
Abstract 
In this paper, we address a critical problem in con-
versation systems: limited input interpretation ca-
pabilities. When an interpretation error occurs, us-
ers often get stuck and cannot recover due to a lack 
of guidance from the system. To solve this prob-
lem, we present a hybrid natural language query 
recommendation framework that combines natural 
language generation with query retrieval. When re-
ceiving a problematic user query, our system dy-
namically recommends valid queries that are most 
relevant to the current user request so that the user 
can revise his request accordingly. Compared with 
existing methods, our approach offers two main 
contributions: first, improving query recommenda-
tion quality by combining query generation with 
query retrieval; second, adapting generated rec-
ommendations dynamically so that they are syntac-
tically and lexically consistent with the original 
user input. Our evaluation results demonstrate the 
effectiveness of this approach.   
 

1 Introduction 
Mixed initiative conversation systems allow users to interact 
with computers using speech or natural language. However, 
these systems have not been used widely in practice mainly 
due to their limited input understanding capabilities. When 
interpretation errors occur, a user frequently gets stuck and 
cannot recover. Figure 1 shows an example in which the 
user cannot recover from repeated interpretation errors. 
  

U1: Show the mean home price and household income of Pleasantville. 
S1: Sorry, I don’t understand you. Please rephrase your request. 
(S1’: Sorry, I don’t understand. Do you mean “Show the average home price 
and household income of Pleasantville”) 
U2: Show the median house price and household income of Pleasantville. 
S2: Sorry. I don’t understand. Please rephrase your question.  
U3 :Show the mean home price and the mean household income of Pleas-
antville 
S3: Sorry, I still don’t understand …. 

:  An Example

 
                                                 

* This work was conducted when the author was at IBM 

This simple dialog demonstrates two typical problems in 
dialog systems: limited input understanding capability and a 
lack of proper guidance when errors occur. Limited input 
understanding capability is what got the user into trouble 
originally. In U1, the system was not able to understand 
“mean”. Moreover, from U2-U3, without any guidance from 
the system, the user tried twice to recover from this problem 
without much success. Instead, if the system had responded 
with S1’, it would be much easier for the user to rephrase 
successfully.     

To enhance a user’s experience and improve the robust-
ness of human-computer interaction, most existing ap-
proaches focus on improving a system’s interpretation ca-
pability directly. Nonetheless, such improvements may still 
be limited since they would never cover the entire range of 
user expressions for any non-trivial application. Alterna-
tively, we propose to improve the robustness of system-user 
interaction by providing proper guidance on what the sys-
tem can do so that users know how to adapt their queries to 
those within the system’s capability. Figure 2 summarizes 
our approach. Assume U contains all the possible user ex-
pressions in an application and S has all the expressions a 
system understands. Since S is usually a subset of U, when a 
user query u1 is outside of S, it will cause interpretation 
errors. When this occurs, our system will provide proper 
guidance on what the system can do so that users know how 
to revise u1 to s1.  
 
 
 
 
 
 
 
 
 
 
 

 To make a system’s interpretation capability apparent to 
a user in context, we propose a hybrid query recommenda-
tion framework in which we combine a retrieval-based ap-
proach with dynamic query generation. As a result, the hy-
brid system not only recommends queries based on the ex-
amples from a query corpus. It also dynamically composes 
new queries so that it can recommend queries that are close 
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to the user’s original intent, which might be beyond the 
scope of pre-stored examples.  
     Our approach is embodied in an intelligent multimodal 
conversation system supporting four different applications 
including a real estate application that helps potential buyers 
to search for residential properties (Zhou et al., 2006). In 
this system, users may enter their queries using multiple 
input modalities such as speech, text, and GUI.  In this 
work, we focus on queries typed in as text. To respond to a 
user’s request, the system dynamically generates a multime-
dia presentation that includes automatically generated spo-
ken utterances and graphics. When interpretation errors oc-
cur, the system dynamically generates several recommenda-
tions so that the user can select one of them to replace the 
original query or make further revisions if desired. 

In the rest of the paper, after a brief discussion of related 
work, we explain the technical details of our approach. We 
then present our evaluation results. 

 

2 Related Work 
 Previously, many approaches have been proposed to make a 
conversation system’s capability apparent to users, such as 
tutorials or context-sensitive help. Tutorials (Kamm et al., 
1998) are often too brief to cover all valid queries. Even if 
they manage to do so, users may not be able to remember 
and apply them to the current task. Alternatively, context-
sensitive help systems (Hastie et al., 2002, Stein, 1998) pre-
sent relevant examples in context. However, existing ap-
proaches for context-sensitive help have limitations. For 
example, finite state machine-based approaches (Walker et 
al, 1998) do not scale well. Depending on the granularity of 
the predicted classes, a decision tree-based help (Hastie et 
al., 2002) may be too coarse to provide guidance on the ex-
act wording. Moreover, retrieval-based recommendation has 
been used in applications like spelling recommendations in 
Google spell check (Google, 2006). We have also used re-
trieval-based query recommendation in conversation appli-
cations (Pan et al., 2005). However, depending on the cov-
erage of the examples in a system, the most relevant pre-
stored example may not be close enough to be helpful. In 
contrast, the approach we propose here combines retrieval-
based approach with dynamic query generation to provide 
scalable, fine-grained context-sensitive help based on the 
current user query. 

Our work on dynamic recommendation generation also 
offers several contributions to the area of natural language 
generation. For example, traditionally, content selection is 
done either based on domain heuristics (McKeown et al., 
1997) or content models learned from a corpus (Duboue and 
McKeown. 2003, Barzilay and Lapata, 2005). In contrast, 
our content selection is done based on the analysis of the 
current user query as well as the categorization of an inter-
pretation error. For sentence generation, in addition to the 
grammaticality of generated sentences (Shaw. 1998, Lang-
kilde. 2000, Walker et al., 2002) we also focus on using a 
cascade model to minimize the unnecessary difference be-
tween the original user query and system’s recommenda-
tions.  

In the following, we first explain the hybrid query rec-
ommendation approach, and then provide evaluation results. 

 

3 Hybrid Query Recommendation    
To achieve robust, scalable, fine-grained query recommen-
dation, we extend our previous work on retrieval-based 
query recommendation (Pan et al., 2005) with dynamic 
query generation. There are two independent recommenders 
in our system: a retrieval-based recommender and a genera-
tion-based recommender. The retrieval-based recommender 
produces recommendations by selecting from pre-stored 
examples while the generation-based recommender dynami-
cally constructs recommendations based on the current user 
input. After combining the results from both, the hybrid 
recommender is able to recommend queries beyond the 
scope of the pre-stored examples. In the following, to ex-
plain the hybrid approach, first we summarize the retrieval-
based approach, and then we focus on the new generation-
based method. 

3.1 Retrieval-based Recommendation 
The main knowledge in retrieval-based recommendation is a 
query corpus containing typical query examples a system 
can understand. For each example in the corpus, the system 
stores not only the query itself, but also its semantics pro-
duced by a semantic interpreter as well as contextual fea-
tures derived from the conversation history. When a prob-
lematic user query is encountered, the system searches for 
the most relevant examples from the corpus. The relevance 
of an example to a user query is defined as the weighted 
combination of three similarity scores: the string similarity 
score, the semantic similarity score and the context similar-
ity score. Based on the total relevance score for each exam-
ple in the corpus, the system will recommend the top N que-
ries to the user. 
 This approach works effectively when the system stores 
almost all the valid query combinations in the query corpus. 
However, in any non-trivial conversation system, the num-
ber of queries a system can understand is huge due to com-
binatorial explosion. For example, in a real estate applica-
tion in which there are 40 attributes associated with a house, 
a system would need to store at least 240 examples just to 
cover queries related to searching for a house using any 
combination of the attributes as search constraints. Thus, it 
is often impossible to collect and pre-store all the queries 
ahead of time. To solve this problem, we propose to dy-
namically compose new queries based on the current user 
request so that the system can recommend queries beyond 
the scope of pre-stored examples. 

3.2 Generation-based Recommendation 
Dynamic query generation offers a significant advantage 
over the retrieval-based approach because the system is able 
to generate a large number of queries based on a small set of 
query examples.  In general, it is difficult to cover all the 
combinations of concepts and attributes in a corpus. It is not 
difficult however, to cover each concept or attribute in at 
least one of the examples. In the following example, assume 
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there are seven concepts {A, B, C, D, E, F, G} and four 
query examples {ABE, CD, EFG, DFG}. When receiving a 
new user inquiry “ABDF ” in which “ ” is unknown to 
the system, a retrieval-based recommender may not be able 
to produce any good recommendations because none of the 
existing examples is close enough to the user query. Using 
generation-based recommendation, however, the system can 
produce a query more similar to the user’s problematic 
query.  For example, based on the partially understood re-
sults and the system’s guess that the meaning of “ ” is “G”, 
the system may decide to generate a sentence conveying 
“ABDFG” which is closer to the user query than any of the 
existing examples.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To explain the generation-based recommendation method 
in detail, let’s follow the flow in Figure 3. When a problem-
atic user query, e.g. with unknown words, is received, the 
interpreter produces an error code plus partial interpretation 
results in the form of an incomplete semantic graph. From 
the user query and the partial interpretation results, the fea-
ture extractor automatically derives a set of syntactic and 
semantic features characterizing the unknown word in the 
user query. Based on the extracted features and annotated 
examples in the problematic query corpus, the classifier 
selects one or more content selection operators.  Then the 
content selector revises the partial semantic graph using the 
selected operators to formulate the content of a recommen-
dation. Finally, the sentence generator takes the revised 
semantic graphs and produces grammatical sentences as the 
recommendations. The following section explains this com-
ponent in detail, starting with classification-based content 
selection.  

3.2.1 Classification-based Content Selection 
Content selection is critical in recommendation generation.  
It is an attempt for the system to restore the semantics of 
problematic user inputs based on the system’s knowledge 
about the application domain, the current user input, and the 
conversation context. Depending on the type of interpreta-
tion errors, the system may add new content or remove ex-
isting content to produce a recommendation. Currently, we 
employ a classification-based approach to categorize the 

interpretation problems and to derive proper content selec-
tion operators. Since most problems that an interpreter can 
reliably identify involve unknown words, in this study, we 
focus on unknown word classification.    

In the next section, we describe how to categorize each 
unknown word using a set of semantic and syntactic fea-
tures.  Later we explain how to build multiple classifiers to 
select appropriate content selection operators.  

 

No Name Definition Example 
1 EleSynRel 

  
The relationship between the problem 
element and the element anchor 

Modifier-
Head 

2 PrElePOS The Part-of-Speech (POS) of the 
problem element 

Adjective 

3 PrEleRole The role played by the problem ele-
ment in its relationship with its anchor 

Modifier 

4 PrEle 
Classification 

Further classification for  the unknown 
word  

NA 

5 AncElePOS The POS for the anchor element NP 
6 AncEleRole The role played by the anchor element 

in its relationship with  the problem 
element 

Head 

7 AncEleType The semantic type associated with the 
anchor element 

Known-
Concept 

8 PrSegSyn-
Rel 
  

The syntactic relation between the 
problem and the anchor segment 

Modifier-
Head 

9 PrSegPOS The POS for the problem  segment NP 
10 PrSegRole The role played by the problem seg-

ment in its relationship with its anchor 
Modifier 

11 AncSegPOS The POS for the Anchor Segment Noun 
12 AncSegRole The role played by the anchor segment 

in its relationship with the problem 
segment 

Head 

13 AncSegType The semantic type associated with the 
anchor segment 

Known-
Concept 

3.2.1.1 Classification Features 
To categorize the problem associated with each unknown 
word and to derive proper content selection operators for 
recommendation, we extract a feature vector containing 
thirteen semantic and syntactic features for each unknown 
word. The rationale for selecting these features is to estab-
lish a connection between the unknown words and their 
context. If the system can understand some words that have 
direct relationships with the unknown word, the system may 
be able to infer the semantics of the unknown word. Most of 
these features are defined based on the following four con-
cepts: problem element, anchor element, problem segment 
and anchor segment. A problem element is the basic token 
that contains the unknown word. An anchor element is a 
syntactic constituent that has a direct relationship with the 
problem element in a syntactic tree. For example, if the 
problem element is a modifier in a noun phrase, the anchor 
element will be the head of that noun phrase; or if the prob-
lem element is a syntactic object, the anchor element will be 
the verb of that object. Similarly, a problem segment is the 
most specific syntactic constituent that contains the problem 
element. The anchor segment is the closest syntactic 
constituent of the problem segment. We generally ignore 
function words when defining these concepts.  

Recommendations
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In the following example, “show houses in unified school 
district”, we assume “unified” is the unknown word. Based 
on our definition, the problem element is “unified”, element 
anchor is “school district”; problem segment is “in unified 
school district”; and anchor segment is “houses”.  Table 1 
summarizes the definitions of the classification features.  

3.2.1.2 Content Selection Operators 
In the classification training corpus, after a feature vector is 
extracted for each unknown word in a sentence, we also 
assign one or more content revision operators for each vec-
tor, indicating proper ways to revise the partial understand-
ing results to formulate the semantics of a recommendation. 
To define the set of content selection operators, we analyzed 
a set of problematic user queries. Table 2 listed four com-
monly used content revision operators in structured infor-
mation seeking applications like real estate database search. 
 

Name Description Example 
Op-
Con-
straint-
Ontology 

Replace an unknown 
word with constraints 
that are  compatible 
with the word and the 
ontology 

Replace “unified” in “unified 
school district” with all the 
school district constraints, e.g.  
Pleasantville school district. 

Op- 
Con-
straint-
Attribute 

Replace an unknown 
word with constraints 
that are compatible 
with the current 
attribute 

Replace “fair” in “Houses with 
fair tax” with a constraint on the 
house attribute: AnnualTax, e.g. 
tax less than $100000 

Op- 
Attribute-
Ontology 

Replace an unknown 
word with attributes  
that are compatible 
with the ontology 

Replace “dimension” in “the 
dimension of the house” with an 
attribute of house  based on the 
ontology, e.g. square footage. 

Op- 
Operator- 
Ontology 

Replace unknown 
word with a known 
operator 

 Replace “preserve” in “preserve 
the houses” with  a known op-
erator like “save” 

3.2.1.3 Classification Results   
Our training examples for classification are collected from a 
wizard-of-oz (WOZ) user study. In total, we have collected 
36 conversation segments and ~500 user requests. Among 
these requests, our system detected 187 unknown words. 
For each unknown word, a feature vector (described in Ta-
ble 1) was extracted automatically from the interpretation 
results. In addition, for each feature vector, we manually 
assigned a yes or no tag for every content selection operator 
defined in table 2.  In total, we have trained four content 
selection classifiers. Currently, we use JRip (Witten and 
Frank, 2005), a Java implementation of the RIPPER classi-
fier (Cohen, 1998) in our experiment.  
 

Classifier Accuracy Majority classification 
OpConstraintOntology 98.4% 81.7% 
OpConstraintAttribute 93.6% 83.9% 
OpAttributeOntology 91.4% 81.8% 
OpOperatorOntology 94.6% 78.6% 
Table 3 shows the performance of each classifier based 

on ten-fold cross validation. We compare it with the per-

formance of majority-based classifiers in which the classifi-
ers always predict “no”. The results indicate that content 
selection can quite reliably help the system in recovering the 
semantics of unknown words. 

3.2.1.4 Applying Content Selection Operators 
If a content selection operator is chosen, it is used to revise 
the semantic graph of the original user query. Three knowl-
edge resources are used in this process: the domain ontol-
ogy, the query corpus and the response corpus. For example, 
if the operator OpAttributeOntology is selected to revise the 
unknown word in “Show the xxx of the houses in Pleasant-
ville”, the system will retrieve all the attributes associated 
with the anchor concept “House” from the ontology.  For 
each retrieved attribute, the system generates one semantic 
graph, resulting in many possible recommendations.  In ad-
dition to the ontology, both the query corpus and the re-
sponse corpus are also used when applying the other content 
selection operators. In the next example, if OpConstraintAt-
tribute is chosen to revise the user query “show houses with 
fair tax” in which “fair” is the unknown word, the system 
will search both the query corpus and the response corpus to 
find all distinct query constraints that use the house attribute 
“annual tax”, such as “houses with annual tax below 
$10000”. Similarly, for each distinct constraint retrieved, 
the system generates one semantic graph.  
 After applying content selection operators, the results 
contain a set of semantic graphs, each representing the con-
tent of a recommendation. In the following section, we ex-
plain how to generate a sentence that not only conveys the 
semantics in the semantic graph faithfully but also is syntac-
tically and lexically consistent with the original user query.  

3.2.2 Cascade model for Sentence Generation 
 Once the content of a recommendation is determined, it is 
sent to the sentence generator to be realized as grammatical 
sentences. Here we implemented an instance-based sentence 
generator that selects and dynamically composes new sen-
tences from examples in an instance corpus.  

One critical issue in recommendation generation is to 
adapt a sentence’s surface form to be as similar to the ex-
pressions in the original user input as possible so that it is 
easier for a user to identify the changes between them. For 
example, when the original user query “Show xxx houses in 
Pleasantville with 2000 sq ft.” can not be understood by the 
interpreter, it is more desirable if the system recommends 
“Show 4 bedroom houses in Pleasantville with 2000 sq ft” 
than “Show 2000 sq ft houses with 4 bedrooms in Pleasant-
ville” even though both convey the same semantics. 

In the following, we describe an instance-based sentence 
generation approach that matches and selects words and 
phrases from a cascade of instance corpora so that the sys-
tem can reuse as many expressions similar to the user’s as 
possible. We start with a brief introduction on instance-
based sentence generation. 

 3.2.2.1 Instance-based sentence generation 
In instance-based sentence generation, all the semantic and 
syntactic knowledge needed for sentence generation is en-
coded in an instance corpus.  Each instance in the corpus is 
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represented as a pair of semantic graph and realization tree. 
The semantic graph represents the concepts and relations 
conveyed in a sentence and the realization tree represents 
how the concepts and relations are realized using words and 
phrases. During generation, the input semantic graph from 
the content planner is matched against all the semantic 
graphs in the corpus and the closest matching one is re-
trieved with its associated realization tree. Moreover, if the 
matching is not perfect, based on the difference, a set of 
adaptation operators are derived so that new sentences can 
be generated by deleting unneeded content from, or adding 
new content to the associated realization tree. More details 
on instance-based sentence generation can be found in (Pan 
and Shaw 2004, Pan and Shaw 2005). In the following, we 
focus on the new cascade model which is designed to maxi-
mize the syntactic and lexical consistency between the 
original user query and the generated recommendations.  

3.2.2.2 Cascade model for instance selection 
The essence of instance-based sentence generation is to re-
use as many words, phrases or even the entire sentences in 
the instance corpus to convey desired semantics. As a result, 
the size and style of the instance corpus can significantly 
impact the generation quality. Sufficient coverage ensures 
that there always exist proper words or phrases in the in-
stance corpus to convey any given semantics. Using in-
stances similar in style maximizes the chance for reusing 
large chunks of the corpus material in a new sentence. The 
larger the reused chunks are, the fewer adaptations are re-
quired, and the better the generation quality is.  

To balance the needs for good coverage and similar style, 
we use three types of instances available in our system: the 
current user input, the examples in a query corpus and the 
examples in a response corpus. The current user input only 
contains one pair of semantic graph and realization tree 
automatically derived from the partial interpretation results. 
Since the system may make mistakes, it can be incorrect. 
However, it is the only source containing the content and 
form of the current user query. The query corpus contains 
typical queries our system understands. Each request in the 
query corpus is manually annotated with a semantic graph 
and a realization tree. Style-wise, it is similar to the recom-
mendations to be generated. However, since the size of the 
query corpus is small†, to improve the coverage, we also use 
the response corpus. The response corpus is designed ini-
tially for response generation. It is clean but with a some-
what different style. For example, query corpus contains 
users’ requests for data, while instances in the response cor-
pus are descriptions of query results. Nonetheless, they still 
share a significant amount of vocabulary.  

In the cascade model, to ensure that the output sentences 
convey the desired semantics, instances are only selected 
from the two clean sources: the query corpus first, followed 
by the response corpus.  But, to generate recommendations 
as close to the original user query as possible, we adapt the 
generation results based on the features extracted from the 
user query.  Overall, three input features are extracted: the 

                                                 
† There are 330 examples in the query corpus.    

realization order, the realization form and the presence of 
discourse cue phrases. Table 5 shows the effects of adapta-
tion using these features. In the first example, based on the 
interpretation results of Q1, the system knows that in R1 the 
house bedroom constraint should come before the bathroom 
and the city constraints. It is also aware that the bedroom 
and bathroom constraints should be realized as pre-
modifiers instead of post-modifiers. Without taking input 
order and form into consideration, however, the system 
might generate a recommendation like R2 which is consid-
ered worse than R1. In the next example, assume Q2 and Q3 
are two consecutive user queries. Since the system interprets 
user query in context, the interpretation results of Q3 is 
equivalent to Q3’. Without discourse cue phrase adaptation, 
the system will recommend R3 which is less coherent and 
context appropriate than R4.  
 

: Show 3 bedroom 2 bathroom houses in xxx cities. 
: Show 3 bedroom 2 bathroom houses in cities with less than 1000 

people. 
In cities with less than 1000 people, show 2 bathroom houses with 3 

bedrooms. 
 Show 3 bedroom houses  
:Just those in xxx cities 

Q3’ Show 3 bedroom houses in xxx cities 
:Show 3 bedroom houses in cities with less than 1000 people  
: Just those in cities with less than 1000 people 

3.3 Merging Recommendations 
After the retrieval-based and the generation-based recom-
mender produce two sets of recommendations independ-
ently, we merge the results. Currently given the maximum 
number of recommendations to display on the recommenda-
tion panel, we take the number of results proportionally 
from each recommender. For example, if the maximum 
number of recommendations allowed is five, the generation-
based recommender produces eight results, and the re-
trieval-based recommender produces two results, the final 
five recommendations contain four recommendations from 
the generation-based system, one result from the retrieval-
based system.   
 

4 Evaluations 
We perform an evaluation to verify the usefulness of the 
proposed approach. Through this evaluation, we want to 
gather two results. First, we want to see whether the hybrid 
approach can improve recommendation quality over a base-
line system. Second, we want to verify that recommenda-
tions dynamically generated by our approach are valid que-
ries that can be understood by our system. Otherwise, users 
may be frustrated due to subsequent rejections of the rec-
ommendations by the interpreter.  

In the first evaluation, we use the retrieval-based recom-
mender as the baseline. Based on our previous study (Pan et 
al., 2005), systems aided by retrieval-based recommenda-
tion were more effective than the same system without any 
recommendations. Overall, users achieved higher task suc-
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cess rate and also spent less time and fewer turns to com-
plete their tasks. In addition, in their survey, users also re-
ported that the system understood them better and they also 
had better idea on what to ask. To verify that the new hybrid 
system can perform better than the retrieval-based system, 
we collected about 850 unique queries from previous user 
study logs (not including the WOZ queries). Among them, 
133 sentences contained unknown words. From them we 
randomly selected 50 test queries. For each test query, each 
system (hybrid or retrieval) generated a maximum of five 
recommendations (Top5). After mixing results from both 
systems and after redundancy removal, we randomly or-
dered all the recommendations and presented them to two 
human judges who had no knowledge about this work. For 
each recommendation, we asked them to decide whether the 
recommendation is useful for a given user request. A rec-
ommendation is useful if the judge knows how to revise the 
unknown words after seeing the recommendation. If a rec-
ommendation was selected by a judge, the approach that 
produced the recommendation scored one point. The system 
with higher overall score is the one that produced more use-
ful recommendations. In addition, we also let the judges 
choose the best recommendation among all the useful ones 
(Top1). Table 6 summarizes the results. Based on the re-
sults, among the five recommendations produced for each 
user query, the hybrid approach produces 1.76 useful rec-
ommendations on average versus 1.16 by the retrieval-based 
approach. The difference is statistically significant using 
pair-wised t test. The hybrid system also performed signifi-
cantly better than the retrieval-based system based on the 
Top1 evaluation result (0.56 versus 0.29). The difference is 
also statistically significant.   

 

Approach Mean-Top5 Significant- 
Top5 

Mean-
Top1 

Significant- 
Top1 

Hybrid 1.76 0.56 
Retrieval 1.16 

 
<0.001 0.29 

 
<0.001 

 
To verify whether the recommendations dynamically gener-
ated can be understood by the interpreter, we run all the 
generated recommendations through the interpreter. Our 
results show that 100% of them can be interpreted success-
fully.  Overall, our evaluation indicates that the hybrid re-
commender not only improves the query recommendation 
quality by generating recommendations beyond the scope of 
pre-stored examples but also maintains the same level of 
query interpretability as the retrieval-based approach. 
 

5 Conclusions 
In this work, we designed and implemented an approach to 
recommend context appropriate query alternatives when a 
user’s query cannot be understood by the system.  We de-
veloped a hybrid recommendation strategy that extends the 
retrieval-based query selection with query generation. It 
provides a solution to one major problem in retrieval-based 
recommendation: scalability. This makes query recommen-
dation more feasible for practical conversation applications. 

Moreover, since our approach dynamically generates rec-
ommendations on the fly, this makes it possible for the sys-
tem to adapt the surface form of the recommendations so 
that they are lexically and syntactically consistent with the 
original user query. Our evaluation results confirmed the 
effectiveness of this approach.   
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