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Abstract

As any other problem solving task that employs
search, Al Planning needs heuristics to efficiently
guide the problem-space exploration. Machine
learning (ML) provides several techniques for au-
tomatically acquiring those heuristics. Usually, a
planner solves a problem, and a ML technique gen-
erates knowledge from the search episode in terms
of complete plans (macro-operators or cases), or
heuristics (also named control knowledge in plan-
ning). In this paper, we present a novel way of
generating planning heuristics: we learn heuristics
in one planner and transfer them to another plan-
ner. This approach is based on the fact that dif-
ferent planners employ different search bias. We
want to extract knowledge from the search per-
formed by one planner and use the learned knowl-
edge on another planner that uses a different search
bias. The goal is to improve the efficiency of the
second planner by capturing regularities of the do-
main that it would not capture by itself due to
its bias. We employ a deductive learning method
(EBL) that is able to automatically acquire control
knowledge by generating bounded explanations of
the problem-solving episodes in a Graphplan-based
planner. Then, we transform the learned knowledge
so that it can be used by a bidirectional planner.

1 Introduction

Planning can be described as a problem-solving task that
takes as input a domain theory (a set of states and operators)
and a problem (initial state and set of goals) and tries to ob-
tain a plan (a set of operators and a partial order of execution
among them) such that, when executed, this plan transforms
the initial state into a state where all the goals are achieved.
Planning has been shown to be PSPACE-complete [3]. There-
fore, redefining the domain theory and/or defining heuristics
for planning is necessary if we want to obtain solutions to real
world problems efficiently. One way to define these heuristics
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is by means of machine learning. ML techniques applied to
planning range from macro-operators acquisition, case-based
reasoning, rewrite rules acquisition, generalized policies, de-
ductive approaches of learning heuristics (EBL), learning do-
main models, to inductive approaches (based on ILP) (see [10]
for a detailed account).

Despite the current advance in planning algorithms and
techniques, there is no universally superior strategy for plan-
ning in all planning problems and domains. Instead of imple-
menting an Universal Optimal Planner, we propose to obtain
good domain-dependent heuristics by using ML and different
planning techniques. That is, to learn control knowledge for
each domain from the planning paradigms that behave well
in this domain. In the future, this could lead to the creation of
a domain-dependent control-knowledge repository that could
be integrated with the domain descriptions and used by any
planner. This implies the definition of a representation lan-
guage or extension to the standard PDDL3.0, compatible both
with the different learning systems that obtain heuristics, and
also with the planners that use the learned heuristics.

In this paper we describe a first step in this direction by
studying the possibility of using heuristics learned on one
specific planner for improving the performance of another
planner that has different problem-solving biases. Although
each planner uses its own strategy to search for solutions,
some of them share some common decision points, like, in
the case of backward-chaining planners, what operator to
choose for solving a specific goal or what goal to select
next. Therefore, learned knowledge on some type of de-
cision can potentially be transferred to make decisions of
the same type on another planner. In particular, we have
studied control knowledge transfer between two backward-
chaining planners: from a Graphplan-based planner, TGP [7],
to a state-space planner, IPSS, based on PRODIGY [9]. We
have used PRODIGY given that it can handle heuristics rep-
resented in a declarative language. Heuristics are defined as
a set of control rules that specify how to make decisions in
the search tree. This language becomes our starting heuristic
representation language. Our goal is to automatically gen-
erate these control rules by applying ML in TGP and then
translate them into IPSS control-knowledge description lan-
guage. We have implemented a deductive learning method
to acquire control knowledge by generating bounded expla-
nations of the problem-solving episodes on TGP. The learn-
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ing approach builds on HAMLET [2], an inductive-deductive
system that learns control knowledge in the form of control
rules in PRODIGY, but only on its deductive component, that
is based on EBL [6].

As far as we know, our approach is the first one that is able
to transfer learned knowledge between two planning tech-
niques. However, transfer learning has been successfully ap-
plied in other frameworks. For instance, in Reinforcement
Learning, macro-actions or options obtained in a learning task
can be used to improve future learning processes. The knowl-
edge transferred can range from value functions [8] to com-
plete policies [5].

The paper is organized as follows. Next section provides
background on the planning techniques involved. Section 3
describes the implemented learning system and the learned
control rules. Section 4 describes the translation of the TGP
learned rules to be used in IPSS. Section 5 shows some ex-
perimental results. Finally, conclusions are drawn.

2 Planning models and techniques

In this section we first describe an unified planning model
for learning. Then, we describe the planners IPSS and TGP in
terms of that unified model. Finally, we describe our proposal
to transfer control knowledge from TGP to IPSS.

2.1 Unified planning model for learning

In order to transfer heuristics from one planner to another, we
needed to (re)define planning techniques in terms of a unified
model, that accounts for the important aspects of planning
from a perspective of learning and using control knowledge.
On the base level, we have the domain problem-space P?
defined by (modified with respect to [1] and focusing only
on deterministic planning without costs):

e adiscrete and finite state space S d
e an initial state sg € 9,

e a set of goals G?, such that they define a set of non-
empty terminal states as the ones in which all of them
are true 59 = {s¢ € S| G C s},

e a set of non-instantiated actions A%, and a set of instan-
tiated actions Aﬁ, and

e a function mapping non-terminal states s¢ and instanti-
ated actions aZ into a state F'¢(a?, s%) € S%.

We assume that both A? and F?(a?, s?) are non-empty.
On top of this problem space, each planner searches in what
we will call meta problem-space, P". Thus, for our pur-
poses, we define the components of this problem space as:

e a discrete and finite set of states, S™: we will call each
state s € S™ a meta-state. Meta-states are planner
dependent and include all the knowledge that the plan-
ner needs for making decisions during its search process.
For forward-chaining planners each meta-state s™ will
contain only a state s¢ of the domain problem-space P?.
In the case of backward-chaining planners, as we will
see later, they can include, for instance, the current state
s, the goal the planner is working on g¢ € G, or a set
of assignments of actions to goals

e an initial meta-state, sg* € S™
e a set of non-empty terminal states S7 C S™

e a set of search operators A", such as “apply an instan-
tiated action a € A? to the current state s2”, or “select
an instantiated action a € A? for achieving a given goal
g?”. These operators will be instantiated by bounding

their variables (e.g. which action to apply), A™

e a function mapping non-terminal meta-states s™ and in-
stantiated operators a}" into a meta-state F'™(a™, s™) €
S’!n

From a perspective of heuristic acquisition, the key issue
consists of learning how to select instantiated operators of the
meta problem-space given each meta-state. That is, the goal
will be to learn functions that map a meta-state s”" into a set
of instantiated search operators: H(s,,) C A7'. This is due
to the fact that the decisions made by the planner (branching)
that we would like to guide are precisely on what instanti-
ated search operator to apply at each meta-state. Thus, they
constitute the learning points, from our perspective. In this
paper, we learn functions composed of a set of control rules.
Each rule will have the format: if conditions (s™)
then select A7'. That is, if certain conditions on the
current meta-state hold, then the planner should apply the cor-
responding instantiated search operator.

2.2 Ipss planner

Ipss is an integrated tool for planning and scheduling that
provides sound plans with temporal information (if run in
integrated-scheduling mode). The planning component is a
nonlinear planning system that follows a means-ends analy-
sis (see [9] for details). It performs a kind of bidirectional
depth-first search (subgoaling from the goals, and executing
operators from the initial state), combined with a branch-
and-bound technique when dealing with quality metrics. The
planner is integrated with a constraints-based scheduler that
reasons about time and resource constraints.

In terms of the unified model, it can be described as:

e each meta-state s™ is a tuple {s*,G%, L, g%, a?, aZ, P}
where s¢ is the current domain state, G¢ is the set of
pending (open) goals, L is a set of assignments of in-
stantiated actions to goals, g% is the goal in which the
planner is working on, a? is an action that the planner
has selected for achieving g¢, a¢ is an instantiated ac-
tion that the planner has selected for achieving ¢g¢, and
P is the current plan for solving the problem

e the initial meta-state, sJ* = {s¢,G%,,,,,}

e a terminal state will be of the form s =
{sd, ,Lr,,,, P} such that G¢ C s, Ly will be the
causal links between goals and instantiated actions, and
P is the plan

o the set of search operators A™ is composed of (given the
current meta-state {s%, G%, L, g%, a%, aZ, P}): “select a
goal g? € G2, “select an action a® € A? for achieving

the current goal g%~ , “select an instantiation a¢ € A%

of current action a®”, and “apply the current instantiated
action aZ to the current state 547
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In IPSS, as in PRODIGY, there is a language for defin-
ing heuristic function H(s,,) in terms of a set of con-
trol rules. Control rules can select, reject, or prefer al-
ternatives (ways of instantiating search operators, AT*).
The conditions of control rules refer to queries (called
meta-predicates) to the current meta-state of the search
s™ = {s?,G4,L,g%,a%,al, P}. PRODIGY already pro-
vides the most usual meta-predicates, such as knowing
whether: some literal [ is true in the current state [ € s?
(true-in-state), some literal [ is the current goal | = gd
(current—goal), some literal [ is a pending goal | € Gg
(some-candidate-goals) or some instance is of a given
type (type—of-object). But, the language for represent-
ing heuristics also admits coding user-specific functions.

2.3 TGP planner

TGP is a temporal planner that enhances Graphplan algorithm
to handle actions of different durations [7]. Again, we will
only use in this paper its planning component, and we leave
working with the temporal part for future work.

The planner alternates between two phases: graph expan-
sion, it extends a planning graph until the graph has achieved
necessary (but potentially insufficient) conditions for plan
existence; and solution extraction, it performs a backward-
chaining search, on the planning graph, for a solution; if no
solution is found, the graph is expanded again and a new so-
lution extraction phase starts.

When TGP performs a backward-chaining search for a plan
it chooses an action that achieves each goal proposition. If it
is consistent (nonmutex ) with all actions that have been cho-
sen so far, then TGP proceeds to the next goal; otherwise it
chooses another action. An action achieves a goal if it has the
goal as effect. Instead of choosing an action to achieve a goal
at one level, TGP can also choose to persist the goal (selecting
the no-op action); i.e. it will achieve the goal in levels closer
to the initial state. After TGP has found a consistent set of ac-
tions for all the propositions in one level, it recursively tries
to find a plan for the action’s preconditions and the persisted
goals. The search succeeds when it reaches level zero. Oth-
erwise, if backtracking fails, then TGP extends one level the
planning graph with additional action and proposition nodes
and tries again. In terms of the unified model, it can be de-
scribed as:

e cach meta-state s™ is a tuple { PG, Gg, L,1} where PG
is Fhe plan graph, Gg is the set of pending (ppen) goals,
L is a set of assignments of instantiated actions to goals

(current partial plan), and [ is the plan-graph level where
search is

e the initial meta-state, sjJ' = {PG,,G? 1,} where
PG, is the plan graph built in the first phase up to level
n (this second phase can be called many times), G is
the set of top level goals, and [,, is the last level gener-
ated of the plan graph

e a terminal state will be of the form s = {PG;,, L,0}
such that the solution plan can be extracted from L (ac-
tions contained in L)

e the set of search operators A" is composed of only one
operator (given the current meta-state { PG, Gg, L,1}):

“for each goal g% € G select an instantiated action

al € A4 for achieving it”. If the goal persists, the goal
will still be in the Gg of the successor meta-state. Other-

wise, the preconditions of each ag are added to GZ and

each g is removed from G2. Also, the links (a2, g%) are
added to L.

2.4 Transferring heuristics from TGP to IPSS

Our proposal to transfer control knowledge between two
planners P, and P, requires five steps: (1) a language
for representing heuristics (or function H;(s™)) for Pi;
(2) a method for automatically generating H; from P;
search episodes; (3) a translation mechanism between meta
problem-space of P; and meta problem-space of P,, which
is equivalent to providing a translation mechanism between
H, and H,; (4) a language H, for representing heuristics for
Ps; and (5) an interpreter (matcher) of Hs in P». Given that
Ipss already has a declarative language to define heuristics,
Hiyp,ss (step 4), and an interpreter of that language (step 5),
we had to define the first three steps. In relation to step 1, it
had to be a language as close as possible to the one used in
Ipss, so that step 3 could be simplified. Therefore, we built
it using as many meta-predicates as possible from the ones in
Ipss declarative language. We will now focus on steps 2 and
3, and include some hints on that language.

3 The learning technique

In this section, we describe the ML technique we built, based
on EBL, to generate control knowledge from TGP. We have
called it GEBL (Graphplan EBL). It generates explanations
for the local decisions made during the search process (in
the meta problem-space). These explanations become control
rules. In order to learn control knowledge for a Graphplan-
based planner, we follow a standard four-steps approach:
first, TGP solves a planning problem, generating a trace of
the search tree; second, the search tree is labelled so that the
successful decision nodes are identified; third, control rules
are created from two consecutive successful decision points,
by selecting the relevant preconditions; and, fourth, constants
in the control rules are generalized to variables. In this dis-
cussion, the search tree is the one generated while solving
the meta problem-space problem. So, each decision point (or
node) consists of a meta-state, and a set of successors (appli-
cable instantiated operators of the meta problem-space).
Now, we will present each step in more detail.

3.1 Labelling the search tree

We define three kinds of nodes in the search tree: success,
failure and memo-failure. success nodes are the ones that be-
long to a solution path. The failure nodes are the ones where
there is not a valid assignment for all the goals in the node;
i.e. it is not possible to find actions to achieve all the goals
with no mutex relation violated among them or the ones in the
currently constructed plan. A node also fails if all of its chil-
dren fail. And if the planner did not expand a node, the node
is labeled as memo-failure. This can happen when the goals
were previously memoized as nogoods (failure condition of
Graphplan-based planning) at that level.
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All nodes are initially labelled as memo-failure. If a node
fails during the planning process, its label changes to failure.
When the planner finds a solution, all the nodes that belong
to the solution path are labelled as success.

Figure 1 shows an example of a labelled search tree in
the Zenotravel domain solving one problem. The Zenotravel
domain involves transporting people among cities in planes,
using different modes of flight: fast and slow. The exam-
ple problem consists of transporting two persons: person0
from city0 to cityl, and personl from cityl to cityO0.
Therefore, G¢ = {(at personl city0) (at person0 cityl)}.
There are 7 fuel levels (£11) ranging from O to 6 and there
is a plane initially in cityl with a fuel level of 3. TGP ex-
pands the planning graph until level 5 where both problem
goals are consistent (nonmutex). In this example there are
no failures and therefore no backtracking. The initial meta-
state s0 is composed of the expanded plan graph, PG5, the
problem goals G, assignments () and level 5. The search
algorithm tries to apply an instantiation of the search op-
erator of the meta problem-space (selecting an instantiated
action for each goal). So, it finds the instantiated action
of the domain problem-space (debark person0 planel
cityl) to achieve the goal (at person0 cityl) and per-
sists the goal (at personl city0). This generates the
child node (meta-state s1), that has, as the goal set, the per-
sisted goal and the preconditions of the previously selected
action (debark), i.e. (at planel cityl) (in personO
planel). The pair (assighment) action (debark person0
planel cityl) and goal (at person0 cityl) is added
on top of the child-node assignments. Then, the algorithm
continues the search at meta-state s2. It finds the action (fly
planel city0 cityl £11 £10) to achieve the goal (at
planel cityl) and it persists the other goals. That opera-
tor generates the child node s3, with the preconditions of the
action £1ly and the persisted goals. The new pair action-goal
is added on top of the currently constructed plan. The algo-
rithm continues until it reaches level 0 where the actions in
the assignment set of the last node (meta-state s5) represents
the solution plan.

Once the search tree has been labelled, a recursive algo-
rithm generates control rules from all pairs of consecutive
success nodes (eager learning). GEBL can also learn only
from non-default decisions (lazy learning). In this case, it
only generates control rules if there is, at least, one failure
node between two consecutive success nodes. The memo-
failure nodes in lazy learning are not considered, because the
planner does not explore them. Also, from a “lazyness” per-
spective they behave as success nodes. Lazy learning usually
is more appropriate when the control knowledge is obtained
and applied to the same planner to correct only the wrong
decisions.

3.2 Generating control rules

As we said before, control rules have the same format as in
PRODIGY. The module that generates control rules receives
as input two consecutive success decision points (meta-states)
with their goal and assignment sets. There are two kinds of
possible rules learned from them: a select goals ruleto
select the goal that persists in the decision point (when only

s0:

Level: (5) SUCCESS

Goals=((at personl city0) (at personO cityl)
Assignments=NIL

sl:

Level: (4) SUCCESS

Goals=((at personl city0) (at planel cityl) (in personO planel)
Assignments=(((debark person0O planel cityl) (at person0 cityl)))

s2:
Level: (3) SUCCESS
Goals=((at personl city0) (in person0O planel) (fuel-level planel f11)
(at planel city0))
Assignments=(((fly planel city0O cityl f11 £10) (at planel cityl))
( (debark person0 planel cityl) (at person0 cityl)))

s3:

Level: (2) SUCCESS

Goals=((in personl planel) (fuel-level planel f11) (at planel city0)

(at person0 city0))

Assignments=(((board person0 planel city0) (in person0 planel)
((debark personl planel city0) (at personl city0))
((fly planel city0O cityl £11 £10) (at planel cityl))
( (debark person0 planel cityl) (at person0 cityl)))

s4:

Level: (1) SUCCESS

Goals=((in personl planel) (at personO city0O) (fuel-level planel f1l2
(at planel cityl)

Assignments=(((fly planel cityl city0 £12 f11) (fuel-level planel f11)

((board person0 planel city0) (in person0O planel))

( (debark personl planel city0) (at personl city0))

((fly planel city0O cityl f11 f£10) (at planel cityl)

((debark personO planel cityl) (at person0 cityl)))

s5:

Level: (0) SUCCESS

Goals=((at personl cityl) (at personO city0) (fuel-level planel f13
(at planel cityl))

Assignments=(((board personl planel cityl) (in personl planel))

fly planel cityl city0 f12 f11) (fuel-level planel fll))

((

((board person0 planel city0) (in person0O planel)
((debark personl planel city0) (at personl city0))
((fly planel city0O cityl f11 £10) (at planel cityl)
((debark personO planel cityl) (at person0 cityl)))

Figure 1: Example of TGP success search tree.

one goal persists) and select operator rules to select
the instantiated actions that achieve the goals in the decision
point (one rule for each achieved goal).

As an example, from the first two decision points s0 and s1
of the example in Figure 1, two rules would be generated; one
to select the goal (at personl city0) and another one to
select the operator (debark person0O planel cityl) to
achieve the goal (at person0 cityl).

In order to make the control rules more general and reduce
the number of t rue—in-state meta-predicates, a goal re-
gression is carried out, as in most EBL techniques [4]. Only
those literals in the state which are required, directly or indi-
rectly, by the preconditions of the instantiated action involved
in the rule (the action that achieves goal) are included.

Figure 2 shows the select goal rule generated from
the first two decision points in the example of Figure 1.
This rule chooses between two goals of moving persons from
one city to another (the arguments of the meta-predicates
target—-goal and some-candidate-goals). One person
<personl> is in a city where there is a plane <planel>
with enough fuel to fly. The rule selects to work on the goal
referring to this person giving that s/he is in the same city as
the plane.

Figure 3 shows the select operator rule generated
from the example above. This rule selects the action debark
for moving a person from one city to another. IPSS would try
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(control-rule regla-ZENO-TRAVEL-PZENO-s1l

(if (and (target-goal (at <personl> <city0>))
(true-in-state (at <personl> <cityl>)
(true-in-state (at <person0> <city0>)
(true-in-state (at <planel> <cityl>))
(true-in-state (fuel-level <planel> <fl2>))
(true-in-state (aircraft <planel>)
(
(
(
(
(

( )
(
(
(
(
true-in-state (city <city0>))
(
(
(
(
(
(

)

true-in-state (city <cityl>))

true-in-state (flevel <f11>))

true-in-state (flevel <f12>))

true-in-state (next <fll> <f12>))

(true-in-state (person <person0>))

(true-in-state (person <personl>))

(some-candidate-goals ((at <person0> <cityl>)))))
(then select goals (at <personl> <city0>)))

Figure 2: Example of select goals rule in the Zeno-
travel domain.

(by default) to debark the person from any plane in the prob-
lem definition. The rule selects the most convenient plane; a
plane that is in the same city as the person with enough fuel
to fly.

(control-rule rule-ZENO-TRAVEL-ZENOl-el
(if (and (current-goal (at <person0> <cityl>))
(true-in-state (at <person0> <city0>))
(true-in-state (at <planel> <city0>)
(true-in-state (fuel-level <planel> <fll>)
(true-in-state (aircraft <planel>))
(true-in-state (city <city0>))
(true-in-state (city <cityl>))
true-in-state (flevel <f10>))
true-in-state (flevel <fl1>)
true-in-state (next <f1l0> <fll>))
true-in-state (person <person0>))))
(then select operators (debark <person0> <planel> <cityl>)))

(
(
(
(

Figure 3: Example of select operator rule in the Zeno-
travel domain.

4 Translation of learned knowledge

Given that meta-states and operators of the meta problem-
space of two different planners differ, in order to use the gen-
erated knowledge in P; (TGP) by P» (IPSS), we have to trans-
late the control rules generated in the first language to the
second one. The translation should have in mind both the
syntax (small changes given that we have built the control-
knowledge language for TGP based on the one defined in
Ipss) and the semantics (translation of types of conditions
in the left-hand side of rules, and types of decisions - oper-
ators of the meta problem-space). We have to consider the
translation of the left-hand side of rules (conditions referring
to meta-states) and the right-hand side of rules (selection of a
search operator of the meta problem-space).

Therefore, in relation to the translation of the right-hand
side of control rules, we found that the equivalent search op-
erators between IPSS and TGP are:

e to decide which goal to work on first. When TGP selects
the no-op to achieve a goal, this is equivalent to persist
the goal (it will be achieved in levels closer to the initial
state). IPSS has an equivalent search operator for choos-
ing a goal from the pending goals.

e to choose an instantiated operator to achieve a particular
goal (both planners have that search operator, though, in

the case of IPSS it splits it in two: select an action, and
select an instantiated action).

So, according to IPSS language to define control rules,
there are three kinds of rules that can be learned in TGP to
guide the IPSS search process: select goals, select
operator (select an action) and select bindings (se-
lect an instantiated action) rules.

The equivalence between meta-states is not straightforward
(for translating the conditions of control rules). When IpPSS
selects to apply an instantiated action, the operator of the meta
problem-space changes the state s¢ and the action is added at
the end of the current plan P. However, when TGP selects an
instantiated action to achieve a goal, it is added at the begin-
ning of the plan L (given that the search starts at the last level)
and TGP does not modify the state s?. The difficulty arises in
defining the state s? that will create the t rue-in-state
conditions of the control rules. When the rules are learned in
TGP, we considered two possibilities: the simplest one is that
the state s7 is just the problem initial-state sd; and, in the sec-
ond one, we assume that when TGP persists a goal that goal
would have already been achieved in IPSS, so the state s%is
the one reached after executing the actions needed to achieve
the persisted goals in the TGP meta-state. To compute it, we
look in the solution plan, and progress the problem initial-
state according to each action effects in such partial plan.

Equivalent meta-states are computed during rule genera-
tion and a translator makes several transformations after the
learning process finishes. The first one is to split the select-
operator control rules in two: one to select the action and
another one to select its instantiation. The second trans-
formation is to translate t rue—in-state meta-predicates
referring to variable types into type—-of-object meta-
predicates.! Finally, the translator deletes those rules that are
more specific than a more general rule in the set (they are sub-
sumed by another rule) given that GEBL does not perform an
inductive step.

5 Experimental Results

We carried out some experiments to show the usefulness of
the approach. Our goal is on transferring learned knowledge:
that GEBL is able to generate control knowledge that improves
Ipss planning task solving unseen problems. We compare
our learning system with HAMLET, that learns control rules
from IPSS problem-solving episodes. According to its au-
thors, HAMLET performs an EBL step followed by induction
on the control rules.

In these experiments, we have used four commonly used
benchmark domains from the repository of previous planning
competitions:”> Zenotravel, Miconic, Logistics and Driverlog
(the STRIPS versions, since TGP can only handle the plain
STRIPS version).

In all the domains, we trained separately both HAMLET
and GEBL with randomly generated training problems and

TGP does not handle variable types explicitly; it represents them
as initial state literals. However, IPSS domains require variable type
definitions as in typed PDDL.

“http://www.icaps-conference.org
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tested against a different randomly generated set of test prob-
lems. The number of training problems and the complexity
of the test problems varied according to the domain difficulty
for IpsS. We should train both systems with the same learn-
ing set, but GEBL learning mode is eager; it learns from all
decisions (generating many rules), and it does not perform in-
duction. So, it has the typical EBL problems (the utility prob-
lem and the overly-specific generated control knowledge) that
can be attenuated using less training problems with less goals.
However, HAMLET incorporates an inductive module that di-
minishes these problems. Also, it performs lazy learning,
since HAMLET obtains the control knowledge for the same
planner where the control knowledge is applied. Therefore,
if we train HAMLET with the same training set as GEBL, we
were loosing HAMLET capabilities. So, we have opted for
generating an appropriate learning set for both systems: we
train HAMLET with a learning set, and we take a subset from
it for training GEBL. The number and complexity (measured
as a number of goals) of training problems are shown in Ta-
ble 1. We test against 100 random problems in all the domains
(except in the Miconic that we used the 140 problems defined
for the competition) but varying the number of goals: from 2
to 13 goals in the Zenotravel, 3 to 30 in the Miconic, 2 to 6 in
the Driverlog and 1 to 5 in the Logistics.

Table 1 shows the average of solved (S) test problems
by Ipss without using control knowledge (/PSS), using the
HAMLET learned rules (HAMLET) and using the GEBL
learned rules (GEBL). Column R displays the number of gen-
erated rules and column T displays the number of training
problems, together with their complexity (range of number of
goals). The time limit used in all the domains was 30 seconds
except in the Miconic domain that was 60s.

Domain Ipss HAMLET GEBL
S S R T S R T
Logistics 12% | 25% | 16 400(13) | 57/% | 406 200 (2)

Driverlog | 26% 4% | 7 15024) | T7% | 71 23(2)
Zenotravel | 37% | 40% | 5  200(1-2) | 98% 14 200 (1-2)
Miconic 4% | 100% | 5 10(1-2) | 99% 13 30

Table 1: Results of percentage of solved random problems
with and without heuristics.

The results show that the rules learned by GEBL greatly
increase the percentage of problems solved in all the do-
mains compared to HAMLET rules, and plain IPSS, except
in the Miconic domain where HAMLET rules are slightly bet-
ter. Usually, learning improves the planning task, but it can
also worsen it (as HAMLET rules in the Driverlog domain).
The reasons for this behaviour are the intrinsic problems of
HAMLET learning technique: EBL techniques have the util-
ity problem and in inductive techniques generalizing and spe-
cializing incrementally do not assure the convergence, unless
they continuously check for performance against a problem
set.

6 Conclusions

This paper presents an approach to transfer control knowl-
edge (heuristics) learned from one planner to another plan-
ner that uses a different planning technique and bias. First,

we have defined a model based on meta problem-spaces that
permits to reason about the decisions made during search by
the different planners. Then, for each decision we propose
to learn control knowledge (heuristics) to guide that planner.
But, instead of applying the learned knowledge to that plan-
ner, we focus on transferring that knowledge to another plan-
ner, so that it can use it.

We have implemented a learning system based on EBL,
GEBL, that is able to obtain these heuristics from TGP, a tem-
poral Graphplan planner, translate them into IPSS, and im-
prove IPSS planning task. To our knowledge, this is the first
system that is able to transfer learned knowledge between
two planning techniques. We have tested our approach in
four commonly used benchmark domains and compare it with
HAMLET, an inductive-deductive learning system that learn
heuristics in PRODIGY. In all the domains, GEBL rules no-
tably improve IPSS planning task and outperform HAMLET,
except in the Miconic domain where the behaviour is similar.

We intend to show in the future that the approach is gen-
eral enough, so that it works also with other combinations,
including to learn in IPSS and transfer to TGP.
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