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Abstract

When data is scarce or the alphabet is large,
smoothing the probability estimates becomes in-
escapable when estimating n-gram models. In this
paper we propose a method that implements a form
of smoothing by exploiting similarity information
of the alphabet elements. The idea is to view the
log-conditional probability function as a smooth
function defined over the similarity graph. The al-
gorithm that we propose uses the eigenvectors of
the similarity graph as the basis of the expansion
of the log conditional probability function whose
coefficients are found by solving a regularized lo-
gistic regression problem. The experimental results
demonstrate the superiority of the method when
the similarity graph contains relevant information,
whilst the method still remains competitive with
state-of-the-art smoothing methods even in the lack
of such information.

1 Introduction

Statistical language models (SLM) attempt to capture the
regularities of a natural language using statistical methods to
construct estimates of distributions of various linguistic units,
such as morphemes, words, phrases, sentences, or documents.
Because of the categorical nature and the large vocabulary of
natural languages, statistical techniques must estimate a large
number of parameters, and thus depend critically on the avail-
ability of a large amount of training data. Given the complex-
ity of languages, such training data is rarely available. In
the lack of a sufficiently large and rich dataset, simple ap-
proaches like straightforward maximum likelihood (ML) es-
timation tend to produce poor quality models.

Smoothing in this context is typically used to refer to tech-
niques that combine various ML probability estimates to pro-
duce more accurate models. An enormous number of tech-
niques have been proposed for the smoothing of n-gram mod-
els, including discounting, recursively backing off to lower
order n-grams, linearly interpolating n-grams of different or-
ders. An excellent survey of these and some other techniques
can be found in [Chen and Goodman, 1996].

Clustering models make use of smoothing ideas, but also
attempt to make use of similarities between words. In the

class-based n-gram estimation [Brown ez al., 1992], a greedy
algorithm searches the space of clustering to find one that in-
creases the data likelihood the most. The method is extended
to handle trigram by [Ueberla, 1994], where a heuristic ran-
domization was used to speed-up the clustering process with
only a slight loss in performance.

These early works rely on short span relationships
(such as bigram or trigram) and therefore tend to produce
syntactically-oriented clusters. Another approach proposed
by [Bellegarda er al., 1996] exploits large span relation-
ships between words and results in clusters that are seman-
tically oriented. The idea is to exploit that documents can
be thought of as a semantically homogenous set of sentences.
Hence, if a set of documents is available then this knowledge-
source could be exploited to create semantically meaningful
word-clusters. The algorithm forms a word-document matrix
given the training data, performs singular-value decomposi-
tion (SVD) on the resulting matrix, and then clusters over the
projections according to a well-chosen measure.

Clustering is a special case of constructing similarity infor-
mation over the alphabet elements (most often over the words
or word-forms of a language). [Dagan et al., 1999] pro-
posed to use a kernel-based smoothing technique where the
kernel function is built using similarity information derived
from word-cooccurrence distributions. They have shown up
to 20% reduction in perplexity for unseen bigrams as com-
pared to standard back-off schemes. [Toutanova ef al., 2004]
investigated a Markov chain model that exploits a priori simi-
larity information, whose stationary distribution was used for
solving prepositional phrase attachment problems.

Our Contribution In this paper we propose a method that
implements a form of smoothing by exploiting similarity in-
formation of the alphabet elements. The idea is to view the
log-conditional probability function as a smooth function de-
fined over the similarity graph. The algorithm that we pro-
pose uses the eigenvectors of the similarity graph as the basis
of the expansion of the log conditional probability function.
The coefficients of the expansion are found by solving a regu-
larized logistic regression problem. The experimental results
demonstrate the superiority of the method when the similarity
graph contains relevant information, whilst the method still
remains competitive with state-of-the-art methods even in the
lack of such information.
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2 Sequence prediction based on similarity
information

Consider a word prediction task over some vocabulary V. Let
p(w|h) denote the conditional probability of word w € V),
where h € V* is some history. If we constrain the size of
histories to n—1 words we get the well known n-gram model.
For the sake of simplicity in this paper we will only deal with
bigrams (the methods proposed can be readily extended to
higher order n-grams). In what follows the notation p(y|z)
will be used to denote the bigram probabilities.

Given appropriate basis functions, {p;}, the log-
probabilities of the bigrams can be written in the form

> aipi(,y). e))

i€ZL

log p(yla) o

Clearly, the simplest choice is to let Z = V x )V and use the so-
called Euclidean basis functions, ©;(z,y) = ¢, i) (2, y) =
d(i1,x)d(i2, y), where §(-,-) is the Kronecker’s delta func-
tion. With this basis function set, fitting this model to some
dataset is equivalent to maximum likelihood training. The
main idea in the paper is that given some similarity infor-
mation over V it might be possible to construct another ba-
sis function set that facilitates generalization to unseen cases.
Since the basis functions that we will construct will form an
overcomplete representation, we will resort to a form of reg-
ularization to prevent overfitting.

2.1 Incorporating similarity information

Let V = {w1,...,w)y} be the words in the vocabulary. In
order to estimate the p(y|z) conditional probability distribu-
tion, where (z,y) € W, we used the similarity information
hidden in the context. Assume that the similarity informa-
tion between words is represented as an undirected weighted
graph G = (V,E, W), where E C V x V are the edges
and W : E — R{ assigns non-negative weights to word-
pairs. For mathematical convenience, we use W to denote
the |V| x |V| weight matrix, where the (i, )" entry of W
is the weight of the edge ¢ — j. The idea is to construct
basis functions that respect the similarity information in 1.
One way to accomplish this is to use spectral graph cluster-
ing which is known to yield basis functions that can be used
to represent any square integrable function over G [Chung,
1997]. In fact, spectral graph clustering methods construct
basis functions that are natural for constructing geodesically
smooth global approximations of the target function. In other
words, smoothness respects the edges of the graph. In our
case this means that similar words (or word-pairs) will be as-
signed similar probabilities. It is left for future work to deter-
mine if the results presented here can be improved by using
other techniques, such as diffusion wavelets by [Coifman and
Maggioni, 2006].

In the particular method we have chosen, the basis func-
tions are computed using the singular value decomposition of
the matrix P = D~2W D~3. Here D is the diagonal valency
matrix; its diagonal elements are defined by d; = ) ; Wi
This operator is spectrally similar to the normalized graph
Laplacian operator, L = D~z (D — W)D~z. In fact, ele-
mentary algebra yields that [ — L = D WD~z = P. The

spectrum of the graph Laplacian is known to have a close re-
lationship to global properties of the graph, such as “dimen-
sion”, bottlenecks, clusters, mixing times of random walks,
etc. The spectral decomposition method employed is moti-
vated as follows: The smoothness of a function, f : V —
R on the graph G can be measured by the Sobolev-norm
Iflle = 2pey [f@)Pds + 3 nyen(f (@) = f(0)*we.
The first term here controls the size of the function, whilst
the second controls the gradient. Using this norm, the ob-
jective to exploit similarity information can be expressed as
the desire to find a loglikelihood function whose G-norm
is small. Now, the projection of a function f on the lin-
ear function space spanned by the top k eigenvectors of the
Laplacian is the smoothest approximation to f with k ba-
sis functions, in the sense of the G-norm. Hence, influ-
enced by [Ding et al., 2002] we decomposed P using sin-
gular value decomposition: P = USVT. For practical pur-
poses, we truncated the SVD of P in such a way that the
| Prll » = 0.9]|P|| -, where ||-||  is the Frobenius norm, and
Pr = UpSk VkT is the truncated version of P where only the
k column vectors of U and k row vectors of V' corresponding
to the k largest singular values of S are kept. For proper nor-
malization, the singular vectors in Uy are multiplied by the
square root of the respective singular values [Dhillon, 2001;

Ding et al., 2002]: U, = U, S,/>.

Now, the basis functions are obtained using the columns of
Uy: Denoting these columns by 91, ..., Yk, ©(i, i) (T, Y) =
0(i1,y)i, (), where i1, 2,y € V, i2 € {1,...,k}. Since
the similarity information might be unreliable we added
the Euclidean basis functions, ¢}(x,y) = ¢, i) (T,y) =
0(i1,x)0(i2,y), to the set obtained. This way even when
the automatically constructed basis functions are useless, the
method still has a chance to recover. To handle unknown
words, one may resort to Nystrom’s method (e.g. [Baker,
1977]): In order to extend a singular vector ; to a new word,
z, it suffices to know w,., for all x € )V in the set of known
words. In fact, ) ., \/1;—:7;21/11-(17) can be shown to be a good

approximation.

In the experiments below we always used a single simi-
larity graph, though the algorithm has the natural ability to
use more graphs by simply merging the set of resulting basis
functions. Just like in regression, we may use all the basis
functions, as well as all the products of two basis functions:

DO el (@)

a i€l

SN etz y)eh(a,y) (@)

a,b i,5€T

log p(y|x) o

In fact, this is a second order ANOVA model [Lin, 2000].
Higher order models (products of more than two basis func-
tions) may also be used. In practice, however, they are rarely
used since second order models typically produce sufficiently
good results. When more than one model sets are combined,
the number of parameters increases rapidly. Hence, the use
of a regularized fitting method becomes of high importance.
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2.2 Solving the regression problem

Since by assumption all of our basis functions depend only
through the Kronecker delta on y, equation (1) when raised
to the exponent takes the form:

VI
1
p(ylB(x), a) = Z_aeafﬁ(z), where Z, = ;ea%(m) (3)
is the normalizing factor, & = [ay, ... ’a|VdT is the ma-

trix of the weight parameters to be learned , c, contains the
weight parameters of word y, and 3(x) is the vector formed
from the basis functions evaluated at z. We shall call 5(z)
the feature vector associated with z.

Let the training data be the sequence D = (v1,...,vN),
v; € V. Assuming that the data is generated by a first order
Markov model where the transition probabilities can be mod-
eled by a multinomial model (3), the data log-likelihood takes
the following form:

ZML a|D

Mz

ol Bv;1) *
j=2
V|

— log Z exp (a
i=1

The maximum likelihood (ML) estimate of the parameter
vector is the vector that maximizes this function. In order
to prevent overtraining it is advisable to prefer smooth solu-
tions, especially if the number of basis functions is big (in
other words, if the feature vectors, (3, are high dimensional).
One way to enforce smoothness is to introduce a prior dis-
tribution over the parameters cy;;. Several choices are pos-
sible for such priors. In this work we studied the behaviour
of the method when it was used either with the Laplacian-
prior, p(a;;) o Aij exp(—Aij | ]), or with the Gaussian-
2

. 1 Xij
prior, p(a) o exp(— QA;% ).
Assuming one of the above priors, the training problem be-

comes the maximization of the following objective function:
N

Imar(a|D) = Z [agjﬁ(vjl)_ )

j=2

ﬁ(vj_l))} + const

VI VI &
—log Z exp (a?»@(vjl))] - Z Z Aij levi;[”
i=1 i=1 j=1
i.e. an /P penalty term is added to the ML objective function.
Here p = 1 or 2 depending on which prior one wishes to
use: p = 1 corresponds to the Laplacian prior, whilst p = 2
corresponds to the Gaussian prior.

We used the SMLR java implementation of [Krishnapuram
et al., 2005] which implemented both the Laplacian (/') and
Gaussian priors (12), to find the solution for equation (5). The
sketch of the algorithm is shown on Algorithm 1.

3 Experimental Results

We compared the performance of similarity based smoothing,
SBS, on synthetic and real-world data to both plain bigram es-
timates (BI) and interpolated Kneser-Ney smoothing (IKN).

Algorithm 1 Similarity Based Smoothing (SBS)

Input: similarity information between words, training data
Output: estimated probability distribution

1. Build a similarity graph between words G = (V, E, W)

2. Calculate the normalized matrix of G: P = D=2 WD~ 2

3. Determine the SVD decomposition of P = USVT

4. Calculate the mapping operator from the singular vectors
of top singular values: & = U S é

5. Train the Logistic Regression Model weight parameters
using the training data

IKN is considered as one of the best smoothing techniques
[Goodman, 2001].

In order to evaluate the methods we calculated the em-
pirical cross-entropy of the trained model on held-out data,
Wiy, WN:

L
Hy(p,p) = N Zloggﬁ(wﬂwi,l). (6)

i=1

Here p(w;|w;—_1) is the probability assigned to the transition
from w;_; to w; by the model and p denotes the true distri-
bution. (For the synthetic datasets we have w; ~ p(-|w;—1).)
Since by assumption, the held-out data has the same distribu-
tion as the training data, by the Shannon-McMillan-Breiman
theorem we know that (under mild assumptions) H is close
to the cross-entropy of p with respect to the true distribution
p of the data. The cross-entropy of p and p is the sum of the
entropy of p and the Kullback-Leibler divergence of p and p,
a non-negative quantity. The smaller the cross-entropy, the
closer the estimated model is to the true model.

For each test, we calculated the cross entropies for the
ML-trained bigram, IKN and the proposed similarity based
smoothing technique. In the case of synthetic datasets we
also estimated the entropy of the models by using the true
transition probabilities in (6). The corresponding points in
the graphs are labeled as ‘model’.

3.1 Tests on Synthetic Data

The model generating the synthetic data In order to de-
velop a good understanding of the possible advantages and
limitations of the proposed method, we tested it in a con-
trolled environment where data was generated using some
designated bigram model. In order to make the test interest-
ing, we decided to use “clustered” Markov models of the fol-
lowing form: the probability of observing y given z is com-
puted by

P(ylz) = P(y|c(y)) P(c(y) | c(x)), (7

where c(x) is the cluster of symbol (word) z (¢ : V — C
with |C] < |V|). The idea is that the next observation de-
pends on the past observation x only through its class, ¢(x)
and hence two past observations, x and 2’ yield to identical
future distributions whenever c(xz) = ¢(2’). Note that when
P(y|c) = d(c(y),c) then the model can be thought of as a
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Hidden Markov Model (HMM) with state transitions defined
over C, whilst when the observation probabilities are uncon-
strained then in general no HMM with |C| states is equivalent
to this model. In any way, the model can be specified by two
matrices, (A, B), with A., ., = P(ca|c1) (A € RICIxICly
and B, . = P(y|c) (B € RIVIXICl), Let us now describe how
these matrices were generated.

For computing the matrix A, we start with a permutation
matrix of size |C| x |C| and perturb it with random noise so
that (7) all transition probabilities are nonzero and (ii) for each
state the number of “significant” transitions lies between 1
and %.

For computing B, we start from the idealized block-
structured matrix with By, oc §(c(y), c) and then perturb it
according to

Bye B;C +6(1+ 72;0)7

where the elements of z; . are independent random variables
uniformly distributed in [—0.5,0.5]. If § = O then the block
structure of the source is clearly identifiable based on the out-
puts: Given an observation y and knowing C we can infer
with probability one that the hidden state is ¢(y) and as noted
before the model collapses to a hidden Markov model with
C states. When ¢ is non-zero this structure is blurred. In the
experiments we used § = 0.1 whilst we let y change in [0, 1].
Note that v = 1 roughly corresponds to a noise level of 5%
in the observations.

Similarity information provided for SBS We controlled
how well the similarity information provided for SBS reflects
the actual block structure of the data. The perfect similar-
ity information assigns O to observations (words) in different
clusters, whilst it assigns the same positive value, say 1, to
observations in the same cluster. The corresponding matrix is
denoted by S (S € RIVIXIVIy: 5. = §(c(2), c(y)).

We then disturbed S by adding noise to it. For this a ran-
dom |V| x |V| matrix (Z) was created whose entries for inde-
pendent, uniformly distributed random variables taking val-
ues in [0, 1]. Given a noise parameter, ¢ > 0, the perturbed
matrix is computed by

S.=S+e((-SO2)+((1-9)6 2)).

Here U © V denotes the component wise product of matrices
U and V, 1 denotes the matrix with all of its entries being
1. In words, increasing e reduces the inter-cluster similarity
and increases between-cluster similarity. In the extreme case
when € = 1 all similarity information is lost.

Training and test datasets A training dataset normally
contains Ny, = 300 observation sequences (except when we
experiment by changing this parameter), each having a ran-
dom length that was generated by drawing a random number
L from a normal distribution with mean 11 and variance 6 and
then setting the length to max(2, L). The test dataset (sepa-
rate from the training dataset) had 5000 sequences which was
generated using the same procedure. All measurements were
repeated 9 times and the average values are presented.

3.2 Results

We performed a sensitivity analysis to test the effect of how
the various parameters influence the results. In particular, we
studied the performance of SBS as a function of the observa-
tion noise, vy, that masks the identifiability of the block struc-
ture, the noise in the similarity matrix () that gradually de-
creases the quality of the similarity information available for
SBS, the number of training sentences (/Ni,) and the cluster
structure. These parameters were changed one by one, whilst
the others are kept at their default values which were v = 0.2,
e = 0.1, Ny = 300. The default cluster structure was to have
6 clusters, having observations 30, 20, 10, 5, 5 and 5, respec-
tively (so that some clusters were bigger, some were smaller).
Thus |V|, was kept at 75. We present the results for both the
Laplacian and Gaussian priors, the corresponding results are
labeled as ‘SBS Gauss’ and ‘SBS Lapl’ in the graphs.

Sensitivity to noise masking the block-structure When
v = 0, the observations can be used directly to infer the un-
derlying classes and the estimation problem is easier. When
the block-structure masking noise is increased the problem
becomes harder.

5.6 T T T T

T
ikn +

i sbs lapl
5.5 |+ ~ sbsgauss ¥
; model o
bigram
g 54
$ 53 b
173 + + o+
o F +
o Xeaan
52 gk X * X £ N ¢ X * *
ES
5.1 FTDDr—\DDD o - t o
o o
5 i
0 0.2 0.4 0.6 0.8 1

block-structure masking noise

Figure 1: The cross-entropy of models built with various al-
gorithms as a function of the block-structure masking noise
parameter ()

Figure 1 shows the results of the measurements. It can
be observed that the proposed method performs significantly
better over the considered spectrum of 7 than its peers: In
fact, as the masking noise gets bigger, IKN’s performance
converges to that of the bigram model. On the other hand,
SBS was able to maintain its estimation accuracy for the
whole range of . In all of these experiments SBS with the
Gaussian parameter-prior performed slightly better than SBS
with the Laplace prior. We believe that this is because the
Laplacian prior prefers sparse solutions and the number of
basis functions is not high enough for making sparse solu-
tions preferable.

Robustness against the degradation of the similarity in-
formation In the next set of experiments we investigated
the sensitivity of the method to the quality of the similarity
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information. For this we gradually increased the similarity-
information noise parameter, ¢, from 0 to 1. As we have
discussed, when € = 0 the similarity information is perfect,
whilst when e = 1 all similarity information is lost.

5.7 T T T T T T
ikn +
5.6 - sbs lapl o
sbs gauss  *
55 . model o
’ bigram
g 5.4 |
1S ; 4
o 53
A +rt sk oy ¥ H
g 52wk Ed
0 % 0o ] ]
5.1 [ 0.0 " .
5
4.9
0 0.2 0.4 0.6 0.8 1

noise in the similarity information

Figure 2: The cross-entropy of models built with various al-
gorithms as a function of the noise parameter, €, governing
the quality of the similarity information

As expected, when the similarity information gets weaker,
the performance of SBS degrades and converges to that of
the ML-estimated bigram model. It is notable that even when
€ = 0.7 (when the similarity information is already very poor)
SBS performs as well as IKN. The reason is that although in
these experiments we did not add the Euclidean basis func-
tions to the set of basis functions, we can expect the spectrum
of a high-noise similar matrix to be uniform, hence covering
90% of the spectrum will add almost all singular vectors to
the basis and thus the model automatically retains its power.

Sparsity of training data The main promise of SBS is that
by using the similarity information it is capable of achieving
better performance even when the available training data is
limited. In order to validate this, we performed a set of ex-
periments when the number of sentences in the training data
was varied. The results are shown in Figure 3. Both with the
Gaussian and the Laplacian priors, SBS outperformed IKN
for a wide range of values of N,. It is interesting to note
that the Gaussian prior performed much better than any of
the other methods when the number of sentences was very
small.

Cluster structure We tested SBS with large variety of clus-
ter setups, ranging from 1 to 15 clusters, and with vocabulary
sizes between 7 and 110. The results are summarized on Ta-
ble 1.

It is clear that if the number of clusters is small or when all
the words are in different clusters, then there is no significant
structural information in the similarity. It is notable that in
such cases SBS was still able to perform as well as IKN. On
the other hand, if there is a significant hidden structure in the
model, SBS greatly outperforms IKN.
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6 ikn o+ ]
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5.9 i sbsgauss ¥
model O
58 - bigram 1
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B2 [k B o g e
[m]
5.1 prbe— 200 5. B % :
5
0 200 400 600 800 1000

no. of sentences in the training corpus

Figure 3: The cross-entropy of models built with various al-
gorithms as a function of the number of sentences in the train-
ing data (NVg).

Clusters H(p-fikn) — B0 Prbs)
average stddev
L,1,1,1,1,1,1 -0.0112 0.0036
10 0.1776 0.0406
10x2 0.4808 0.0246
10x3 0.8679 0.0633
10x5 1.5223 0.0708
10,5 0.3001 0.0361
10,7,5 0.5150 0.0499
10,7,5,3 0.6296 0.0311
30,20,10 1.7790 0.1691
30,20,10,5x3 1.3352 0.2011
30,20,10,5x3,1x3 1.0971 0.2303
30,20,10,5x3,1x9 0.6537 0.1141

Table 1: The cross-entropy decrease of SBS as compared with
IKN for a number of different cluster structures

3.3 Tests on Real Data

The task considered is to predict POS sequences on the Wall
Street Journal (WSJ) corpus. We extracted a weighted di-
rected sub graph based on all senses in all syntactic categories
from WordNet [Fellbaum, 1989] for 50, 000 words. Based on
this information, a POS similarity graph (PG) was built as
follows: using the Brown corpus', we first collected the pos-
sible POS categories for every word. Next we created a prior
POS-tag distribution for all the words. Then for every unique
word in the Brown corpus, we added the out-links to the POS
graph according to the WordNet graph, using the weight of
the link in the WordNet graph and the weight of the POS tags
in both sides of the link. For example, if we arrive at the
word live and if the link live — bouncy in the WordNet graph
has weight w then for all possible POS tag combinations of
live and bouncy, the link between the POS-pairs (z, y) is in-
creased by p(x|live) - p(y|bouncy) - w. In the next step, we
calculated the basis functions as outlined beforehand.

'The Penn Treebank Project: http://www.cis.upenn.edu/ tree-
bank/
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In another set of experiments a similarity graph was built
by connecting with a constant weight those POS-tags that
shared the same prefix (e.g. NN, NNP, NNS were grouped
together).

The training and test corpora were kept separate, with the
training corpus having 1,000 sentences (18,500 POS-tags),
whilst the test corpus consisted of 5,000 sentences. The vo-
cabulary size was 65.

When the similarity graph extracted from WordNet was
used, SBS failed to achieve a good performance. Investigat-
ing the similarity graph, it turned out that it was very sparse,
and it actually used 42 POS only out of the 65 POS tags.
With the prefix-based similarity graph, the algorithm’s per-
formance became practically indistinguishable to that of IKN.
We guess that a more principled similarity graph building
method would be needed in order to achieve a performance
improvements in this task. SBS in theory is better suited to
problems with larger alphabets. Unfortunately, SMLR, the
software tool used for training SBS scales rather poorly with
the alphabet size, seriously limiting the range of feasible ex-
periments.

Concentrating on the robustness of the estimate, we com-
puted the perplexity reduction on those bigrams that occur
only at most a few (say 4) times in the training corpus. It was
found that the perplexity reduction of SBS compared to IKN
is a mild 2%, whilst it is 4.5% as compared to the ML-trained
bigram model. We also found if we have less sentences the
SBS performs even a little better.

4 Conclusion

We have proposed a novel smoothing method to train n-gram
models: The method constructs basis functions in an auto-
mated way for a maximum-entropy model by the spectral de-
composition of a weighted similarity graph. It was found that
the method is able to outperform some competitors when the
similarity information is substantially relevant, whilst it re-
mained competitive even when the similarity information was
not helpful.

The motivation of the method is the well-known fact that
in continuous domains smoothness of the target function (or
density) yields faster convergence. How is it possible to
achieve similar results in discrete domains? The first prob-
lem is to define an appropriate notion of smoothness. Spectral
graph theory suggests that such a notion can be defined based
on the Laplacian of a similarity graph and that the eigen-
decomposition of a normalized Laplacian (and other related
operators) yields an appropriate basis for functions that are
“smooth”, i.e. which respect the topology (geodesics) in the
graph. To our best knowledge, this is the first work that sug-
gests the use of automatically constructed basis functions (or
features) in probabilistic sequence modeling in discrete do-
mains. Although here we only considered the simplest case,
i.e., constructing bigram models, the idea is that the underly-
ing method can be generalized to other more complex prob-
lems, ranging from n-grams to even whole-sentence language
models. For such models the similarity information must be
constructed over extended sequences. One possibility to ac-
complish this might be to use appropriately constructed string

kernels. However, this investigation is left for future work.
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