
MB-DPOP: A New Memory-Bounded Algorithm for Distributed Optimization

Adrian Petcu and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

email: {adrian.petcu, boi.faltings}@epfl.ch

Abstract

In distributed combinatorial optimization
problems, dynamic programming algorithms
like DPOP ([Petcu and Faltings, 2005]) require
only a linear number of messages, thus generating
low communication overheads. However, DPOP’s
memory requirements are exponential in the
induced width of the constraint graph, which may
be prohibitive for problems with large width.

We present MB-DPOP, a new hybrid algorithm that
can operate with bounded memory. In areas of
low width, MB-DPOP operates like standard DPOP
(linear number of messages). Areas of high width
are explored with bounded propagations using the
idea of cycle-cuts [Dechter, 2003].

We introduce novel DFS-based mechanisms for
determining the cycle-cutset, and for grouping
cycle-cut nodes into clusters. We use caching
([Darwiche, 2001]) between clusters to reduce the
complexity to exponential in the largest number of
cycle cuts in a single cluster.

We compare MB-DPOP with ADOPT [Modi
et al., 2005], the current state of the art in
distributed search with bounded memory. MB-
DPOP consistently outperforms ADOPT on 3
problem domains, with respect to 3 metrics,
providing speedups of up to 5 orders of magnitude.

1 Introduction

Constraint satisfaction and optimization are powerful
paradigms that can model a wide range of tasks like
scheduling, planning, optimal process control, etc.
Traditionally, such problems were gathered into a single
place, and a centralized algorithm was applied to find
a solution. However, problems are sometimes naturally
distributed, so Distributed Constraint Satisfaction (DisCSP)
was formalized in [Yokoo et al., 1992]. These problems are
divided between a set of agents, which have to communicate
among themselves to solve them. Complete algorithms like
ADOPT, DPOP and OptAPO have been introduced.

ADOPT [Modi et al., 2005] is a backtracking based
bound propagation mechanism. It operates completely

decentralized, and asynchronously. It requires polynomial
memory, but it may produce a very large number of small
messages, resulting in large communication overheads.

OptAPO [Mailler and Lesser, 2005] is a centralized-
distributed hybrid that uses mediator nodes to centralize
subproblems and solve them in dynamic and asynchronous
mediation sessions. The authors show that its message
complexity is significantly smaller than ADOPT’s. However,
it is possible that several mediators solve overlapping
problems, thus needlessly duplicating effort. This has been
shown in [Petcu and Faltings, 2006] to cause scalability
problems for OptAPO, especially on dense problems.

DPOP [Petcu and Faltings, 2005] is a complete algorithm
based on dynamic programming which generates only a
linear number of messages. However, DPOP is time and
space exponential in the induced width of the problem.
Therefore, for problems with high induced width, the
messages generated in high-width areas get large, therefore
requiring exponential communication and memory.

This paper introduces MB-DPOP, a new hybrid algorithm
that is controlled by a parameter k which characterizes the
amount of available memory. MB-DPOP is a tradeoff of the
linear number of messages of DPOP for polynomial memory.

The rest of this paper is structured as follows: Section 2
introduces the distributed optimization problem. Section 3
presents the DPOP algorithm, which is extended to the MB-
DPOP(k) hybrid in Section 4. Section 5 shows the efficiency
of this approach with experiments on distributed meeting
scheduling problems. Section 6 discusses related work, and
Section 7 concludes.

2 Definitions and Notation

Definition 1 (DCOP) A discrete distributed constraint
optimization problem (DCOP) is a tuple < X ,D,R >:

• X = {X1, ..., Xn} is a set of variables

• D = {d1, ..., dn} is a set of finite variable domains

• R = {r1, ..., rm} is a set of relations, where a relation
ri is any function with the scope (Xi1 , · · · , Xik

), ri :
di1 × .. × dik

→ R, which denotes how much utility is
assigned to each possible combination of values of the
involved variables. Negative utilities mean cost. 1

1Hard constraints (that explicitly forbid/enforce certain value

IJCAI-07
1452

DCOPs are multiagent instances of the valued CSP
framework, where each variable and constraint is owned by
an agent. The goal is to find a complete instantiation X ∗

for the variables Xi that maximizes the sum of utilities of
individual relations.

A simplifying assumption [Yokoo et al., 1992] is that each
agent controls a virtual agent for each one of the variables Xi

that it owns. To simplify the notation, we use Xi to denote
either the variable itself, or its (virtual) agent.We also assume
here only unary and binary relations 2

2.1 Depth-First Search Trees (DFS)

MB-DPOP works on a DFS traversal of the problem graph.

Definition 2 (DFS tree) A DFS arrangement of a graph G is
a rooted tree with the same nodes and edges as G and the
property that adjacent nodes from the original graph fall in
the same branch of the tree (e.g. X0 and X12 in Figure 1).

DFS trees have already been investigated as a means to
boost search [Freuder, 1985; Dechter, 2003]. Due to the
relative independence of nodes lying in different branches of
the DFS tree, it is possible to perform search in parallel on
independent branches, and then combine the results.

Figure 1 shows an example DFS tree that we shall refer to
in the rest of this paper. We distinguish between tree edges,
shown as solid lines (e.g. X1 −X2), and back edges, shown
as dashed lines (e.g. 12− 8, 4− 0).

Definition 3 (DFS concepts) Given a node Xi, we define:

• parent Pi / children Ci: these are the obvious
definitions (e.g. P4 = X2, C0 = {X1, X8}).

• pseudo-parents PPi are Xi’s ancestors directly
connected to Xi through back-edges (PP5 = {X0}).

• pseudo-children PCi are Xi’s descendants directly
connected to Xi through back-edges (PC1 = {X4}).

• Sepi is the separator of Xi: ancestors of Xi which are
directly connected with Xi or with descendants of Xi

(e.g. Sep15 = {X9} and Sep11 = {X0, X8, X9, X10}).
Removing the nodes in Sepi completely disconnects the
subtree rooted at Xi from the rest of the problem.

3 DPOP: dynamic programming optimization

The basic utility propagation scheme DPOP has been
introduced in [Petcu and Faltings, 2005]. DPOP is an
instance of the general bucket elimination scheme from
[Dechter, 2003], which is adapted for the distributed case,
and uses a DFS traversal of the problem graph as an ordering.

DPOP has 3 phases:
Phase 1 - a DFS traversal of the graph is done using

a distributed DFS algorithm, like in [Petcu et al., 2006],
which works for any graph requiring a linear number of
messages. The outcome is that all nodes consistently label

combinations) can be simulated with soft constraints by assigning
−∞ to disallowed tuples, and 0 to allowed tuples. Maximizing
utility thus avoids assigning such value combinations to variables.

2However, all *-DPOP algorithms easily extend to non-binary
constraints, as in [Petcu and Faltings, 2005; Petcu et al., 2006].

each other as parent/child or pseudoparent/pseudochild, and
edges are identified as tree/back edges. The DFS tree serves
as a communication structure for the other 2 phases of the
algorithm: UTIL messages (phase 2) travel bottom-up, and
VALUE messages (phase 3) travel top down, only via tree-
edges.

Phase 2 - UTIL propagation: the agents (starting from the
leaves) send UTIL messages to their parents. The subtree of a
node Xi can influence the rest of the problem only through
Xi’s separator, Sepi. Therefore, a message contains the
optimal utility obtained in the subtree for each instantiation
of Sepi. Thus, messages are size-exponential in the separator
size (which is in turn bounded by the induced width).

Phase 3 - VALUE propagation top-down, initiated by the
root, when phase 2 has finished. Each node determines its
optimal value based on the computation from phase 2 and
the VALUE message it has received from its parent. Then, it
sends this value to its children through VALUE messages.

It has been proved in [Petcu and Faltings, 2005] that DPOP
produces a linear number of messages. Its complexity lies
in the size of the UTIL messages: the largest one is space-
exponential in the width of the DFS ordering used.

4 MB-DPOP(k) - bounded inference hybrid

We introduce the control parameter k which specifies
the maximal amount of inference (maximal message
dimensionality). This parameter is chosen s.t. the available
memory at each node is greater than dk, (d is the domain
size).

The algorithm identifies subgraphs of the problem that
have width higher than k, where it is not possible to perform
full inference as in DPOP. Each of these areas (clusters) are
bounded at the top by the lowest node in the tree that has
separator of size k or less. We call these nodes cluster roots
(CR).

In such areas, cycle-cut nodes (CC) are identified such that
once these are removed, the remaining problem has width k
or less. Subsequently, in each area all combinations of values
of the CC nodes are explored using k-bounded DPOP utility
propagation. Results are cached ([Darwiche, 2001]) by the
respective cluster roots and then integrated as messages into
the overall DPOP-type propagation.

If k ≥ w (w is the induced width), full inference is done
throughout the problem; MB-DPOP is equivalent with DPOP.

If k = 1, only linear messages are used, and a full cycle
cutset is determined. MB-DPOP is similar to the AND/OR
cycle cutset scheme from [Mateescu and Dechter, 2005].

If k < w, MB − DPOP (k) performs full inference in
areas of width lower than k, and bounded inference in areas
of width higher than k.

In the following we explain how to determine high-width
areas and the respective cycle-cuts (Section 4.1) and what
changes we make to the UTIL and VALUE phases (Section 4.2
and Section 4.3). The algorithm is described in Algorithm 1.

4.1 MB-DPOP - Labeling Phase

This is an intermediate phase between the DFS and UTIL
phases. It has the goal to delimit high-width areas, and

IJCAI-07
1453

Figure 1: A problem graph (a) and a DFS tree (b). In low-width areas the normal UTIL propagation is performed. In high width
areas (shaded clusters C1, C2 and C3 in (b)) bounded UTIL propagation is used. All messages are of size at most dk. Cycle-cut
nodes are in bold (X0, X9, X13), and cluster roots are shaded (X2, X9, X14). In (c) we show a 2-bounded propagation.

identify CC nodes in these areas. We emphasize that this
process is described as a separate phase only for the sake of
clarity; these results can be derived with small modifications
from either of the original DFS or UTIL phases.

Labeling works bottom-up like the UTIL phase. Each
node Xi waits for LABELi

j messages from its children Xj ,

computes its own label LABELPi

i , and sends it to its parent
Pi.

A LABELPi

i message is composed of 2 parts: the
separator Sepi of the node, and a list CCi of CC nodes.

Each node Xi can easily determine its separator Sepi as
the union of: (a) separators received from its children, and (b)
its parent and pseudoparents, minus itself (see Definition 3).
Formally, Sepi = ∪Xj∈Ci

Sepj ∪ Pi ∪ PPi \Xi.
The second part of the LABEL message is the list CCi of

the cycle-cut nodes to send to the parent. Each node computes
this list through a heuristic function based on the separator
of the node, and on the lists of cycle-cuts received from the
children (see next section).

Heuristic labeling of nodes as CC
Let label(Sepi, CClists, k) be a heuristic function that takes
as input the separator of a node, the lists of cycle-cuts
received from the children, and an integer k, and it returns
another list of cycle cutset nodes.

It builds the set Ni = Sepi \ {∪CClists}: these are nodes
in Xi’s separator that are not marked as CC nodes by Xi’s
children. If |Ni| > k (too many nodes not marked as CC),
then it uses any mechanism to select from Ni a set CCnew of
|Ni|−k nodes, that will be labeled as CC nodes. The function
returns the set of nodes CCi = ∪CClists ∪ CCnew .

If the separator Sepi of Xi contains more than k nodes,
then this ensures that enough of them will be labeled as cycle-

cuts, either by the children of Xi or by Xi itself. If |Sepi| ≤
k, the function simply returns an empty list.

Mechanism 1: highest nodes as CC The nodes in Ni are
sorted according to their tree-depth (known from the DFS
phase). Then, the highest |Ni| − k nodes are marked as CC.

For example, in Fig. 1, let k = 2. Then, Sep12 =
{X0, X8, X11}, CClists12 = ∅ ⇒ N12 = Sep12 ⇒
CC12 = {X0} (X0 is the highest among X0, X8, X11)

Mechanism 2: lowest nodes as CC This is the inverse of
Mechanism 1: the lowest |Ni| − k nodes are marked as CC.

For example, in Fig. 1, let k = 2. Then, Sep12 =
{X0, X8, X11}, CClists12 = ∅ ⇒ N12 = Sep12 ⇒
CC12 = {X11} (X11 is the lowest among X0, X8, X11)

4.2 MB-DPOP - UTIL Phase

The labeling phase (Section 4.1) has determined the areas
where the width is higher than k, and the corresponding
CC nodes. We describe in the following how to perform
bounded-memory exploration in these areas; anywhere else,
the original UTIL propagation from DPOP applies.

Memory-Bounded UTIL Propagation

The labeling phase has identified the cluster root nodes
for each high-width area, and furthermore, the roots have
received the lists of cycle-cutset nodes, as designated by their
children.

Let Xi be the root of such a cluster. Just like in DPOP, Xi

creates a UTILPi

i table that stores the best utilities its subtree
can achieve for each combination of values of the variables in
Sepi. Xi’s children Xj that have separators smaller than k

IJCAI-07
1454

Algorithm 1: MB-DPOP - memory bounded DPOP.

MB-DPOP(X ,D,R, k): each agent Xi does:

Labeling protocol:
1 wait for all LABELi

j msgs from children

2 if |Sepi| ≤ k then
3 if ∪CClists �= ∅ then label self as CR
4 else label self as normal
5 CCi ← ∅

6 else
7 let N = Sepi \ ∪CClists
8 select a set CCnew of |N | − k nodes from N
9 return CCi = CCnew ∪ CClists

10 send LABELPi

i = [Sepi, CCi] to Pi

UTIL propagation protocol
11 wait for UTILi

k messages from all children Xk ∈ C(i)
12 if Xi = normal node then do UTIL / VALUE as DPOP
13 else
14 do propagations for all instantiation of CClists
15 if Xi is cluster root then
16 update UTIL and CACHE for each propagation
17 when propagations finish, send UTIL to parent

VALUE propagation(Xi receives Sep∗i from Pi)
18 if Xi is cluster root then
19 find in cache the CC∗ corresponding to Sep∗i
20 assign self according to cached value
21 send CC∗ to nodes in CC via VALUE messages

22 else
23 perform last UTIL with CC nodes assigned to CC∗

24 assign self accordingly

25 Send VALUE(Xi ← v∗i) to all C(i) and PC(i)

(|Sepj| ≤ k) send Xi normal UTILi
j messages, as in DPOP;

Xi waits for these messages, and stores them.

For the children Xj that have a larger separator (|Sepj| >
k), Xi creates a Cache table with one entry Cache(sepi)
that corresponds to each particular instantiation of the
separator, sepi ∈ 〈Sepi〉 (size of the Cache table is thus
O(exp(|Sepi|))).

Xi then starts exploring through k-bounded propagation
all its subtrees that have sent non-empty CClists. It does
this by cycling through all instantiations of the CC variables
in the cluster. Each one is sent down to its children via a
context message. Children propagate the context messages
again to their children that have sent non-empty CClists.
This propagates only to nodes that have separators larger than
k, down to the lowest nodes in the cluster that have separators
larger than k.

The leaves of the cluster then start bounded propagation,
with the nodes specified in the context message instantiated
to their current value. These propagation are guaranteed to
involve k dimensions or less, and they proceed as in normal
DPOP, until they reach Xi. Xi then updates the best utility
values found so far for each sepi ∈ 〈Sepi〉, and also updates
the cache table with the current instantiation of the CC nodes

in case a better utility was found.
When all the instantiations are explored, Xi simply sends

to its parent the updated UTILPi

i table that now contains the
best utilities of Xi’s subtree for all instantiations of variables
in Sepi, exactly as in DPOP. Pi then continues propagation
as in normal DPOP; all the complexity of Xi’s processing is
transparent to it.

Example In Figure 1, let k = 2; then C2 =
{X9, X10, X11, X12, X13} is an area of width higher than 2.
X9 is the root of C2, as the first node (lowest in the tree)
that has Sepi ≤ k. Using the Mechanism 1 for selecting CC
nodes, we have X9, X0 as CC in C2. X9 cycles through all
the instantiations 〈X9, X0〉, and sends its child(ren) context
messages of the form X9 = a, X0 = b. These messages
travel to X10, X11, X12 and X13 (no other nodes in the cluster
have sent non-empty CClists). Upon receiving the context
messages, X12 and X13 start 2-bounded UTIL propagation
(X12 with X11 and X8 as dimensions, and X13 with X11 and
X10 as dimensions).

It is easy to see that using this scheme, the memory
requirements are still O(exp(k)) for the propagation, and
O(exp(|Sep|)) for the cache tables. Since |Sep| ≤ k (see
section 4.1), overall we observe the memory limit O(exp(k)).

4.3 MB-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded
inference must be applied due to excessive width. We will
describe in the following the processing to be done in these
areas; outside of these, the original VALUE propagation from
DPOP applies.

The VALUE message that the root Xi of a cluster receives
from its parent contains the optimal assignment of all the
variables in the separator Sepi of Xi (and its cluster).
Xi retrieves from its cache table the optimal assignment
corresponding to this particular instantiation of the separator.
This assignment contains its own value, and the values of
all the CC nodes in the cluster. Xi informs all the CC
nodes in the cluster what their optimal values are (via VALUE
messages).

As the non-CC nodes in the cluster could not have cached
their optimal values for all instantiations of the CC nodes,
it follows that a final UTIL propagation is required in order
to re-derive the utilities that correspond to the particular
instantiation of the CC nodes that was determined to be
optimal. However, this is not an expensive process, since it
is a single propagation, with dimensionality bounded by k
(the CC nodes are instantiated now). Thus, it requires only a
linear number of messages that are at most exp(k) in size.

Subsequently, outside the clusters, the VALUE propagation
proceeds as in DPOP.

4.4 MB-DPOP(k) - Complexity

In low-width areas of the problem, MB-DPOP behaves
exactly as DPOP: it generates a linear number of messages
that are at most dk in size. Clusters are formed where
the width exceeds k. Let T be such a cluster, let |T | be
the number of nodes in the cluster, and let |CC(T)| be
the number of cycle cut nodes in that cluster. MB-DPOP

executes d|CC(T)| k-bounded propagation in that cluster, each

IJCAI-07
1455

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120 140 160 180

R
un

tim
e

(m
s)

Number of variables

ADOPT
MB-DPOP(1)
MB-DPOP(2)
MB-DPOP(3)
MB-DPOP(4)

MB-DPOP(5)=DPOP

Figure 2: MB-DPOP(k) vs ADOPT - runtime

requiring |T | − 1 messages. The size of these messages is
bounded by dk .

Therefore, it is easy to see that the overall time/message
complexity is O(exp(|CC(Tmax)|)) where Tmax is the
cluster that has the maximal number of CC nodes.

Memory requirements are O(exp(k)) by design.

5 Experimental evaluation

We performed experiments on 3 different problem domains3:
distributed sensor networks (DSN), graph coloring (GC), and
meeting scheduling (MS).

Meeting scheduling we generated a set of relatively large
distributed meeting scheduling problems. The model is as
in [Maheswaran et al., 2004]. Briefly, an optimal schedule
has to be found for a set of meetings between a set of agents.
The problems were large: 10 to 100 agents, and 5 to 60
meetings, yielding large problems with 16 to 196 variables.
The larger problems were also denser, therefore even more
difficult (induced width from 2 to 5).

The experimental results are presented in Figure 3 (number
of messages and total information exchanged - sum of
all message sizes, in bytes), and Figure 2 (runtime in
milliseconds)4. Please notice the logarithmic scale! ADOPT
did not scale on these problems, and we had to cut its
execution after a threshold of 2 hours or 5 million messages.
The largest problems that ADOPT could solve had 20 agents
(36 variables).

We also executed MB-DPOP with increasing bounds k.
As expected, the larger the bound k, the less nodes will be
designated as CC, and the less messages will be required5.
However, message size and memory requirements increase.

It is interesting to note that even MB−DPOP (1) (which
uses linear-size messages, just like ADOPT) performs much
better than ADOPT: it can solve larger problems, with a
smaller number of messages. For example, for the largest
problems ADOPT could solve, MB −DPOP (1) produced
improvements of 3 orders of magnitude. MB − DPOP (2)

3All experiments are run on a P4 machine with 1GB RAM
4Each data point is an average over 10 instances
5Mechanism 1 for CC selection was used.

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120 140 160 180

of

 m
es

sa
ge

s

Number of variables

ADOPT
MB-DPOP(1)
MB-DPOP(2)
MB-DPOP(3)
MB-DPOP(4)

MB-DPOP(5)=DPOP

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 40 60 80 100 120 140 160 180
To

ta
l m

es
sa

ge
 s

iz
e

(s
um

 o
f s

iz
es

 in
 b

yt
es

)
Number of variables

ADOPT
MB-DPOP(1)
MB-DPOP(2)
MB-DPOP(3)
MB-DPOP(4)

MB-DPOP(5)=DPOP

Figure 3: MB-DPOP(k) vs ADOPT - message exchange

improved over ADOPT on some instances for 5 orders of
magnitude.

Also, notice that even though MB−DPOP (k > 1) sends
larger messages than ADOPT, overall, it exchanges much less
information (Fig 3, low). We believe there are 2 reasons for
this: ADOPT sends many more messages, and because of
its asynchrony, it has to attach the full context to all of them
(which produces extreme overheads).

The DSN and GC problems are the same as the ones used
in [Maheswaran et al., 2004]. For lack of space, we do not
present detailed results here, but they align well with the
meeting scheduling ones.

DSN The DSN instances are very sparse, and the induced
width is 2, so MB − DPOP (k ≥ 2) always runs with a
linear number of messages (from 100 to 200 messages) of
size at most 25. Runtime varies from 52 ms to 2700 ms.
In contrast, ADOPT sends anywhere from 6000 to 40.000
messages, and requires from 6.5 sec to 108 sec to solve
the problems. Overall, these problems were very easy for
MB-DPOP, and we have experienced around 2 orders of
magnitude improvements in terms of CPU time and number
of messages.

Graph Coloring The GC instances are also small (9 to 12
variables), but they are more tightly connected, and are even
more challenging for ADOPT. ADOPT terminated on all of
them, but required up to 1 hour computation time, and 4.8
million messages for a problem with 12 variables.

All three domains showed strong performance
improvements of MB-DPOP over the previous state of

IJCAI-07
1456

the art algorithm, ADOPT. On these problems, we noticed
up to 5 orders of magnitude less computation time, number
of messages, and overall communication.

6 Related Work

The w-cutset idea was introduced in [Rish and Dechter,
2000]. A w-cutset is a set CC of nodes that once removed,
leave a problem of induced width w or less. One can perform
search on the w-cutset, and exact inference on the rest of the
nodes. The scheme is thus time exponential in d|CC| and
space exponential in k.

If separators smaller than k exist, MB − DPOP (k)
isolates the cutset nodes into different clusters, and thus it
is time exponential in |CC(Tmax)| as opposed to exponential
in |CC|. Since |CC(Tmax)| ≤ |CC|, MB−DPOP (w) can
produce exponential speedups over the w-cutset scheme.

AND/OR w-cutset is an extension of the w-cutset idea,
introduced in [Mateescu and Dechter, 2005]. The w-cutset
nodes are identified and then arranged as a start-pseudotree.
The lower parts of the pseudotree are areas of width bounded
by w. Then AND/OR search is performed on the w-cutset
nodes, and inference on the lower parts of bounded width.
The algorithm is time exponential in the depth of the start
pseudotree, and space exponential in w.

It is unclear how to apply their technique to a distributed
setting, particularly as far as the identification of the w-
cutset nodes and their arrangement as a start pseudotree are
concerned. MB-DPOP solves this problem elegantly, by
using the DFS tree to easily delimit clusters and identify
w-cutsets. Furthermore, the identified w-cutsets are already
placed in a DFS structure.

That aside, when operating on the same DFS tree, MB-
DPOP is superior to the AND/OR w-cutset scheme without
caching on the start pseudotree. The reason is that MB-
DPOP can exploit situations where cutset nodes along the
same branch can be grouped into different clusters. Thus
MB-DPOP’s complexity is exponential in the largest number
of CC nodes in a single cluster, whereas AND/OR w-cutset
is exponential in the total number of CC nodes along that
branch. MB-DPOP has the same asymptotic complexity as
the AND/OR w-cutset with w-bounded caching.

Finally, tree clustering methods (e.g. [Kask et al., 2005])
have been proposed for time-space tradeoffs. MB-DPOP uses
the concept loosely, only in high-width parts of the problem.
For a given DFS tree, optimal clusters are identified based on
the bound k and on node separator size.

7 Conclusions and future work

We have presented a hybrid algorithm that uses a
customizable amount of memory and guarantees optimality.
The algorithm uses cycle cuts to guarantee memory-
boundedness and caching between clusters to reduce the
complexity. The algorithm is particularly efficient on loose
problems, where most areas are explored with a linear
number of messages (like in DPOP), and only small, tightly
connected components are explored using the less efficient
bounded inference. This means that the large overheads

associated with the sequential exploration can be avoided in
most parts of the problem.

Experimental results on three problem domains show that
this approach gives good results for low width, practically
sized optimization problems. MB-DPOP consistently
outperforms the previous state of the art in DCOP (ADOPT)
with respect to 3 metrics. In our experiments, we have
observed speedups of up to 5 orders of magnitude.

References
[Darwiche, 2001] Adnan Darwiche. Recursive conditioning. Artif.

Intell., 126(1-2):5–41, 2001.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan
Kaufmann, 2003.

[Freuder, 1985] Eugene C. Freuder. A sufficient condition for
backtrack-bounded search. Journal of the ACM, 32(14):755–761,
1985.

[Kask et al., 2005] Kalev Kask, Rina Dechter, and Javier Larrosa.
Unifying cluster-tree decompositions for automated reasoning in
graphical models. Artificial Intelligence, 2005.

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind Tambe,
Emma Bowring, Jonathan P. Pearce, and Pradeep Varakantham.
Taking DCOP to the real world: Efficient complete solutions for
distributed multi-event scheduling. In AAMAS-04, 2004.

[Mailler and Lesser, 2005] Roger Mailler and Victor Lesser.
Asynchronous partial overlay: A new algorithm for solving
distributed constraint satisfaction problems. Journal of Artificial
Intelligence Research (JAIR), 2005. to appear.

[Mateescu and Dechter, 2005] Robert Mateescu and Rina Dechter.
AND/OR cutset conditioning. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, IJCAI-
05, Edinburgh, Scotland, Aug 2005.

[Modi et al., 2005] Pragnesh Jay Modi, Wei-Min Shen, Milind
Tambe, and Makoto Yokoo. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. AI Journal,
161:149–180, 2005.

[Petcu and Faltings, 2005] Adrian Petcu and Boi Faltings. DPOP:
A scalable method for multiagent constraint optimization. In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, Aug 2005.

[Petcu and Faltings, 2006] Adrian Petcu and Boi Faltings. PC-
DPOP: A partial centralization extension of DPOP. In
In Proceedings of the Second International Workshop on
Distributed Constraint Satisfaction Problems, ECAI’06, Riva del
Garda, Italy, August 2006.

[Petcu et al., 2006] Adrian Petcu, Boi Faltings, and David Parkes.
M-DPOP: Faithful Distributed Implementation of Efficient
Social Choice Problems. In Proceedings of the International
Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS-06), Hakodate, Japan, May 2006.

[Rish and Dechter, 2000] Irina Rish and Rina Dechter. Resolution
versus search: Two strategies for SAT. Journal of Automated
Reasoning, 24(1/2):225–275, 2000.

[Yokoo et al., 1992] Makoto Yokoo, Edmund H. Durfee, Toru
Ishida, and Kazuhiro Kuwabara. Distributed constraint
satisfaction for formalizing distributed problem solving. In
International Conference on Distributed Computing Systems,
pages 614–621, 1992.

IJCAI-07
1457

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

