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Abstract

One of the major tasks in swarm intelligence is
to design decentralized but homogenoeus strategies
to enable controlling the behaviour of swarms of
agents. It has been shown in the literature that the
point of convergence and motion of a swarm of au-
tonomous mobile agents can be controlled by using
cyclic pursuit laws. In cyclic pursuit, there exists
a predefined cyclic connection between agents and
each agent pursues the next agent in the cycle. In
this paper we generalize this idea to a case where an
agent pursues a point which is the weighted average
of the positions of the remaining agents. This point
correspond to a particular pursuit sequence. Using
this concept of centroidal cyclic pursuit, the behav-
ior of the agents is analyzed such that, by suitably
selecting the agents’ gain, the rendezvous point of
the agents can be controlled, directed linear motion
of the agents can be achieved, and the trajectories
of the agents can be changed by switching between
the pursuit sequences keeping some of the behav-
iors of the agents invariant. Simulation experiments
are given to support the analytical proofs.

1 Introduction

Agents swarms are multi-agent systems or groups of au-
tonomous mobile agents used for automated collaborative op-
erations. The challenge in these applications is to design in-
telligent control laws such that the agents behave as desired
without a centralized controller or global information. Linear
cyclic pursuit is one such control law which is designed to
mimic the behavior of biological organisms. Bruckstein et al.
[Bruckstein et al., 1991] modelled this behavior with contin-
uous and discrete pursuit laws and examined the evolution of
global behavior. Convergence to a point in linear pursuit is the
starting point to the analysis of achievable global formation
among a group of autonomous mobile agents as discussed by
Lin et al. [Lin et al., 2004] and Marshall et al. [Marshall et
al., 2004a]. The stability of both linear and nonlinear pursuit
has been studied in Marshall et al. [Marshall et al., 2004b].

The present work is a generalization of the cyclic pursuit
problem discussed in the literature. Marshall et al. [Mar-
shall et al., 2004b] studied the stability of linear system of n

agents with equal and positive controller gains. Bruckstein et
al. [Bruckstein et al., 1991] briefly mention a case where the
controller gain may be inhomogeneous but positive. Sinha
et al. [Sinha and Ghose, 2006a], [Sinha and Ghose, 2006b]

further generalized it by considering negative gains also. The
controller gains are considered to be decision variables to de-
termine the global behavior of the system. In the present pa-
per, we assume inhomogeneous gains that can take both pos-
itive and negative values. Further, the connection among the
agents are generalized through a pursuit sequence that makes
the agents follow the weighted centroid of the other agents.

We define a pursuit sequence as a set of weights used by an
agent to find its leader. The range of values of the controller
gain that stabilizes the system is obtained. Selecting from
among the stabilizing controller gains appropriately, it is pos-
sible to control the point of convergence (reachable point) of
the group of agents.

One of the behaviors that is important for various ap-
plications of such groups of autonomous agents is obtain-
ing directed motion in a particular direction. We show that
when the system is unstable, under certain conditions, all the
agents’ movement converge to a single asymptote. We ob-
tain the condition on the unstable controller gains for which
such motion is achievable. Finally, we show that generalized
linear cyclic pursuit with heterogenous gains posses several
interesting invariance properties with respect to the sequence
of pursuit between agents. In particular, we show stability
invariance, reachable point invariance and invariance of an
asymptotic point in the directed motion case. We also prove
these invariance properties for finite number of switching be-
tween different cyclic pursuit sequences.

2 Formulation of centroidal cyclic pursuit

Generalized linear cyclic pursuit is formulated using n agents
numbered from 1 to n in a d dimensional space. The position
of the agent i at any time t ≥ 0 is given by

Zi(t) = [y1
i (t) y2

i (t) . . . yd
i (t)]T ∈ R

d, i = 1, 2, . . . , n. (1)

Control of agent i is ui. The kinematics are given as

Żi = ui = ki

{
(η1Zi+1 + . . . + ηn−iZn + ηn−i+1Z1 +

. . . + ηn−1Zi+1) − Zi

}
, ∀i (2)
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where
∑n−1

j=1 ηj = 1. Note that, each individual term, in

the above expression, is of the form ηjZi+j mod n. Thus,
agent i pursues a weighted centroid of the other agents and
ηj is the weight given by agent i to the position of agent
(i + j), modulo n, using which the centroidal pursuit is ex-
ecuted. The weight vector η = (η1, . . . , ηn−1) is called the
pursuit sequence. One of the simplest pursuit sequences is
η = {1, 0, . . . , 0}, where the first agent follows only the sec-
ond, the second follows only the third and so on till the last
agent follows only the first. Further, ki is the controller gain
of agent i and ki need not be the same for all the agents. Us-
ing different values for the controller gains K = {ki}

n
i=1, we

analyze the behavior of the agents.
From the control law (2), we see that, for every agent i,

each coordinate yδ
i , δ = 1, · · · , d, of Zi, evolves indepen-

dently in time. Hence, these equations can be decoupled into
d identical linear system of equations represented as

Ẋ = AX (3)

where

A =

⎡
⎢⎢⎢⎢⎣

−k1 η1k1 · · · · · · ηn−1k1

ηn−1k2 −k2 · · · · · · ηn−2k2

...
. . .

η2kn−1 η3kn−1 · · · −kn−1 η1kn−1

η1kn η2kn · · · ηn−1kn −kn

⎤
⎥⎥⎥⎥⎦ (4)

and
∑n

i=2 ηi = 1. Note that A is singular. Here, X =

[x1, x2, · · · , xn], where each xi represents a yδ
i for some

δ = 1, · · · , d. We drop the superscript ‘δ’ since the equa-
tions are identical in all the d-directions (except for the initial
conditions). Let η = {ηi}

n−1
i=1 . The characteristic equation of

A is

ρ(s) = sn + Bn−1s
n−1 + . . . + B1s + B0 (5)

where Bi, i = 0, . . . , n − 1 are functions of η and K . The
following properties can be shown to hold:

1. B0 = 0

2. B1 = [1 − g1(η)][
∑n

i=1

∏n
j=1,j �=i kj ], g1(η) < 1

3. Bj =
∑l̄j

l=1(1 − gjl(η))hjl(K), gjl(η) < 1, j =
2, . . . , n−2, l̄j ∈ N is a function of number of agents n.

4. Bn−1 =
∑n

i=1 ki

We omit the proof of the above properties. These properties
can also be easily verified using any mathematical (symbolic)
toolbox like Mathematica. Since, B1 is not necessarily zero,
there is one and only one root of A at the origin. The solution
of (3) in the frequency domain is

X(s) = (sI − A)−1X(0) (6)

Expanding the ith component of X(s), we get

xi(s) =
1

ρ(s)

n∑
q=1

bi
q(s)xq(0) , i = 1, . . . , n (7)

where, bi
q(s) are functions of K and s. Let the non-zero roots

of (5) be Rp = (σp + jωp), p = 1, · · · , n̄ − 1, where n̄ is

.
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Figure 1: (a) Gershgorin discs with all positive controller
gains (b) Gershgorin discs as α changes from 0 to 1 (c) Ger-
shgorin discs with one of the gains negative

the number of distinct roots of (5). Taking inverse Laplace
transform

xi(t) = xf +

n̄−1∑
p=1

{ n∑
q=1

( np∑
r=1

ai
pqrt

r−1
)
xq(0)

}
eRpt (8)

where, np is the algebraic multiplicity of the pth root and

ai
pqr =

1

r!

dr

dsr

[
{s − (σp + jωp)}

np
bi
q(s)

ρ(s)

]∣∣∣∣
s=Rp

(9)

xf =
n∑

q=1

(xq/kq)
/ n∑

q=1

(1/kq) (10)

Here, xf corresponds to the root s = 0.

The trajectory xi(t) of agent i depends on the eigenvalues
Rp = (σp + jωp), p = 1, · · · , n̄, of A which, in turn, are
functions of the gains ki, i = 1, · · · , n. If all the eigenvalues
of A have negative real parts, then the system (3) is stable. In
the next section, we will find the combination of the gains for
which system (3) is stable.

3 Stability analysis

If the system (3) is stable, as t → ∞, ẋi(t) = 0, ∀i. This
implies that eventually all the agents will converge to a point.
Thus, we have the following result.

Theorem 1 The system of n agents, given by (3), will con-
verge to a point if and only if the following conditions hold

(a) At most one ki is negative or zero, that is, at most for
one i, ki ≤ 0 and kj > 0, ∀j, j �= i.

(b)
∑n

i=1

∏n
j=1,j �=i kj > 0

Proof. The “if” part is proved using Gershgorin’s Disc Theo-
rem [Horn and Johnson, 1987]. We consider three cases:

Case 1: All gains are positive.
Here, ki > 0, ∀i. Therefore, condition (b) is automatically
satisfied. The Gershgorin’s discs are shown in Figure 3(a).
Since one and only one root of (5) is at the origin, the re-
maining n̄− 1 roots of (5) must be on the LHS of the s-plane
and have negative real parts. It remains to be shown that the
root at the origin does not contribute to the dynamics of the
system.

IJCAI-07
1526



Consider a subspace S =
{

x ∈ Rn
∣∣∣[ϕ/k1 ϕ/k2 · · ·

ϕ/kn

]
x = 0; ϕ �= 0; ϕ = constant

}
. We can show that

S is A-invariant and there exists a linear transformation using
a non-singular matrix P , given by,

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
0 0 0 · · · 1 0
1
k1

1
k2

1
k3

· · · 1
kn−1

1
kn

⎤
⎥⎥⎥⎥⎥⎦ (11)

such that the new coordinate system is X̂ = PX and (3)
transforms to,

˙̂
X =

[
A(n−1)×(n−1)

0 · · · 0 0

]
X̂ (12)

where the elements of A are functions of K . Here, ˙̂xn =
0. Thus, we can disregard exactly one zero eigenvalue and
determine stability based on the remaining n− 1 eigenvalues
of A. Hence, the system is stable when ki > 0, ∀i.
Case 2: One gain is zero and other gains are positive.
Here, for some i, ki = 0 and kj > 0, ∀j, j �= i. Gershgorin’s
discs is the same as in Case 1 (Fig 3(a)). Following similar
arguments as in Case 1, we can show that the system is stable.
Case 3: One gain is negative and other gains are positive.
The Gershgorin discs, when ki < 0 and kj > 0, ∀j, j �= i, are
as shown in Figure 3(c). When the system becomes unstable,
from the continuity of the root locus, the roots have to pass
through the origin to move from LHS to RHS of the s-plane.
We can find the point at which the first root crosses the origin
by equating the coefficient of s in (5) to zero, i.e.,

(1 − B1)

n∑
i=1

n∏
j=1,j �=i

kj ≤ 0 (13)

Since (1 − B1) > 0, from property 2 of (5), therefore, if
condition (b) is satisfied, the system is stable.

The “only if” part is proved by contradiction, assuming the
system is stable but any one or both the conditions do not
hold. We omit details. �

Corollary 1: Consider n mobile agents with kinematics given
by (3). The agents will converge to a point if and only if not
more than one of the agents (say agent p) has negative or zero
controller gain bounded below by k̄p, i.e., kp > k̄p and all

other agents have ki > 0, ∀ i, i �= p where k̄p is given by

k̄p = −

∏n
j=1,j �=p kj∑n

i=1,i�=p

∏n
j=1,j �=i,j �=p kj

(14)

Proof. The proof follows directly from Theorem 1. �

4 Rendezvous

Theorem 2 (Reachable Point) If a system of n-agents have
their initial positions at Zi0 and gains K = {ki}

n
i=1, ∀i, that

satisfy Theorem 1, then they converge to Zf given by,

Zf =

n∑
i=1

{( 1/ki∑n
j=1 1/kj

)
Zi0

}
(15)

Figure 2: The reachable set (shaded region) for a group of
agents in d = 2

where Zf is a reachable point for this system of n agents.

Proof. Since system (3) is stable, all non-zero eigenvalues
of A have negative real parts. Therefore, as t → ∞, the
second term of (8) goes to zero and limt→∞ xi(t) = xf . This
means that eventually the agent i converges to the point xf ,

given by (10), in the corresponding δth direction. Thus, the
rendezvous point in R

d is obtained by replacing xf by the

vector [y1
f , · · · , yd

f ]T in the corresponding d dimensions. �

Now, let us denote Zf (Zi0, K) as the reachable point ob-
tained from the initial point Zi0 and gain K that satisfies The-
orem 1. Then the set of reachable points (called the reachable
set), at which rendezvous occurs starting from the initial point
Zi0, is denoted as Zf (Zi0) and is defined as,

Zf (Zi0) =
{
Zf (Zi0, K)

∣∣∣ ∀K satisfying Theorem 1
}

(16)

The agents can be made to converge to any desirable point
within this reachable set by suitably selecting the gains. Some
examples of Zf (Zi0) is given in Figure 2 for d = 2.

5 Directed motion

When the system (3) is not stable, we can obtain directed
motion of the agents under certain condition.
Definition: The most positive eigenvalue of a linear system is
the eigenvalue with the largest real part.

Theorem 3 Consider a system of n-agents with kinematics
given by (3). The trajectory of all the agents converge to a
straight line as t → ∞ if and only if the most positive eigen-
value of (3) is real and positive.

Proof. If the most positive eigenvalue is positive, then (3) is
unstable. Hence, the agents will not converge to a point. Let
the unit vector along the velocity vector of agent i at time t
be −→vi (t) = (v̄i(t))

−1[v1
i (t) v2

i (t) · · · vd
j (t)]T where, vδ

i (t) =

ẏδ
i (t), ∀δ and v̄i(t) =

√
{ẏ1

i (t)}2 + · · · + {ẏd
i (t)}2. If all the

agents have to converge to a straight line as t → ∞, then

lim
t→∞

vδ
i (t)

v̄i(t)
= lim

t→∞

vδ
j (t)

v̄j(t)
, ∀i,∀j, ∀δ (17)

The above equation can be rewritten for all i, j ∈ {1, . . . , n}
and for all δ, γ ∈ {1, . . . , d} as t → ∞, as follows

lim
t→∞

vδ
i (t)

vγ
i (t)

= lim
t→∞

vδ
j (t)

vγ
j (t)

= θγδ (18)
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where, θγδ is a constant independent of time and the agent
identity. Thus, to prove that the agents move in a straight
line, we have to show that (18) is true. Considering any one
of the d-dimensions and differentiating (8), we get ẋi(t) as

n̄−1∑
p=1

n∑
q=1

np∑
r=1

ai
pqr(r − 1)tr−2 + Rpt

r−1xq(0)eRpt (19)

Let V = Ẋ , then

V̇ = Ẍ = AẊ = AV , V (0) = AX(0) (20)

Thus, V has the same dynamics as (3) but with different initial
conditions. The time response of the speed of the ith agent,
vi(t) can be obtained similar to (8) as

vi(t) =
n̄−1∑
p=1

n∑
q=1

np∑
r=1

(
ai

p(q−1)rkq−1η1 + . . . +

ai
p1rk1ηq−1 + ai

pnrknηq + . . . + ai
p(q+1)rkq+1ηn−1

−kqa
i
pqr

)
tr−1xq(0)eRpt (21)

Comparing (19) and (21) and matching the coefficients, we
get

ai
pqnp

= Mpq(K, η, Rp) (22)

where Mpq(K, η, Rp) is independent of the agent identity i.
Now, the instantaneous slope of the trajectory of the agent

i in the (γ, δ) plane as t → ∞ can be simplified if ωm = 0
σm ≥ σp, ∀p is given by∑n̄−1

p=1

∑n
q=1

∑np

r=1 ai
pqr((r − 1)tr−2 + Rpt

r−1)yδ
q(0)eRpt∑n̄−1

p=1

∑n
q=1

∑np

r=1 ai
pqr((r − 1)tr−2 + Rptr−1)yγ

q (0)eRpt

Let σm > σp, ∀p, p �= m. As t → ∞, it can be seen that
with simple mathematical manipulations all the terms go to
zero as except for p = m. Now, if ωm = 0 (which implies
that the most positive eigenvalue is real), the above equation
simplifies to

lim
t→∞

vδ
i (t)

vγ
i (t)

=

∑n
q=1 Mmqy

δ
q(0)∑n

q=1 Mmqy
γ
q (0)

= θγδ (23)

where, θγδ is independent of time and the agent identity i. It
is a constant and a function of ki, i = 1, · · · , n, and the ini-
tial positions of the agents Zi0, ∀i. Now, following a similar
procedure, we have

lim
t→∞

yδ
i − yδ

f

yγ
i − yγ

f

=

∑n
q=1 Mmqy

δ
q(0)∑n

q=1 Mmqy
γ
q (0)

(24)

Therefore, as t → ∞, ẏδ
i /ẏγ

i = (yδ
i − yδ

f)/(yγ
i − yγ

f ). Hence,

(yγ
f , yδ

f) is on the straight line along which the agents motion
converges as t → ∞.

Now, to prove the converse, let ωm �= 0, then

lim
t→∞

ẏδ
i

ẏγ
i

= lim
t→∞

∑n
q=1 Mmqrq cos(φq + ωmt)yδ

q(0)∑n
q=1 Mmqrq cos(φq + ωmt)yγ

q (0)
(25)

From the above, we see that if ωm �= 0, the agents will not
converge to a straight line. �

Remark 1: The straight line asymptote of the trajecto-
ries (after sufficiently large time) passes through Zf =
[y1

f , y2
f · · · , yd

f ]T ∈ Rd which is called the asymptote point.

Remark 2: When ωm �= 0, the agents do not converge to
a straight line. However, the direction in which the ith agent
moves, after a sufficiently large t, can be calculated from (25).
Remark 3: Even though the agents converge to a straight line,
the direction of motion of the agents need not be the same. In
fact, if the gain of only one agent is negative, all the agents
move in the same direction, otherwise they move in two oppo-
site directions along the straight line. The direction in which
an agent i will move is determined from the sign of the coef-
ficient, ai

prq with p = m, q = 1, r = np of xi(t) in (8).

6 General pursuit sequence and switching

invariance results

In the problem formulation, we have assumed a particular se-
quence in which an agent pursues another. We now show that
even where the connection (or more generally, the pursuit se-
quence) among the agents is changed, certain properties of
the system remain unchanged. This is important in certain
applications where the connectivity or the trajectory have to
be changed during the process due to some constraints, with-
out changing the goal.
Definition: Let the set of all pursuit sequences be Q and
ηi, ηj ∈ Q be two pursuit sequences. When there is a change
in the pursuit sequence of the agents from ηi to ηj , it is called
switching. If switching occurs a finite number of times during
the process, then we call it a finite switching case.

Theorem 4 The stability of the linear cyclic pursuit is pur-
suit sequence invariant.

Proof. The stability of (3) depends on the roots of ρ(s) = 0.
As long as there is a cyclic pursuit among the agents, ρ(S) re-
mains unchanged even when the pursuit sequence is different.
Thus, stability of the system is pursuit sequence invariant. �

Theorem 5 The reachable point of a stable linear cyclic pur-
suit is pursuit sequence invariant.

Proof. Consider (15), which gives the coordinates of the ren-
dezvous point. This equation is independent of the sequence
of connection among the agents. Hence, the rendezvous point
is independent of the connectivity of the agents. �

Theorem 6 The asymptote point of an unstable linear cyclic
pursuit system, satisfying Theorem 3, is pursuit sequence in-
variant.

Proof. For the agent i, as t → ∞, the unit velocity vector can
be written using (23) as

υi(t) = (v1
i /v̄i)[1, θ12, θ13, . . . , θ1d]

T (26)

Since θγδ, ∀γ, δ; γ �= δ depends on the connection of the
agents, the unit velocity vector changes as the connection
is changed. This implies that for different connections, the
asymptote to which the agents converge is different. How-
ever, from (24), it can be seen that all the asymptotes pass
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Figure 3: The trajectories of a stable system of 5 agents with
all positive gains.

through the point Zf (the asymptote point), which is inde-
pendent of the connection. In other words, all the asymptotes
radiate from Zf , but their direction depends on the connec-
tion between the agents. �

The pursuit sequence invariance property discussed so far
is based on the assumption that the pursuit sequence between
the agents remained constant throughout time. Now, we show
that even if the pursuit sequence between the agents change
during the process, some of the properties remain unchanged.

Corollaries given below follows directly from the above
Theorems.
Corollary 2: (Stability) The stability of the linear cyclic pur-
suit is invariant under finite pursuit sequence switching.
Corollary 3:(Reachability with switching) The reachable
point of a stable linear cyclic pursuit system is invariant with
finite pursuit sequence switching.
Corollary 4:(Directed motion with switching) The asymptote
point of an unstable linear cyclic pursuit system, satisfying
Theorem 3, is invariant with finite pursuit sequence switch-
ing.

Note that the trajectory of the agents may change due to
switching but the stability, reachable point and the asymptote
point are not changed.

7 Simulation results

A system of 5 agents are considered in R3. The initial po-
sitions of the agents are S = [(2, 1, 1), (4, 9, 4), (6, 7, 7),
(8, 3, 9), (10, 2, 2)]. The pursuit sequences considered in
these simulations are η0 = (0.4, 0.3, 0.2, 0.1), η1 =
(0.1, 0.1, 0.1, 0.7) and η2 = (0, 0, 0, 1). Different sets of
gains are selected arbitrarily for simulation to illustrate the re-
sults obtained in this paper. We assume that the agents know
the gains and pursuit sequences.
Case 1: The pursuit sequence of the agents is η0 and K =
[4, 6, 8, 10, 12] which satisfies Theorem 1. The trajectories
of agents are shown in Figure 3. The system is stable. The
agents converge to Zf = [4.9, 4.3, 3.9]T which satisfies (15).

Case 2: Pursuit sequence is η0 and K = [4, 6, 8, 10, 0].
This set of gains satisfy Theorem 1. The agents converge at
Z5(0) = [10, 2, 2]T as shown in Fig. 4.
Case 3: The pursuit sequence is η0 and K = [4, 6, 8, 10, −
1]. Here, k̄5 = −1.56 and according to Theorem 1, this
system is stable (Fig. 5). The agents converge at Zf =
[20.3256,−2.5814,−1.9302]T and satisfies (15).
Case 4: Pursuit sequence is η0. and K = [4, 6, −2, 10, −5]
are considered, keeping the same pursuit sequence η0. This
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Figure 4: The trajectories of a stable system of 5 agents with
one zero gain and the other gains positive.
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Figure 5: The trajectories of a stable system of 5 agents with
one gain negative and the other gains positive.

system is unstable as it violates Theorem 1. The eigenvalues
of this system are {4.9245, 0, − 0.6796, − 6.3871, −
10.8578} . It can be seen that the most positive eigenvalue
is positive satisfying Theorem 3 and the agents converge to a
straight line as can be seen in Figure 6. Moreover, we can see
that some agents move in one direction while the others in the
opposite direction.

Case 5: The pursuit sequence is η0 and K =
[4, 6,−2,−3,−3] and . The gains do not sat-
isfy Theorem 1. The eigenvalues are {3.3729 ±
j0.1070, 0,−2.3447,−6.4010}. Since the most posi-
tive eigenvalue is not real, the agents will not converge to a
straight line. This can be seen in Figure 7, where we can see
that the direction of motion of the agents varies with time.

Case 6: The switching invariance of the reachable point
is shown in Figure 8 for the system with gains K =
[4, 6, 8, 10, 12] and the pursuit sequence of η1, η0 and
η2, in this sequence. The dotted line shows the trajectory
if there was no switching. It can be seen from the figure that
the reachable point is remains unchange for finite number of
switching.

Case 7: Here, we show the switching invariance of
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Figure 6: The trajectories of an unstable system of 5 agents
with two gains negative and the other gains positive.
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Figure 7: The trajectories of an unstable system of 5 agents
that do not converge to a straight line.
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Figure 8: Switching invariance of reachable point. Solid line:
switching between η1, η0 and η2 and Dotted line: no switch-
ing (pursuit sequence η1)

the asymptote point. The gains considered are K =
[4, 6, 8, 10, − 5], which satisfy Theorem 3. The pur-
suit sequence switches from η1 to η0 to η2. The trajectories
are shown in Figure 9. We see that even with switching, the
asymptote point remains the same.
Case 8: A swarm of 20 agents are considered to show the
scalability of generalized centroidal cyclic pursuit. The ini-
tial positions of the agents are chosen randomly. The gains of
the agents are positive and the pursuit sequence is selected ar-
bitrarily. Fig 10 shows the rendezvous of the swarm of agents.

8 Conclusions

Cyclic pursuit strategies have recently been of much interest
among researchers in swarm intelligence. In this paper, we
generalize the concept of cyclic pursuit in which an agent
pursues a weighted average of the remaining agents. The
system of agents using generalized centroidal cyclic pursuit
is analyzed. The set of controller gains are determined for
which the system will remain stable. If the system is stable,
all the agents converge to a point. The rendezvous point is
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Figure 9: Switching invariance of asymptote point. Solid
line: switching between η1, η0 and η2 and Dotted line: no
switching (pursuit sequence η1)
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Figure 10: The trajectories of a swarm of 20 agents

obtained as a function of the gains and the initial positions. If
the system is unstable, we found the condition under which
the agents demonstrate directed linear motion. An interest-
ing result shown here is that the stability, rendezvous point
and the asymptote of the directed motion are all invariant to
pursuit sequence and switching.
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