
Abstract
In this paper, we address a critical problem in con-
versation systems: limited input interpretation ca-
pabilities. When an interpretation error occurs, us-
ers often get stuck and cannot recover due to a lack
of guidance from the system. To solve this prob-
lem, we present a hybrid natural language query
recommendation framework that combines natural
language generation with query retrieval. When re-
ceiving a problematic user query, our system dy-
namically recommends valid queries that are most
relevant to the current user request so that the user
can revise his request accordingly. Compared with
existing methods, our approach offers two main
contributions: first, improving query recommenda-
tion quality by combining query generation with
query retrieval; second, adapting generated rec-
ommendations dynamically so that they are syntac-
tically and lexically consistent with the original
user input. Our evaluation results demonstrate the
effectiveness of this approach.

1 Introduction
Mixed initiative conversation systems allow users to interact
with computers using speech or natural language. However,
these systems have not been used widely in practice mainly
due to their limited input understanding capabilities. When
interpretation errors occur, a user frequently gets stuck and
cannot recover. Figure 1 shows an example in which the
user cannot recover from repeated interpretation errors.

U1: Show the mean home price and household income of Pleasantville.
S1: Sorry, I don’t understand you. Please rephrase your request.
(S1’: Sorry, I don’t understand. Do you mean “Show the average home price
and household income of Pleasantville”)
U2: Show the median house price and household income of Pleasantville.
S2: Sorry. I don’t understand. Please rephrase your question.
U3 :Show the mean home price and the mean household income of Pleas-
antville
S3: Sorry, I still don’t understand ….

: An Example

* This work was conducted when the author was at IBM

This simple dialog demonstrates two typical problems in
dialog systems: limited input understanding capability and a
lack of proper guidance when errors occur. Limited input
understanding capability is what got the user into trouble
originally. In U1, the system was not able to understand
“mean”. Moreover, from U2-U3, without any guidance from
the system, the user tried twice to recover from this problem
without much success. Instead, if the system had responded
with S1’, it would be much easier for the user to rephrase
successfully.

To enhance a user’s experience and improve the robust-
ness of human-computer interaction, most existing ap-
proaches focus on improving a system’s interpretation ca-
pability directly. Nonetheless, such improvements may still
be limited since they would never cover the entire range of
user expressions for any non-trivial application. Alterna-
tively, we propose to improve the robustness of system-user
interaction by providing proper guidance on what the sys-
tem can do so that users know how to adapt their queries to
those within the system’s capability. Figure 2 summarizes
our approach. Assume U contains all the possible user ex-
pressions in an application and S has all the expressions a
system understands. Since S is usually a subset of U, when a
user query u1 is outside of S, it will cause interpretation
errors. When this occurs, our system will provide proper
guidance on what the system can do so that users know how
to revise u1 to s1.

 To make a system’s interpretation capability apparent to
a user in context, we propose a hybrid query recommenda-
tion framework in which we combine a retrieval-based ap-
proach with dynamic query generation. As a result, the hy-
brid system not only recommends queries based on the ex-
amples from a query corpus. It also dynamically composes
new queries so that it can recommend queries that are close

Natural Language Query Recommendation in Conversation Systems

Shimei Pan
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532
shimei@us.ibm.com

James Shaw*
Ask.com

343 Thornall Street, 7th floor
Edison, NJ 08837

James.shaw@ask.com

User Expressions (U)

Valid System
Expressions (S)

u1

u2

s1

s2

Figure 2: Query recommendation for User query adaptation

IJCAI-07
1701

to the user’s original intent, which might be beyond the
scope of pre-stored examples.
 Our approach is embodied in an intelligent multimodal
conversation system supporting four different applications
including a real estate application that helps potential buyers
to search for residential properties (Zhou et al., 2006). In
this system, users may enter their queries using multiple
input modalities such as speech, text, and GUI. In this
work, we focus on queries typed in as text. To respond to a
user’s request, the system dynamically generates a multime-
dia presentation that includes automatically generated spo-
ken utterances and graphics. When interpretation errors oc-
cur, the system dynamically generates several recommenda-
tions so that the user can select one of them to replace the
original query or make further revisions if desired.

In the rest of the paper, after a brief discussion of related
work, we explain the technical details of our approach. We
then present our evaluation results.

2 Related Work
 Previously, many approaches have been proposed to make a
conversation system’s capability apparent to users, such as
tutorials or context-sensitive help. Tutorials (Kamm et al.,
1998) are often too brief to cover all valid queries. Even if
they manage to do so, users may not be able to remember
and apply them to the current task. Alternatively, context-
sensitive help systems (Hastie et al., 2002, Stein, 1998) pre-
sent relevant examples in context. However, existing ap-
proaches for context-sensitive help have limitations. For
example, finite state machine-based approaches (Walker et
al, 1998) do not scale well. Depending on the granularity of
the predicted classes, a decision tree-based help (Hastie et
al., 2002) may be too coarse to provide guidance on the ex-
act wording. Moreover, retrieval-based recommendation has
been used in applications like spelling recommendations in
Google spell check (Google, 2006). We have also used re-
trieval-based query recommendation in conversation appli-
cations (Pan et al., 2005). However, depending on the cov-
erage of the examples in a system, the most relevant pre-
stored example may not be close enough to be helpful. In
contrast, the approach we propose here combines retrieval-
based approach with dynamic query generation to provide
scalable, fine-grained context-sensitive help based on the
current user query.

Our work on dynamic recommendation generation also
offers several contributions to the area of natural language
generation. For example, traditionally, content selection is
done either based on domain heuristics (McKeown et al.,
1997) or content models learned from a corpus (Duboue and
McKeown. 2003, Barzilay and Lapata, 2005). In contrast,
our content selection is done based on the analysis of the
current user query as well as the categorization of an inter-
pretation error. For sentence generation, in addition to the
grammaticality of generated sentences (Shaw. 1998, Lang-
kilde. 2000, Walker et al., 2002) we also focus on using a
cascade model to minimize the unnecessary difference be-
tween the original user query and system’s recommenda-
tions.

In the following, we first explain the hybrid query rec-
ommendation approach, and then provide evaluation results.

3 Hybrid Query Recommendation
To achieve robust, scalable, fine-grained query recommen-
dation, we extend our previous work on retrieval-based
query recommendation (Pan et al., 2005) with dynamic
query generation. There are two independent recommenders
in our system: a retrieval-based recommender and a genera-
tion-based recommender. The retrieval-based recommender
produces recommendations by selecting from pre-stored
examples while the generation-based recommender dynami-
cally constructs recommendations based on the current user
input. After combining the results from both, the hybrid
recommender is able to recommend queries beyond the
scope of the pre-stored examples. In the following, to ex-
plain the hybrid approach, first we summarize the retrieval-
based approach, and then we focus on the new generation-
based method.

3.1 Retrieval-based Recommendation
The main knowledge in retrieval-based recommendation is a
query corpus containing typical query examples a system
can understand. For each example in the corpus, the system
stores not only the query itself, but also its semantics pro-
duced by a semantic interpreter as well as contextual fea-
tures derived from the conversation history. When a prob-
lematic user query is encountered, the system searches for
the most relevant examples from the corpus. The relevance
of an example to a user query is defined as the weighted
combination of three similarity scores: the string similarity
score, the semantic similarity score and the context similar-
ity score. Based on the total relevance score for each exam-
ple in the corpus, the system will recommend the top N que-
ries to the user.
 This approach works effectively when the system stores
almost all the valid query combinations in the query corpus.
However, in any non-trivial conversation system, the num-
ber of queries a system can understand is huge due to com-
binatorial explosion. For example, in a real estate applica-
tion in which there are 40 attributes associated with a house,
a system would need to store at least 240 examples just to
cover queries related to searching for a house using any
combination of the attributes as search constraints. Thus, it
is often impossible to collect and pre-store all the queries
ahead of time. To solve this problem, we propose to dy-
namically compose new queries based on the current user
request so that the system can recommend queries beyond
the scope of pre-stored examples.

3.2 Generation-based Recommendation
Dynamic query generation offers a significant advantage
over the retrieval-based approach because the system is able
to generate a large number of queries based on a small set of
query examples. In general, it is difficult to cover all the
combinations of concepts and attributes in a corpus. It is not
difficult however, to cover each concept or attribute in at
least one of the examples. In the following example, assume

IJCAI-07
1702

there are seven concepts {A, B, C, D, E, F, G} and four
query examples {ABE, CD, EFG, DFG}. When receiving a
new user inquiry “ABDF ” in which “ ” is unknown to
the system, a retrieval-based recommender may not be able
to produce any good recommendations because none of the
existing examples is close enough to the user query. Using
generation-based recommendation, however, the system can
produce a query more similar to the user’s problematic
query. For example, based on the partially understood re-
sults and the system’s guess that the meaning of “ ” is “G”,
the system may decide to generate a sentence conveying
“ABDFG” which is closer to the user query than any of the
existing examples.

To explain the generation-based recommendation method
in detail, let’s follow the flow in Figure 3. When a problem-
atic user query, e.g. with unknown words, is received, the
interpreter produces an error code plus partial interpretation
results in the form of an incomplete semantic graph. From
the user query and the partial interpretation results, the fea-
ture extractor automatically derives a set of syntactic and
semantic features characterizing the unknown word in the
user query. Based on the extracted features and annotated
examples in the problematic query corpus, the classifier
selects one or more content selection operators. Then the
content selector revises the partial semantic graph using the
selected operators to formulate the content of a recommen-
dation. Finally, the sentence generator takes the revised
semantic graphs and produces grammatical sentences as the
recommendations. The following section explains this com-
ponent in detail, starting with classification-based content
selection.

3.2.1 Classification-based Content Selection
Content selection is critical in recommendation generation.
It is an attempt for the system to restore the semantics of
problematic user inputs based on the system’s knowledge
about the application domain, the current user input, and the
conversation context. Depending on the type of interpreta-
tion errors, the system may add new content or remove ex-
isting content to produce a recommendation. Currently, we
employ a classification-based approach to categorize the

interpretation problems and to derive proper content selec-
tion operators. Since most problems that an interpreter can
reliably identify involve unknown words, in this study, we
focus on unknown word classification.

In the next section, we describe how to categorize each
unknown word using a set of semantic and syntactic fea-
tures. Later we explain how to build multiple classifiers to
select appropriate content selection operators.

No Name Definition Example
1 EleSynRel

The relationship between the problem
element and the element anchor

Modifier-
Head

2 PrElePOS The Part-of-Speech (POS) of the
problem element

Adjective

3 PrEleRole The role played by the problem ele-
ment in its relationship with its anchor

Modifier

4 PrEle
Classification

Further classification for the unknown
word

NA

5 AncElePOS The POS for the anchor element NP
6 AncEleRole The role played by the anchor element

in its relationship with the problem
element

Head

7 AncEleType The semantic type associated with the
anchor element

Known-
Concept

8 PrSegSyn-
Rel

The syntactic relation between the
problem and the anchor segment

Modifier-
Head

9 PrSegPOS The POS for the problem segment NP
10 PrSegRole The role played by the problem seg-

ment in its relationship with its anchor
Modifier

11 AncSegPOS The POS for the Anchor Segment Noun
12 AncSegRole The role played by the anchor segment

in its relationship with the problem
segment

Head

13 AncSegType The semantic type associated with the
anchor segment

Known-
Concept

3.2.1.1 Classification Features
To categorize the problem associated with each unknown
word and to derive proper content selection operators for
recommendation, we extract a feature vector containing
thirteen semantic and syntactic features for each unknown
word. The rationale for selecting these features is to estab-
lish a connection between the unknown words and their
context. If the system can understand some words that have
direct relationships with the unknown word, the system may
be able to infer the semantics of the unknown word. Most of
these features are defined based on the following four con-
cepts: problem element, anchor element, problem segment
and anchor segment. A problem element is the basic token
that contains the unknown word. An anchor element is a
syntactic constituent that has a direct relationship with the
problem element in a syntactic tree. For example, if the
problem element is a modifier in a noun phrase, the anchor
element will be the head of that noun phrase; or if the prob-
lem element is a syntactic object, the anchor element will be
the verb of that object. Similarly, a problem segment is the
most specific syntactic constituent that contains the problem
element. The anchor segment is the closest syntactic
constituent of the problem segment. We generally ignore
function words when defining these concepts.

Recommendations

IJCAI-07
1703

In the following example, “show houses in unified school
district”, we assume “unified” is the unknown word. Based
on our definition, the problem element is “unified”, element
anchor is “school district”; problem segment is “in unified
school district”; and anchor segment is “houses”. Table 1
summarizes the definitions of the classification features.

3.2.1.2 Content Selection Operators
In the classification training corpus, after a feature vector is
extracted for each unknown word in a sentence, we also
assign one or more content revision operators for each vec-
tor, indicating proper ways to revise the partial understand-
ing results to formulate the semantics of a recommendation.
To define the set of content selection operators, we analyzed
a set of problematic user queries. Table 2 listed four com-
monly used content revision operators in structured infor-
mation seeking applications like real estate database search.

Name Description Example
Op-
Con-
straint-
Ontology

Replace an unknown
word with constraints
that are compatible
with the word and the
ontology

Replace “unified” in “unified
school district” with all the
school district constraints, e.g.
Pleasantville school district.

Op-
Con-
straint-
Attribute

Replace an unknown
word with constraints
that are compatible
with the current
attribute

Replace “fair” in “Houses with
fair tax” with a constraint on the
house attribute: AnnualTax, e.g.
tax less than $100000

Op-
Attribute-
Ontology

Replace an unknown
word with attributes
that are compatible
with the ontology

Replace “dimension” in “the
dimension of the house” with an
attribute of house based on the
ontology, e.g. square footage.

Op-
Operator-
Ontology

Replace unknown
word with a known
operator

 Replace “preserve” in “preserve
the houses” with a known op-
erator like “save”

3.2.1.3 Classification Results
Our training examples for classification are collected from a
wizard-of-oz (WOZ) user study. In total, we have collected
36 conversation segments and ~500 user requests. Among
these requests, our system detected 187 unknown words.
For each unknown word, a feature vector (described in Ta-
ble 1) was extracted automatically from the interpretation
results. In addition, for each feature vector, we manually
assigned a yes or no tag for every content selection operator
defined in table 2. In total, we have trained four content
selection classifiers. Currently, we use JRip (Witten and
Frank, 2005), a Java implementation of the RIPPER classi-
fier (Cohen, 1998) in our experiment.

Classifier Accuracy Majority classification
OpConstraintOntology 98.4% 81.7%
OpConstraintAttribute 93.6% 83.9%
OpAttributeOntology 91.4% 81.8%
OpOperatorOntology 94.6% 78.6%
Table 3 shows the performance of each classifier based

on ten-fold cross validation. We compare it with the per-

formance of majority-based classifiers in which the classifi-
ers always predict “no”. The results indicate that content
selection can quite reliably help the system in recovering the
semantics of unknown words.

3.2.1.4 Applying Content Selection Operators
If a content selection operator is chosen, it is used to revise
the semantic graph of the original user query. Three knowl-
edge resources are used in this process: the domain ontol-
ogy, the query corpus and the response corpus. For example,
if the operator OpAttributeOntology is selected to revise the
unknown word in “Show the xxx of the houses in Pleasant-
ville”, the system will retrieve all the attributes associated
with the anchor concept “House” from the ontology. For
each retrieved attribute, the system generates one semantic
graph, resulting in many possible recommendations. In ad-
dition to the ontology, both the query corpus and the re-
sponse corpus are also used when applying the other content
selection operators. In the next example, if OpConstraintAt-
tribute is chosen to revise the user query “show houses with
fair tax” in which “fair” is the unknown word, the system
will search both the query corpus and the response corpus to
find all distinct query constraints that use the house attribute
“annual tax”, such as “houses with annual tax below
$10000”. Similarly, for each distinct constraint retrieved,
the system generates one semantic graph.
 After applying content selection operators, the results
contain a set of semantic graphs, each representing the con-
tent of a recommendation. In the following section, we ex-
plain how to generate a sentence that not only conveys the
semantics in the semantic graph faithfully but also is syntac-
tically and lexically consistent with the original user query.

3.2.2 Cascade model for Sentence Generation
 Once the content of a recommendation is determined, it is
sent to the sentence generator to be realized as grammatical
sentences. Here we implemented an instance-based sentence
generator that selects and dynamically composes new sen-
tences from examples in an instance corpus.

One critical issue in recommendation generation is to
adapt a sentence’s surface form to be as similar to the ex-
pressions in the original user input as possible so that it is
easier for a user to identify the changes between them. For
example, when the original user query “Show xxx houses in
Pleasantville with 2000 sq ft.” can not be understood by the
interpreter, it is more desirable if the system recommends
“Show 4 bedroom houses in Pleasantville with 2000 sq ft”
than “Show 2000 sq ft houses with 4 bedrooms in Pleasant-
ville” even though both convey the same semantics.

In the following, we describe an instance-based sentence
generation approach that matches and selects words and
phrases from a cascade of instance corpora so that the sys-
tem can reuse as many expressions similar to the user’s as
possible. We start with a brief introduction on instance-
based sentence generation.

 3.2.2.1 Instance-based sentence generation
In instance-based sentence generation, all the semantic and
syntactic knowledge needed for sentence generation is en-
coded in an instance corpus. Each instance in the corpus is

IJCAI-07
1704

represented as a pair of semantic graph and realization tree.
The semantic graph represents the concepts and relations
conveyed in a sentence and the realization tree represents
how the concepts and relations are realized using words and
phrases. During generation, the input semantic graph from
the content planner is matched against all the semantic
graphs in the corpus and the closest matching one is re-
trieved with its associated realization tree. Moreover, if the
matching is not perfect, based on the difference, a set of
adaptation operators are derived so that new sentences can
be generated by deleting unneeded content from, or adding
new content to the associated realization tree. More details
on instance-based sentence generation can be found in (Pan
and Shaw 2004, Pan and Shaw 2005). In the following, we
focus on the new cascade model which is designed to maxi-
mize the syntactic and lexical consistency between the
original user query and the generated recommendations.

3.2.2.2 Cascade model for instance selection
The essence of instance-based sentence generation is to re-
use as many words, phrases or even the entire sentences in
the instance corpus to convey desired semantics. As a result,
the size and style of the instance corpus can significantly
impact the generation quality. Sufficient coverage ensures
that there always exist proper words or phrases in the in-
stance corpus to convey any given semantics. Using in-
stances similar in style maximizes the chance for reusing
large chunks of the corpus material in a new sentence. The
larger the reused chunks are, the fewer adaptations are re-
quired, and the better the generation quality is.

To balance the needs for good coverage and similar style,
we use three types of instances available in our system: the
current user input, the examples in a query corpus and the
examples in a response corpus. The current user input only
contains one pair of semantic graph and realization tree
automatically derived from the partial interpretation results.
Since the system may make mistakes, it can be incorrect.
However, it is the only source containing the content and
form of the current user query. The query corpus contains
typical queries our system understands. Each request in the
query corpus is manually annotated with a semantic graph
and a realization tree. Style-wise, it is similar to the recom-
mendations to be generated. However, since the size of the
query corpus is small†, to improve the coverage, we also use
the response corpus. The response corpus is designed ini-
tially for response generation. It is clean but with a some-
what different style. For example, query corpus contains
users’ requests for data, while instances in the response cor-
pus are descriptions of query results. Nonetheless, they still
share a significant amount of vocabulary.

In the cascade model, to ensure that the output sentences
convey the desired semantics, instances are only selected
from the two clean sources: the query corpus first, followed
by the response corpus. But, to generate recommendations
as close to the original user query as possible, we adapt the
generation results based on the features extracted from the
user query. Overall, three input features are extracted: the

† There are 330 examples in the query corpus.

realization order, the realization form and the presence of
discourse cue phrases. Table 5 shows the effects of adapta-
tion using these features. In the first example, based on the
interpretation results of Q1, the system knows that in R1 the
house bedroom constraint should come before the bathroom
and the city constraints. It is also aware that the bedroom
and bathroom constraints should be realized as pre-
modifiers instead of post-modifiers. Without taking input
order and form into consideration, however, the system
might generate a recommendation like R2 which is consid-
ered worse than R1. In the next example, assume Q2 and Q3
are two consecutive user queries. Since the system interprets
user query in context, the interpretation results of Q3 is
equivalent to Q3’. Without discourse cue phrase adaptation,
the system will recommend R3 which is less coherent and
context appropriate than R4.

: Show 3 bedroom 2 bathroom houses in xxx cities.
: Show 3 bedroom 2 bathroom houses in cities with less than 1000

people.
In cities with less than 1000 people, show 2 bathroom houses with 3

bedrooms.
 Show 3 bedroom houses
:Just those in xxx cities

Q3’ Show 3 bedroom houses in xxx cities
:Show 3 bedroom houses in cities with less than 1000 people
: Just those in cities with less than 1000 people

3.3 Merging Recommendations
After the retrieval-based and the generation-based recom-
mender produce two sets of recommendations independ-
ently, we merge the results. Currently given the maximum
number of recommendations to display on the recommenda-
tion panel, we take the number of results proportionally
from each recommender. For example, if the maximum
number of recommendations allowed is five, the generation-
based recommender produces eight results, and the re-
trieval-based recommender produces two results, the final
five recommendations contain four recommendations from
the generation-based system, one result from the retrieval-
based system.

4 Evaluations
We perform an evaluation to verify the usefulness of the
proposed approach. Through this evaluation, we want to
gather two results. First, we want to see whether the hybrid
approach can improve recommendation quality over a base-
line system. Second, we want to verify that recommenda-
tions dynamically generated by our approach are valid que-
ries that can be understood by our system. Otherwise, users
may be frustrated due to subsequent rejections of the rec-
ommendations by the interpreter.

In the first evaluation, we use the retrieval-based recom-
mender as the baseline. Based on our previous study (Pan et
al., 2005), systems aided by retrieval-based recommenda-
tion were more effective than the same system without any
recommendations. Overall, users achieved higher task suc-

IJCAI-07
1705

cess rate and also spent less time and fewer turns to com-
plete their tasks. In addition, in their survey, users also re-
ported that the system understood them better and they also
had better idea on what to ask. To verify that the new hybrid
system can perform better than the retrieval-based system,
we collected about 850 unique queries from previous user
study logs (not including the WOZ queries). Among them,
133 sentences contained unknown words. From them we
randomly selected 50 test queries. For each test query, each
system (hybrid or retrieval) generated a maximum of five
recommendations (Top5). After mixing results from both
systems and after redundancy removal, we randomly or-
dered all the recommendations and presented them to two
human judges who had no knowledge about this work. For
each recommendation, we asked them to decide whether the
recommendation is useful for a given user request. A rec-
ommendation is useful if the judge knows how to revise the
unknown words after seeing the recommendation. If a rec-
ommendation was selected by a judge, the approach that
produced the recommendation scored one point. The system
with higher overall score is the one that produced more use-
ful recommendations. In addition, we also let the judges
choose the best recommendation among all the useful ones
(Top1). Table 6 summarizes the results. Based on the re-
sults, among the five recommendations produced for each
user query, the hybrid approach produces 1.76 useful rec-
ommendations on average versus 1.16 by the retrieval-based
approach. The difference is statistically significant using
pair-wised t test. The hybrid system also performed signifi-
cantly better than the retrieval-based system based on the
Top1 evaluation result (0.56 versus 0.29). The difference is
also statistically significant.

Approach Mean-Top5 Significant-
Top5

Mean-
Top1

Significant-
Top1

Hybrid 1.76 0.56
Retrieval 1.16

<0.001 0.29

<0.001

To verify whether the recommendations dynamically gener-
ated can be understood by the interpreter, we run all the
generated recommendations through the interpreter. Our
results show that 100% of them can be interpreted success-
fully. Overall, our evaluation indicates that the hybrid re-
commender not only improves the query recommendation
quality by generating recommendations beyond the scope of
pre-stored examples but also maintains the same level of
query interpretability as the retrieval-based approach.

5 Conclusions
In this work, we designed and implemented an approach to
recommend context appropriate query alternatives when a
user’s query cannot be understood by the system. We de-
veloped a hybrid recommendation strategy that extends the
retrieval-based query selection with query generation. It
provides a solution to one major problem in retrieval-based
recommendation: scalability. This makes query recommen-
dation more feasible for practical conversation applications.

Moreover, since our approach dynamically generates rec-
ommendations on the fly, this makes it possible for the sys-
tem to adapt the surface form of the recommendations so
that they are lexically and syntactically consistent with the
original user query. Our evaluation results confirmed the
effectiveness of this approach.

References
S. Pan, S. Shen, M. Zhou, and K. Houck. 2005. Two-way

adaptation for robust input interpretation in practical
multimodal conversation systems. In Proc. of IUI, 35-42.

H. Hastie, M. Johnston and P. Ehlen. 2002. Context-
sensitive help for multimodal dialogue. In Proc. of the
International Conf. on Multimodal Interfaces.

A. Stein. 1998. Active help and user guidance in a multimo-
dal information system: A usability study, In Report
ABIS-98, 87-98, U.J. Timm and M Rössel (eds.).

C. Kamm, D. Litman and M. Walker. 1998. From novice to
expert: the effect of tutorials on user expertise with spo-
ken dialogue Systems. In Proc. of ICSLP, 1211-1214.

M. Walker, J. Fromer, G. Di Fabbrizio, G. Mestel and D.
Hindle. 1998. What can I say? Evaluating a spoken lan-
guage interface to Email. In Proc. of CHI, 582-589.

R. Barzilary and M. Lapata. 2005. Collective content selection
for concept-to-text generation. In Proc. of HLT/EMNLP.

P. Duboue and K. McKeown. 2003. Statistical Acquisition
of Content Selection Rules for Natural language genera-
tion. In Proc. of EMNLP

K. McKeown, S. Pan, J. Shaw, D. Jordan and B. Allen.
1997. Language generation for multimedia healthcare
briefings. In Proc. of ANLP, 277-282.

M. Walker, O. Rambow and M. Rogati. 2002. Training a
sentence planner for spoken dialogue using boosting,
Computer Speech and Language, 16 (3):409-433.

I. Langkilde. 2000. Forest-based statistical sentence genera-
tion. In Proc. of the NAACL.

J. Shaw. 1998. Clause aggregation using linguistic knowl-
edge. In Proc. of the INLG, 138-147.

S. Pan and J. Shaw.2004. SEGUE: A hybrid case-based surface
natural language generator. In Proc. of INLG, 130-140.

S. Pan and J. Shaw 2005. Instance-based Sentence Bound-
ary Determination by Optimization for Natural Lan-
guage Generation. In Proc. Of ACL. 565-572

W. Cohen. 1995. Fast effective rule induction. In Proc. of
the International Conf. on Machine Learning 115-123.

I. Witten and E. Frank. 2005. Data mining: practical ma-
chine learning tools and techniques. Morgan Kaufmann.

Google. 2006. Google spell check.
http://www.google.com/features.html#spell

M. Zhou, K. Houck, S. Pan, J. Shaw, V. Aggarwal, Z. Wen:
Enabling context-sensitive information seeking. In Proc.
of Intelligent User Interfaces 2006. 116-123

IJCAI-07
1706

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

