making them nonlinear, with multiple optima.
Negotiation mechanisms that are well-suited for linear utility
functions, unfortunately, fare poorly when applied to nonlin-
ear problems ([Klein et al., 2003]).

Hiromitsu Hattori and Mark Klein
Center for Collective Intelligence,
Sloan School of Management,
Massachusetts Institute of Technology.
hatto @ics.nitech.ac.jp,m_klein@mit.edu

We propose a bidding-based multiple-issue negotiation
protocol suited for agents with such nonlinear utility func-
tions. Agents generate bids by sampling their own utility
functions to find local optima, and then using constraint-
based bids to compactly describe regions that have large util-
ity values for that agent. These techniques make bid gener-
ation computationally tractable even in large (e.g., 10° con-
tracts) utility spaces. A mediator then finds a combination of
bids that maximizes social welfare. Our experimental results
show that our method substantially outperforms negotiation
methods designed for linear utility functions. We also show
that our protocol can guarantee optimality in the theoretical
limit.

The remainder of the paper is organized as follows. First
we describe a model of non-linear multi-issue negotiation.
Second, we describe a bidding-based negotiation protocol de-
signed for such contexts. Third, we present experimental as-
sessment of this protocol. Finally, we compare our work with
previous efforts, and conclude with a discussion of possible
avenues for future work.

2 Negotiation with Nonlinear Utilities

We consider the situation where n agents want to reach an
agreement. There are m issues, s; € .S, to be negotiated. The
number of issues represents the number of dimensions of the
utility space. For example, if there are 3 issues', the utility
space has 3 dimensions. An issue s; has a value drawn from
the domain of integers [0, X], i.e., s; € [0, X%,

A contract is represented by a vector of issue values 5 =
(817 HaS) S’m)

An agent’s utility function is described in terms of con-
straints. There are [constraints, ¢ € C. Each constraint
represents a region with one or more dimensions, and has an

IThe issues are not “distributed” over agents. The agents are all
negotiating over a contract that has N (e.g. 10) issues in it. All
agents are potentially interested in the values for all N issues.

2A discrete domain can come arbitrarily close to a real domain
by increasing the domain size. As a practical matter, very many
real- world issues that are theoretically real (delivery date, cost) are
discretized during negotiations. Our approach, furthermore, is not
theoretically limited to discrete domains. The deal determination
part is unaffected, though the bid generation step will have to be
modified to use a nonlinear optimization algorithm suited to real
domains.

I[JCAI-07
1347

Utility

55

4 6 Issue 2

Issue 1

- M ;J"*"“_"mruf’"” | ,..Iﬂw

& il

Issue 2

Figure 2: A Nonlinear Utility Space for a Single Agent

associated utility value. A constraint ¢y has value w;(cg, §)
if and only if it is satisfied by contract §. Figure 1 shows an
example of a binary constraint between issues 1 and 2. This
constraint has a value of 55, and holds if the value for issue 1
is in the range [3, 7] and the value for issue 2 is in the range
[4,6]. Every agent has its” own, typically unique, set of con-
straints.

An agent’s utility for a contract § is defined as u;(3) =
Y ereC sen(en) Wilck, 5), where z(cy) is a set of possible
contracts (solutions) of ci. This expression produces a
“bumpy” nonlinear utility space, with high points where
many constraints are satisfied, and lower regions where few
or no constraints are satisfied. This represents a crucial depar-
ture from previous efforts on multi-issue negotiation, where
contract utility is calculated as the weighted sum of the util-
ities for individual issues, producing utility functions shaped
like flat hyper-planes with a single optimum. Figure 2 shows
an example of a nonlinear utility space. There are 2 issues,
i.e., 2 dimensions, with domains [0, 99]. There are 50 unary
constraints (i.e., that relate to 1 issue) as well as 100 binary
constraints (i.e., that inter-relate 2 issues). The utility space
is, as we can see, highly nonlinear, with many hills and val-
leys.

We assume, as is common in negotiation contexts, that
agents do not share their utility functions with each other, in
order to preserve a competitive edge. It will generally be the
case, in fact, that agents do not fully know their desirable
contracts in advance, because each own utility functions are
simply too large. If we have 10 issues with 10 possible val-
ues per issue, for example, this produces a space of 10'° (10

[S Tt

Contracts

Utility

Figure 3: Adjusting the Sampled Contract Points

billion) possible contracts, too many to evaluate exhaustively.
Agents must thus operate in a highly uncertain environment.

Finding an optimal contract for individual agents with such
utility spaces can be handled using well-known nonlinear op-
timization techniques such a simulated annealing or evolu-
tionary algorithms. We can not employ such methods for ne-
gotiation purposes, however, because they require that agents
fully reveal their utility functions to a third party, which is
generally unrealistic in negotiation contexts.

The objective function for our protocol can be described as

follows:
argmax) _ u;(3) M

Our protocol, in other words, tries to find contracts that maxi-
mize social welfare, i.e., the total utilities for all agents. Such
contracts, by definition, will also be Pareto-optimal.

3 The Bidding-based Negotiation Protocol

Our bidding-based negotiation protocol consists of the fol-
lowing four steps:

[Step 1: Sampling] Each agent samples its utility space in
order to find high-utility contract regions. A fixed number of
samples are taken from a range of random points, drawing
from a uniform distribution. Note that, if the number of sam-
ples is too low, the agent may miss some high utility regions
in its contract space, and thereby potentially end up with a
sub-optimal contract.

[Step 2: Adjusting] There is no guarantee, of course, that
a given sample will lie on a locally optimal contract. Each
agent, therefore, uses a nonlinear optimizer based on simu-
lated annealing to try to find the local optimum in its neigh-
borhood. Figure 3 exemplifies this concept. In this figure, a
black dot is a sampling point and a white dot is a locally op-
timal contract point.

[Step 3: Bidding] For each contract §'found by adjusted sam-
pling, an agent evaluates its utility by summation of values of
satisfied constraints. If that utility is larger than the reserva-
tion value J, then the agent defines a bid that covers all the
contracts in the region which have that utility value. This is
easy to do: the agent need merely find the intersection of all
the constraints satisfied by that 3.

Steps 1, 2 and 3 can be captured as follows:

S N: The number of samples

T': Temperature for Simulated Annealing

V. A set of values for each issue, V,,, is for an issue m
1: procedure bid-generation with SA(Th, SN, V, T)

I[JCAI-07
1348

Agent 1

Utility

1 >

: Contracts
The 2nd best
contract point J The best contract point

A Agent 2

Utility

Contracts

Figure 4: Deal Identification

Psmpl = @

while | Py, | < SN
Pyppl := Psmpt U {p;} (randomly selected from P)

P=1" V. Py:=0

for each p € Py, do
p' := simulatedAnnealing(p, T')
Py == P, U {p/}

for each p € P;, do
u:=0,B:=0,BC:=0

11: foreachc e C do

12: if ¢ contains p as a contract

and p satisfies ¢ then

13: BC :=BCUc

14: U:=u-+ v,

15: if u >= Th then

16: B:=BU(u,BC)

R A Al

—_
e

[Step 4: Deal identification] The mediator identifies the fi-
nal contract by finding all the combinations of bids, one from
each agent, that are mutually consistent, i.e., that specify
overlapping contract regions®. If there is more than one such
overlap, the mediator selects the one with the highest summed
bid value (and thus, assuming truthful bidding, the highest so-
cial welfare) (see Figure 4). Each bidder pays the value of its
winning bid to the mediator.

3A bid has an acceptable region. For example, if a bid has a re-
gion, such as [0,2] for issuel, [3,5] for issue2, the bid is accepted
by a contract point (1,4), which means issuel takes 1, issue2 takes
4. If a combination of bids, i.e. a solution, is consistent, there are
definitely overlapping region. For instance, a bid with regions (Is-
suel,Issue2) = ([0,2],[3,5]), and another bid with ([0,1],[2,4]) is con-
sistent.

The mediator employs breadth-first search with branch cut-
ting to find social-welfare-maximizing overlaps:
Ag: A set of agents
B: A set of Bid-set of each agent (B = { By, By, ..., By},

A set of bids from agent ¢ is B; = {b;,0, 0,1, -, bi,m })

1: procedure search_solution(B)
2 SC = UjeBo{bovj}’i:: 1
3: while: < |Ag| do

4: SC" =10

5. foreachs € SC do
6 for each b; ; € B; do

7 s’ i=sU bi)j

8 if s’ is consistent then SC’ := SC' U s’
9 SC:=85C"i:=i+1

10: maxSolution = getMaxSolution(SC)

11: return maxSolution

It is easy to show that, in theory, this approach can be guar-
anteed to find optimal contracts. If every agent exhaustively
samples every contract in its utility space, and has a reser-
vation value of zero, then it will generate bids that represent
the agent’s complete utility function. The mediator, with the
complete utility functions for all agents in hand, can use ex-
haustive search over all bid combinations to find the social
welfare maximizing negotiation outcome. But this approach
is only practical for very small contract spaces. The compu-
tational cost of generating bids and finding winning combina-
tions grows rapidly as the size of the contract space increases.
As a practical matter, we have to limit the number of bids the
agents can generate. Thus, deal identification can terminate in
areasonable amount of time. But limiting the number of bids
raises the possibility that we will miss the optimum contract.
The bid limit thus mediates a tradeoff between outcome opti-
mality and computational cost. We will explore this tradeoff
later in the paper.

4 Experiments
4.1 Setting

We conducted several experiments to evaluate the effective-
ness and scalability of our approach. In each experiment, we
ran 100 negotiations between agents with randomly gener-
ated utility functions. For each run, we applied an optimizer
to the sum of all the agents’ utility functions to find the con-
tract with the highest possible social welfare. This value was
used to assess the efficiency (i.e., how closely optimal social
welfare was approached) of the negotiation protocols. To find
the optimum contract, we used simulated annealing (SA) be-
cause exhaustive search became intractable as the number of
issues grew too large.The SA initial temperature was 50.0 and
decreased linearly to 0 over the course of 2500 iterations. The
initial contract for each SA run was randomly selected.

We compared two negotiation protocols: hill-climbing
(HC), and our bidding-based protocol with random sampling
(AR). The HC approach implements a mediated single-text
negotiation protocol([Raiffa, 1982]) based on hill-climbing.
We start with a randomly generated baseline contract. The
mediator then generates a variant of that baseline and submits

I[JCAI-07
1349

it for consideration to the negotiating agents. If all the agents
prefer the variant over its predecessor, the variant becomes
the new baseline. This process continues until the mediator
can no longer find any changes that all the agents can accept:
I: A setofissues, I = {i1,i9,...,%n}

V. A set of values for each issue, V/, is for an issue n

1: procedure systematicL.S(Z,V")

2: S :=initial solution (set randomly)

3: foreach: € I do

4: foreachj € V; do

5 S’ := S with issue 7’s value set to j
6 if all agents accept S’ then S = S’
7: return S

In our implementation, every possible single-issue change
was proposed once, so the HC protocol requires only
(domain size) x (number of issues) iterations for each
negotiation (e.g., 100 steps for the 10 issue case with domain
[0,9]). We selected this protocol as a comparison case be-
cause it represents a typical example of the negotiation proto-
cols that have been applied successfully, in previous research
efforts, to linear utility spaces.

The parameters for our experiments were as follows:

e Number of agents is N = 2 to 5. Number of issues is 1
to 10. Domain for issue values is [0, 9].

e Constraints for linear utility spaces :
straints.

10 unary con-

e Constraints for nonlinear utility spaces: 5 unary con-
straints, 5 binary constraints, 5 trinary contraints, etc. (a
unary contraint relates to one issue, an binary constraint
relates to two issues, and so on).

e The maximum value for a constraint 100 x
(Number of Issues). Constraints that satisfy many
issues thus have, on average, larger weights. This seems
reasonable for many domains. In meeting scheduling,
for example, higher order constraints concern more peo-
ple than lower order constraints, so they are more impor-
tant for that reason.

e The maximum width for a constraint : 7. The following
constraints, therefore, would all be valid: issue 1 =[2, 6],
issue 3 = [2,9] and issue 7 = [1, 3].

e The number of samples taken during random sampling:
(Number of Issues) x 200.

e Annealing schedule for sample adjustment: initial tem-
perature 30, 30 iterations. Note that it is important that
the annealer not run too long or too "hot’, because then
each sample will tend to find the global optimum instead
of the peak of the optimum nearest the sampling point.

e The reservation value threshold agents used to select
which bids to make: 100.The threshold is used to cut
out contract points which have low utility.

e The limitation on the number of bids per agent:

/6400000 for N agents. It was only practical to run
the deal identification algorithm if it explored no more

Table 1: Optimality with linear utility functions, for 4 agents

Issues 1 2 3 4 5
HC 0.973 0991 0998 0.989 0.986

Issues 6 7 8 9 10
HC 0.987 098 0996 0988 0.991

1.2

T~
TN LT

0.6 i | \'\“\‘

02

Optimality Rate

2 3 4 5 6 7 8 9 10
Number of Issues

Figure 5: Social welfare with nonlinear utility functions

than about 6400,000 bid combinations, which implies a
limit of /6400000 bids per agent, for NV agents.

In our experiments, we ran 100 negotiations in every con-
dition. Our code was implemented in Java 2 (1.4.2) and run
on a dual 2GHz processor PowerMac G5 with 1.2GB mem-
ory under Mac OS X 10.4.

4.2 Results

Let us first consider the linear utility function (independent
issue) case that has been the focus of almost all previous work
on multi-issue negotiation. As we can see (Table 1), even
the simple HC protocol produces essentially optimal results
for a wide range of contract space dimensions. This is easy
to understand. Since the issues are independent, the media-
tor can optimize over each issue independently, first finding
the most-favored value for issue 1, then for issue 2, and so
on. Once every issue has been optimized, the final contract
will generally be very close to optimal (though full optimality
can not be guaranteed because the HC protocol does not ex-
plore whether offsetting concessions between different agents
- AKA logrolling - could somewhat increase social welfare).

We used hill-climbing to confirm how inefficient the simple
hill-climbing is for the multiple interdependent-issues case
even if the hill climbing performs well in the single issue
cases. As shown in the experimental result, our proposing
method is much better than the simple hill-climbing. Of
course, if we take multiple hill-climbing and pick the best re-
sult, it could make good quality solution. However, that is not
completely straightforward. After the multiple hill-climbing,
it is a problem how to pick the best” result when the agents
differ concerning which results are better.

The story changes dramatically, however, when we move
to a nonlinear utility function (interdependent issue) case
(Figure 5 shows 4 agents case). In this context, HC produces
highly suboptimal results, averaging only 40% of optimal, for
example, for the 10 issue case. Why does this happen? Since
every agent has a "bumpy” (multi-optimum) utility function,
the HC mediator’s search for better contracts grinds to a halt

I[JCAI-07
1350

4500

4000 —{ —e— AR /
3500 || —&—HC /
3000

2500 /

2000

1500 /

1000 /

2 3 4 5 6 7 8 9 10
Number of Issues

CPU time [ms]

Figure 6: CPU time [ms] with 4 agents

as soon as any of the agents reach a local optimum, even if a
contract which is better for all agents exists somewhere else
in the contract space. The AR protocol, by contrast, achieves
much better (often near-optimal) outcomes for higher-order
problems. For example, even for the 10 issue case, AR proto-
col can secure 80% of optimal, which is twice as good as HC.
Since agents using the AR protocol generate bids that cover
multiple optima in their utility spaces, our chances of finding
contracts that are favored by all agents is greatly increased.

The increased social welfare of our bidding-based protocol
does, however, come at a cost. Figure 6 shows the compu-
tation time needed by the HC and AR negotiation protocols
with 4 agents. HC has by far the lowest computational cost, as
is to be expected considering that agents do not need to gener-
ate bids themselves and need consider only a relative handful
of proposals from the mediator. HC’s computational needs
grow linearly with problem size. In the AR protocol, by con-
trast, the bid generation computation increases linearly with
problem size, and the deal identification times increases expo-
nentially (as (# of bids per agent)# of agents)y - At some
point, the deal identification cost becomes simply too great.
This explains why social welfare optimality begins to drop
off, in figure 5, when the number of issues exceeds 5. In our
computing environment, the deal identification algorithm can
find results in a reasonable period of time if the total number
of bid combinations is less than 6,400,000. With 4 agents, this
implies a limit of v/6400000 = 50 bids per agent. The number
of bids generated per agent begins to grow beyond that limit
as we go to 4 or more issues (see Table 2). This means that
the mediator is forced to start ignoring some (lower-valued)
submitted bids, with the result that social-welfare maximizing
contracts are more likely to be missed.

In figure 7, we summarize the impact of these scaling con-
siderations. This figure shows the social welfare optimality of
the AR protocol, for different numbers of issues and agents,
given that the mediator limits the number of bids per agent
to (1/6400000). As we can see, AR produces outcomes with
90%+ optimality for up to 8 issues, depending on the number
of agents.

We can expect that the optimality will be improved by in-
creasing the number of samples an agent takes of its own util-
ity space, when searching for bids. In our original setting,
the number of samples was increased by 200 per issue. For

Optimality Rate

3

Number of Agents

Figure 7: Scalability with the number of agents

12

—— 100 —m— 200
1.15 H 300 =500
700 900

Optimality Rate

0.85

2 3 4 5 6 7 8 9 10
Number of Issues

Figure 8: Tradeoff of Optimality vs Sampling Rate

comparison, we conducted experiments in which the number
of samples per issue was increased at other (still linear) rates:
by 100 samples per issue, 200 samples per issue (our original
setting), 300 samples per issue, and so on. The result of this
comparison are shown in Figure 8. As we can see, the op-
timality rate became better when there were more sampling
points. There is, however, a down side to this. Table 3 shows
the failure rate (i.e., the percentage of negotiations that do
not lead to an agreement) for each setting. Paradoxically, the
failure rate is higher when there are more sampling points, es-
pecially for problems with more issues. When there are many
sampling points, each agent has a better chance of finding re-
ally good local optima in its utility space, contracts on top
of hills that are more likely to be narrow than wide. Since
the number of bids is limited due to deal identification algo-
rithm’s computation time, an agent can cover only a narrow
portion of its utility space with own bids. As a result, we run
an increased risk of not finding an overlap between the bids
from the negotiating agents.

5 Discussion

While deal identification in our protocol appears superfi-
cially similar to deal identification in combinatorial auc-
tions ([Sandholm et al., 2002]), in reality they are fundamen-
tally different, and as a result we have been unable to take
advantages of the recent works on developing more efficient
deal identification algorithms. These algorithms address a
”sharing” problem: the challenge is to allocate resources to
buyers in a way that maximizes social welfare, with the con-
straint that each resource may have only a single “winner”.
Our protocol, by contrast, raises a “fit” problem: the chal-

I[JCAI-07
1351

Table 2: Number of sample points and the number of bids per agent

Issues 2 3 4 5 6 7 8 9 10
Num. of samples | 400 600 800 1000 1200 1400 1600 1800 2000
Bids per agent 14 49 114 193 274 338 393 448 493
. presented here is distinguished by demonstrating both scal-
[100 Tal;})eo?a : Fg(l)l(l)lre r%t)eo[%] =50 900 ability, and high optimality values, for multilateral negotia-
tions and higher order dependencies.
2 1 0 0 2 0 0
3 0 0 0 0 0 0 6 Conclusions and Future work
4 2 1 0 1 2 3 In this paper, we have proposed a novel auction-based proto-
5 4 S 6 4 10 9 col designed for the important challenge of negotiation with
6 4 1 5 13 13 19 multiple interdependent issues and thus nonlinear utility func-
7 > 7 10 20 14 20 tions. Our experimental results show that our method sub-
g 2 185 1(6) B % ;? stantially .out.performs p.rotocols Fhat have been applie.d suc-
0 = I 13 6 9 3T cessfully in linear domains. Possible future work in this area

lenge is to find a resource (contract region) that maximizes
social welfare, with the constraint that every agent is a "win-
ner” (i.e., every agent offered at least one bid for that region).
For the same reason, even though our protocol seems to in-
volve a straightforward constraint optimization problem (i.e.,
where bids can be viewed as weighted constraints), we have
been unable to take advantages of the high efficiency con-
straint optimizers that have emerged in recent years ([Davin
and Modi, 2005]). Such solvers attempt to find the solution(s)
that maximize the weights of the satisfied constraints, but they
do not account for the crucial additional requirement that the
final solution include one constraint from each bidder. Our
protocol thus involves a novel class of deal identification. It
is our hope that we will be able to incorporate ideas from
combinatorial auction deal identification and constraint opti-
mization to develop more efficient algorithms for our context.

Most previous work on multi-issue negotiation ([Bosse and
Jonker, 2005; Faratin et al., 2002; Fatima et al., 2004]) has
addressed only linear utilities. A handful of efforts have,
however, considered nonlinear utilities. [Lin and Chou, 2003]
has explored a range of protocols based on mutation and se-
lection on binary contracts. This paper does not describe what
kind of utility functions are used, nor does it present any ex-
perimental analyses. It is therefore unclear whether this strat-
egy enables sufficient exploration of the utility space to find
win-win solutions with multi-optima utility functions. [Bar-
buceanu and Lo, 2000] presents an approach based on con-
straint relaxation. In the proposed approach, a contract is de-
fined as a goal tree, with a set of on/off labels for each goal,
which represents the desire that an attribute value is within
a given range. There are constraints that describe what pat-
terns of on/off labels are allowable. This approach may face
serious scalability limitations. However, there is no experi-
mental analysis and this paper presents only a small toy prob-
lem with 27 contracts. [Luo et al., 2003] also presents con-
straint based approach. In this paper, a negotiation problem
is modeled as a distributed constraint optimization problem.
During exchanging proposals, agents relax their constraints,
which express preferences over multiple attributes, over time
to reach an agreement. This paper claims the proposed algo-
rithm is optimal, but do not discuss computational omplexity
and provides only a single small-scale example. The work

includes improving scalability by developing fast approxi-
mate bid generation and deal identification algorithms, as
well as by adopting iterative (multi-stage) auction protocols.

References

[Barbuceanu and Lo, 2000] M. Barbuceanu and W.K. Lo.
Multi-attribute utility theoretic negotiation for electronic
commerce. AMECO0, pp. 15-30, 2000.

[Bosse and Jonker, 2005] T. Bosse and C.M. Jonker. Human
vs. computer behaviour in multi-issue negotiation. RRS05,
pp. 11-24,2005.

[Davin and Modi, 2005] J. Davin and PJ. Modi. Impact of
problem centralization in distributed constraint optimiza-
tion algorithms. AAMASOS, pp.1057-1063, 2005.

[Faratin et al., 2002] P. Faratin, C. Sierra, and N.R. Jenning.
Using similarity criteria to make issue trade-offs in auto-
mated negotiations. Artificial Intelligence, pp. 142:205-
237,2002.

[Fatima et al., 2004] S. Fatima, M. Wooldridge, and N. R.
Jennings. Optimal negotiation of multiple issues in in-
complete information settings. AAMASO4, pp. 1080-1087,
2004.

[Klein et al., 2003] M. Klein, P. Faratin, H. Sayama, and Y.
Bar-Yam. Negotiating complex contracts. Group Decision
and Negotiation, 12(2):58-73, 2003.

[Lau, 2005] R. Y. K. Lau. Towards genetically optimised
multi-agent multi-issue negotiations. HICSS05, 2005.

[Lin and Chou, 2003] R. J. Lin and S. T Chou. Bilat-
eral multi-issue negotiations in a dynamic environment.
AMEC03,2003.

[Luo et al., 2003] X. Luo, N. R. Jennings, N. Shadbolt, H. f.
Leung, and J. Ho man Lee. A fuzzy constraint based model
for bilateral, multi-issue negotiations in semi-competitive
environments. Artificial Intelligence, 148:53—-102, 2003.

[Raiffa, 1982] H. Raiffa. The Art and Science of Negotiation.
Belknap Press, 1982.

[Sandholm et al., 2002] T. Sandholm, S. Suri, A. Gilpin, and
D. Levine. Winner determination in combinatorial auction
generalizations. AAMASO2, pp. 6976, 2002.

[Soh and Li, 2004] L. K. Soh and X. Li. Adaptive,
confidence-based multiagent negotiation strategy. AA-
MASO04, pp. 1048-1055, 2004.

I[JCAI-07
1362

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

