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Abstract

There is currently much interest in using exter-
nal memory, such as disk storage, to scale up
graph-search algorithms. Recent work shows that
the local structure of a graph can be leveraged
to substantially improve the efficiency of external-
memory graph search. This paper introduces a
technique, called edge partitioning, which exploits
a form of local structure that has not been con-
sidered in previous work. The new technique im-
proves the scalability of structured approaches to
external-memory graph search, and also guaran-
tees the applicability of these approaches to any
graph-search problem. We show its effectiveness
in an external-memory graph-search algorithm for
domain-independent STRIPS planning.

1 Introduction

Breadth-first search, A*, and related graph-search algorithms
store generated nodes in memory in order to be able to detect
duplicates and prevent node regeneration. The scalability of
these graph-search algorithms can be dramatically increased
by storing nodes in external memory, such as disk storage.
Because random access of disk is several orders of magni-
tude slower than internal memory, external-memory graph-
search algorithms use duplicate-detection strategies that seri-
alize disk access in a way that minimizes disk I/O.

A widely-used approach to external-memory graph search
is delayed duplicate detection [Stern and Dill, 1998; Korf,
2004; Edelkamp et al., 2004]. In its original and simplest
form, delayed duplicate detection expands a set of nodes (e.g.,
the nodes on the search frontier) without checking for du-
plicates, stores the generated nodes (including duplicates) in
a disk file, and eventually removes the duplicates by sort-
ing the file. In keeping with its use by theoretical computer
scientists in analyzing the complexity of external-memory
graph search [Munagala and Ranade, 1999], delayed dupli-
cate detection makes no assumptions about the structure of
the search graph (except that it is undirected and unweighted).

Recent work shows that the performance of external-
memory graph search can be significantly improved by ex-
ploiting the structure of a graph in order to localize mem-
ory references. Zhou and Hansen (2004; 2005; 2006b) pro-

pose a technique called structured duplicate detection that
exploits local structure that is captured in an abstract repre-
sentation of the graph. For graphs with sufficient local struc-
ture, structured duplicate detection outperforms delayed du-
plicate detection because it never generates duplicates, even
temporarily, and thus has lower overhead and reduced com-
plexity. Korf and Schulze (2005) show how to improve the
performance of delayed duplicate detection by using similar
local structure to reduce the delay between generation of du-
plicates and their eventual detection and removal.

Although approaches that exploit a graph’s local structure
are very effective, they depend on a graph-search problem
having the appropriate kind of local structure, and a sufficient
amount of it, in order to be effective. Thus one can legit-
imately question whether these approaches will be equally
effective for all graphs, or effective at all for some graphs.
In this paper, we introduce a technique that exploits a dif-
ferent kind of local structure than is exploited in previous
work. The kind of local structure exploited by this technique
is in some sense created by the way the algorithm expands
nodes, in particular, by use of a novel form of incremental
node expansion. The new technique, called edge partition-
ing, can localize memory references in any graph, no matter
what its structure – even a fully-connected graph. Moreover,
the way this new technique localizes memory references com-
plements the kind of local graph structure that is exploited by
previous approaches. This allows the new technique to be
combined with previously-developed approaches in order to
create a more powerful external-memory graph-search algo-
rithm. In this paper, we focus on how to use edge partition-
ing to improve the performance of structured duplicate detec-
tion. We implement it in an external-memory graph-search al-
gorithm for domain-independent STRIPS planning that uses
structured duplicate detection, and show that it greatly im-
proves scalability. At the close of the paper, we discuss how
edge partitioning can also be used to exploit local structure in
delayed duplicate detection.

2 Structured duplicate detection

Structured duplicate detection (SDD) [Zhou and Hansen,
2004] is an approach to external-memory graph search that
leverages local structure in a graph to partition stored nodes
between internal memory and disk in such a way that dupli-
cate detection can be performed immediately, during node ex-
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pansion, and no duplicates are ever generated.

The local structure that is leveraged by this approach is
revealed by a state-space projection function that is a many-
to-one mapping from the original state space to an abstract
state space, in which each abstract state corresponds to a set
of states in the original state space. If a state x is mapped to
an abstract state y, then y is called the image of x. One way
to create a state-space projection function is by ignoring the
value of some state variables. For example, if we ignore the
positions of all tiles in the Eight Puzzle and consider only the
position of the “blank,” we get an abstract state space that has
only nine abstract states, one corresponding to each possible
position of the blank.

Given a state-space graph and state-space projection func-
tion, an abstract state-space graph is constructed as follows.
The set of nodes in the abstract graph, called the abstract
nodes, corresponds to the set of abstract states. An abstract
node y′ is a successor of an abstract node y if and only if there
exist two states x′ and x in the original state space, such that
(1) x′ is a successor of x, and (2) x′ and x map to y′ and y,
respectively, under the state-space projection function.

Figure 1(b) shows the abstract state-space graph created by
the simple state-space projection function that maps a state
into an abstract state based only on the position of the blank.
Each abstract node Bi in Figure 1(b) corresponds to the set
of states with the blank located at position i in Figure 1(a).

In structured duplicate detection, stored nodes in the origi-
nal search graph are divided into “nblocks” with each nblock
corresponding to a set of nodes that maps to the same ab-
stract node. Given this partition of stored nodes, structured
duplicate detection uses the concept of duplicate-detection
scope to localize memory references in duplicate detection.
The duplicate-detection scope of a node x in the original
search graph is defined as all stored nodes (or equivalently,
all nblocks) that map to the successors of the abstract node
y that is the image of node x under the projection function.
In the Eight Puzzle example, the duplicate-detection scope of
nodes that map to abstract node B0 consists of nodes that map
to abstract node B1 and those that map to abstract node B3.

The concept of duplicate-detection scope allows a search
algorithm to check duplicates against a fraction of stored
nodes, and still guarantee that all duplicates are found. An
external-memory graph search algorithm can use RAM to
store nblocks within the current duplicate-detection scope,
and use disk to store other nblocks when RAM is full.

SDD is designed to be used with a search algorithm that
expands a set of nodes at a time, such as breadth-first search,
where the order in which nodes in the set are expanded can be
adjusted to minimize disk I/O. SDD’s strategy for minimiz-
ing disk I/O is to order node expansions such that changes of
duplicate-detection scope occur as infrequently as possible,
and, when they occur, they involve change of as few nblocks
as possible. When RAM is full, nblocks outside the cur-
rent duplicate-detection scope are flushed to disk. Writing
the least-recently used nblocks to disk is one way to select
which nblocks to write to disk. When expanding nodes in a
different nblock, any nblocks in its duplicate-detection scope
that are stored on disk are swapped into RAM.

Figure 1: Panel (a) shows all possible positions of the blank for
the Eight Puzzle. Panel (b) shows an abstract state-space graph that
is created by the state-space projection function that considers the
position of the “blank” only.

3 Edge Partitioning

The kind of local structure that is exploited by SDD is cap-
tured in an abstract state-space graph when the maximum
outdegree of any abstract node is small relative to the to-
tal number of abstract nodes. The largest outdegree of any
abstract node reflects the largest duplicate-detection scope,
and this in turn determines the internal-memory require-
ments of the search algorithm. Experiments in several do-
mains suggest that this form of local structure is present
in many search problems [Zhou and Hansen, 2004; 2005;
2006b]. However it is present in varying degrees, and there is
no guarantee that it is present in every search problem. More-
over, the degree to which it is present can affect the degree of
scalability that is possible.

This motivates the development of a technique that makes
SDD effective regardless of whether, and to what degree, this
kind of local structure is present. In fact, the new technique
we introduce is effective even if the abstract state-space graph
is fully-connected, and thus captures no local structure at all.
The idea behind this technique is that the local structure ex-
ploited by SDD can be created, in some sense, by expanding
nodes incrementally, which means generating only some of
the successors of a node at a time, and generating the other
successors later. Incremental node expansion makes it pos-
sible to partition the original duplicate-detection scope into
smaller duplicate-detection scopes, and this can significantly
reduce the internal memory requirements of the algorithm.

In the original form of SDD, the duplicate-detection scope
of a node being expanded is defined as all stored nodes that
map to any abstract node that is a successor of the abstract
node that is the image of the node being expanded. Thus
the largest duplicate-detection scope reflects the largest num-
ber of successors of a node in the abstract graph. But this
assumes that all successors are generated at the same time.
If nodes are expanded incrementally, it is possible to subdi-
vide this duplicate-duplicate scope into smaller scopes, one
for each pair of abstract node and successor abstract node, or,
equivalently, one for each outgoing abstract edge.

This is the key idea of edge partitioning. It considers a set
of nodes that map to a particular abstract node, and a par-
ticular outgoing abstract edge, and only applies the opera-
tors that correspond to the abstract edge, in order to generate
only the successor nodes that correspond to the successor ab-
stract node along that edge. As a result, in edge partitioning,
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the duplicate-detection scope consists of only a single nblock
corresponding to the single abstract node that is the successor
of an abstract edge. At a later point in the algorithm, a differ-
ent outgoing abstract edge is considered, and a different set
of operators are applied to the same set of nodes, in order to
generate additional successor nodes with potential duplicates
in a different nblock. Eventually, all operators are applied to
a set of nodes and they become fully expanded. Note that full
expansion of a node now requires a sequence of incremental
expansions.

3.1 Operator grouping

The state-space projection function and abstract state space
graph used by SDD with edge partitioning are the same as for
SDD in its original form. But since nodes are expanded incre-
mentally, and only one abstract edge is considered at a time,
it is now important to identify which operators are associated
with each abstract edge, in order to know which successors
to generate. We refer to this annotation of the edges of the
abstract graph as operator grouping. We point out that an
“operator” here refers to an instantiated (or grounded) opera-
tor. For example, the Eight Puzzle has a total of 192 grounded
operators, even though there are only four (left, right, up, and
down) operators prior to instantiation.

Operator grouping is built on top of state abstraction. Let
O be the set of all instantiated operators of a search problem.
An operator o ∈ O is applicable to an abstract node y if and
only if there exists a state x in the original state space, such
that (a) o is applicable to x, and (b) x maps to y. Consider the
Eight Puzzle. There are 2×8 = 16 operators that are applica-
ble to abstract node B0, because the blank, when located at
the top-left corner of the puzzle board, can move either right
(B0 → B1) or down (B0 → B3), and each move has 8 differ-
ent instantiations, depending on which tile of the Eight Puz-
zle is moved into the blank position. Similarly, each of the
abstract nodes B2, B6, and B8 has 16 applicable operators.
Abstract nodes B1, B3, B5, and B7 each have 3 × 8 = 24
applicable operators, and abstract node B4 has 4 × 8 = 32
applicable operators.

Once the set of applicable operators for each abstract node
is determined, operator grouping identifies, for each applica-
ble operator, the abstract edge it is associated with. An ab-
stract edge (y, y′) is an edge in the abstract graph that con-
nects a pair of abstract nodes y and y′, if and only if y′ is a
successor of y. We refer to y (y′) as the source (destination)
of abstract edge (y, y′).

Let Oy be the set of operators applicable to abstract node
y. An operator o ∈ Oy is associated with an abstract edge
(y, y′) if and only if there exists two states x and x′ in the
original state space, such that (1) o is applicable to x, (2) x′ is
the resulting state after applying o to x, and (3) x and x′ map
to y and y′, respectively. For operators with deterministic
effects, it is easy to see that for every o ∈ Oy , there is a unique
abstract edge (y, y′) that o is associated with. Essentially,
there is a many-to-one mapping from the operator space to
the abstract-edge space.

To exploit local structure in the operator space, edge parti-
tioning uses operator grouping to divide the set of applicable
operators Oy for abstract node y into operator groups, one

for each successor of y in the abstract graph. An operator
group Oy,y′ is a subset of Oy that consists of all the opera-
tors that are associated with abstract edge (y, y′). Note that
Oy,y′ ∩ Oy,y′′ = ∅ for all y′ �= y′′, and

⋃

y′∈successors(y)

Oy,y′ = Oy,

where successors(y) is the set of successors of y in the ab-
stract graph.

Although the technique of operator grouping is presented
here in the context of searching implicitly-represented graphs
(i.e., graphs represented by a start state and a set of oper-
ators for generating successors), it should be clear that the
same technique applies with little modification to searching
explicitly-represented graphs (i.e., graphs represented by a set
of vertices and a set of edges).

3.2 Edge-partitioned duplicate-detection scope

The idea of edge partitioning for SDD is to subdivide the
duplicate-detection scope into smaller scopes, one for each
abstract edge, and use only the operator group that is associ-
ated with the abstract edge to generate successors at a time.
This leads to the concept of duplicate-detection scope for an
abstract edge, which is defined as follows.

Definition 1 The duplicate-detection scope for an abstract
edge is the set of stored nodes that map to the destination
of the abstract edge.

The duplicate-detection scope for an abstract edge is guar-
anteed to contain only nodes that map to a single abstract
node, regardless of the structure of the abstract graph. The
following theorem follows from the definition.

Theorem 1 The duplicate-detection scope for an abstract
edge contains all stored duplicates of the successors gener-
ated by applying its corresponding operator group to the set
of nodes that map to the source of the abstract edge.

Theorem 1 guarantees that edge partitioning only needs to
store a single nblock in RAM, in order to catch all the du-
plicates that could be generated, even in the worst case. This
works in the following way. For each abstract edge (y, y′),
edge partitioning uses operators o ∈ Oy,y′ to generate suc-
cessors for nodes that map to abstract node y. After edge par-
titioning has expanded these nodes using one operator group,
it uses a different operator group Oy,y′′ to generate succes-
sors for the same nblock, until all operator groups have been
used in generating successors for the nblock. Then it chooses
a different nblock to expand next.

Because not all successors are generated by edge partition-
ing when a node is expanded, we call a node expansion in
edge partitioning an incremental expansion. Nodes eventu-
ally become fully expanded, once all operators are applied.

3.3 Example

We use the following example to illustrate how edge parti-
tioning works in SDD. Let xi be a search node that represents
a state of the Eight Puzzle with the blank located at position
i as shown in Figure 1(a). Suppose there are only two stored

IJCAI-07
2412



nodes {a0, b0} that map to abstract node B0 shown in Fig-
ure 1(b). Let {a1, a3} and {b1, b3} be the successors of a0

and b0, respectively. (The subscript encodes the position of
the blank.) When edge partitioning expands nodes a0 and
b0, it first uses operators o ∈ OB0,B1

. This corresponds to
moving the blank to the right, to generate the first two suc-
cessor nodes a1 and b1. Note that only nodes that map to
abstract node B1 need to be stored in RAM when a1 or b1

is being generated. Next, edge partitioning uses operators
o ∈ OB0,B3

, which correspond to moving the blank down,
to generate the third and fourth successor nodes a3 and b3.
This time, only nodes that map to abstract node B3 need to
be stored in RAM.

4 Implementation

Before discussing some strategies for implementing SDD
with edge partitioning in an efficient way, we review the key
steps in implementing SDD.

First, before the search begins, SDD uses a state-state pro-
jection function to create an abstract graph that (hopefully)
captures local structure in the original search graph. The
state-space projection function partitions stored nodes into
nblocks (one for each node in the abstract graph) that can
be moved between RAM and disk, and so each nblock must
be able to fit in RAM. The state-space projection function
can be hand-crafted or automatically generated, as described
in [Zhou and Hansen, 2006b].

Like delayed duplicate detection, SDD is designed to be
used as part of a search algorithm that expands a set of nodes
at a time, such as the frontier nodes in breadth-first search.
The idea of SDD is to expand these nodes in an order that
minimizes disk I/O. This is accomplished by expanding nodes
with the same duplicate-detection scope consecutively, and
minimizing changes of duplicate-detection scope during ex-
pansion of all nodes. A simple and effective heuristic is to ex-
pand nodes in order of nblock, with nblocks ordered accord-
ing to a breadth-first traversal of the abstract graph. When
RAM is full, SDD needs to decide which nblocks to move
from RAM to disk. A simple and effective heuristic is to
write the least-recently used nblocks to disk.

SDD with edge partitioning uses a similar strategy of try-
ing to minimize changes of duplicate-detection scope during
expansion of a set of nodes. The difference is that it consid-
ers the duplicate-detection scope for an abstract edge, and this
requires incremental node expansion. A simple and effective
heuristic is to apply operators to nodes in order of nblock,
and, for each nblock, in order of outgoing abstract edge.

We next consider some ways to improve performance. To
reduce the overhead of operator grouping, our implementa-
tion uses a lazy approach in which operator grouping for an
abstract node is only computed immediately before the first
time a node that maps to it is expanded. Because there could
be a number of abstract nodes that do not have any nodes that
map to them during search, this approach avoids the over-
head of operator grouping for these abstract nodes. We have
observed that the effectiveness of this approach tends to in-
crease with the size of the abstract graph.

Our implementation also uses a lazy approach to reading

nodes from disk. Upon switching to a duplicate-detection
scope that consists of nodes stored on disk, our implemen-
tation does not read these nodes from disk immediately. In-
stead, it waits until the first time a node is generated. The
reason for this is that when a single operator group is used to
generate successors for nodes in an nblock, it may not gener-
ate any successor node, if (a) the nodes to which the operators
in the group are applicable have not yet been generated, or (b)
the generated successor nodes have an f -cost greater than an
upper bound used in branch-and-bound search. The lazy ap-
proach avoids the overhead of reading nodes from disk (in
order to setup the duplicate-detection scope in RAM) if no
successors are generated by an operator group for an nblock.

As previously discussed, SDD needs to decide which
nblocks to move from RAM to disk, when RAM is full.
Except for the nblocks that make up the current duplicate-
detection scope, any nblocks can potentially be flushed to
disk. But this means if an nblock does not include itself as
part of its own duplicate-detection scope, it may be flushed to
disk even when its nodes are being expanded. While this is
allowed in our implementation, it should be avoided as much
as possible for efficiency reasons. We make two simple mod-
ifications to the least-recently used algorithm to ensure this.
First, instead of updating the time stamp of an nblock every
time it is accessed, its time stamp is only updated when (a) the
current duplicate-detection scope changes and (b) the nblock
is the next to be expanded or is part of the new scope. This
also simplifies the maintenance of the clock, which needs
no updates until the duplicate-detection scope changes. The
second modification is that instead of moving forward the
clock by one clock tick when the duplicate-detection scope
changes, our algorithm advances it by two clock ticks. Then
the time stamp of the to-be-expanded nblock is set to one
clock tick earlier than the new clock time. Finally, the time
stamps of all the nblocks within the new duplicate-detection
scope are updated to the new clock time. As a result, if
the nblock to be expanded next does not belong to the new
duplicate-detection scope, it is the last to be flushed to disk,
since its time stamp is more recent than any other flushable
nblock and earlier than any non-flushable nblock, which has
a time stamp equal to the current clock time.

Finally, recall that edge partitioning expands nodes in a
single nblock multiple times, one for each operator group.
This affects the strategy with which to remove nodes stored
on disk for the currently-expanding nblock. While the sim-
plest strategy is to remove these nodes from disk as soon as
they are swapped into RAM, it may incur extra overhead if
these nodes must be written back to disk shortly after, in or-
der to make room for newly-generated nodes. Note that nodes
in the currently-expanding nblock do not change as long as
the operator group used to generate the successors is not as-
sociated with an abstract edge whose source and destination
are the same (i.e., a “self loop”). Because self loops are easy
to detect, our implementation postpones the removal of nodes
stored on disk for the currently-expandingnblock until a “self
loop” operator group, which (if any) is always the last opera-
tor group applied to an nblock in our implementation, is used
to expand the nblock.
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SDD SDD + Edge Partitioning
Problem RAM Disk Exp Secs RAM Disk Increm Exp Secs

depots-7 2,662,253 9,524,314 16,801,412 342 742,988 10,705,324 191,263,008 460
blocks-16 3,194,703 5,527,227 18,075,779 387 1,069,901 6,997,695 395,738,702 823
trucks-9 7,085,621 20,888,173 54,348,820 3,995 953,642 26,106,623 590,454,354 5,982
storage-12 5,520,445 230,451,662 282,931,334 9,141 891,585 221,072,558 2,914,075,502 9,071
freecell-4 11,447,191 114,224,688 208,743,830 14,717 2,218,545 122,033,806 4,206,478,527 22,960
elevator-15 1,540,657 126,194,100 430,804,933 16,487 61,900 127,685,640 12,775,795,015 60,229
gripper-10 13,736,629 328,271,632 2,007,116,254 35,052 1,069,901 340,780,440 13,366,646,793 36,377
logistics-9 5,159,767 540,438,586 1,138,753,911 41,028 742,988 544,285,237 9,856,519,138 49,004
driverlog-13 49,533,873 2,147,482,093 2,766,380,501 108,051 4,299,806 2,147,483,535 38,879,000,039 122,877
satellite-7 12,839,146 571,912,557 838,488,709 160,687 429,971 584,308,516 28,532,162,097 129,608
trucks-10 - - - - 7,085,621 231,515,502 6,282,870,888 70,963
depots-10 - - - - 41,278,228 1,373,427,385 26,548,426,038 90,644

Table 1: Comparison of structured duplicate detection (SDD) with and without using edge partitioning on STRIPS planning
problems. Columns show peak number of nodes stored in RAM (RAM), peak number of nodes stored on disk (Disk), number
of full node expansions (Exp), number of incremental node expansions (Increm Exp), and running time in CPU seconds (Secs).
A ‘-’ symbol indicates that the algorithm cannot solve the problem within 2 GB of RAM.

5 Computational results

We implemented SDD with edge partitioning in a domain-
independent STRIPS planner that uses as its underlying
search algorithm breadth-first heuristic search [Zhou and
Hansen, 2006a]. The reason for using breadth-first heuristic
search is that it uses internal memory very efficiently. Build-
ing SDD with edge partitioning on top of it improves the over-
all efficiency of search by limiting the need to access disk.

Our search algorithm uses regression planning to find op-
timal sequential plans. As an admissible heuristic, it uses the
max-pair heuristic [Haslum and Geffner, 2000]. We tested
our external-memory STRIPS planner in ten different do-
mains from the biennial planning competition, including two
domains (trucks and storage) from the most recent competi-
tion. Experiments were performed on an AMD Operton 2.4
GHz processor with 4 GB of RAM and 1 MB of L2 cache.

Table 1 compares the performance of SDD with and with-
out edge partitioning. These problems are among the largest
in each of the ten planning domains that SDD with edge par-
titioning can solve without either (a) using more than 2 GB
of RAM or (b) taking more than 2 CPU days of running time.
Two problems (trucks-10 and depots-10) can only be solved
within these limits using edge partitioning. For these two do-
mains, the table also includes the largest instances that can be
solved without edge partitioning. Both versions of SDD use
the same state-space projection function.

Table 1 shows a couple of interesting things. First, it shows
that edge partitioning can reduce the internal-memory re-
quirements of SDD by an average factor of 11 times for these
planning problems. In doing so, it only increases the peak
number of nodes stored on disk by about 7.5%. Second, it
shows that the overhead that results from using an incremen-
tal approach to expanding nodes is rather inexpensive. Al-
though on average there are 16.8 times as many incremental
expansions when edge partitioning is used as there are full
expansions when it is not, this only increases running time
by 53% on average. Note that the extra time taken by edge
partitioning includes time for operator grouping.

Indirectly, the table shows roughly how much internal

memory is saved by using SDD with edge partitioning instead
of A*. The number of full node expansions in SDD gives an
estimate of how many nodes A* would need to store in order
to solve the problem, since A* has to store every node it ex-
pands, and breadth-first heuristic search (with an optimal up-
per bound) expands roughly the same number of nodes as A*,
disregarding ties. Based on the number of full node expan-
sions shown in Table 1, A* would need, on average, at least
1, 340 times more internal memory to solve these problems
than breadth-first heuristic search with SDD and edge parti-
tioning . Because this estimate ignores the memory needed
by A* to store the Open list, which is usually larger than the
Closed list, it is actually a considerable underestimate.

As the results show, SDD without edge partitioning is al-
ready very effective in solving these STRIPS planning prob-
lems, which indicates that these search problems contain a
great deal of the kind of local structure that SDD exploits.
This means that these problems actually present a serious
challenge for edge partitioning, which must identify addi-
tional structure that can be exploited to reduce internal mem-
ory requirements even further. For search problems for which
SDD without edge partitioning is less effective, SDD with
edge partitioning is likely to reduce internal memory require-
ments by a much larger ratio.

Since edge partitioning is effective even when the abstract
graph used by SDD does not capture any local structure, one
might wonder whether such local structure is useful anymore.
Although it is no longer needed to reduce internal memory re-
quirements, it is still useful in reducing time complexity. First
of all, if a problem can be solved by SDD without edge parti-
tioning, the time overhead of incremental node expansion can
be avoided. If edge partitioning is used, then the more local
structure (i.e., the fewer successor nodes of an abstract node
in the abstract graph), the fewer incremental expansions are
needed before a node is fully expanded, and the overhead of
incremental node expansion is reduced. The results in Table 1
show that edge partitioning reduces the amount of internal
memory needed in exchange for an increase in average run-
ning time, although the actual increase is still fairly modest.
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6 Application to delayed duplicate detection

So far, we have described how to use edge partitioning in
SDD, where it improves scalability by reducing internal-
memory requirements. In particular, it reduces the proportion
of generated nodes that need to be stored in internal memory
at any one time in order to ensure detection of all duplicates.
As we now show, edge partitioning can also be used in a form
of delayed duplicate detection (DDD) that uses local structure
to reduce the delay between generation of nodes and eventual
detection and removal of duplicates. This has the advantage
of reducing the disk storage requirements of DDD. We begin
with a review of DDD and then describe how edge partition-
ing can enhance its performance.

6.1 Delayed duplicate detection

DDD alternates between two phases; successor generation
and duplicate elimination. Depending on how duplicates are
eliminated, there are two forms of DDD, as follows.

Sorting-based DDD

The first algorithms for external-memory graph search used
sorting-based DDD [Stern and Dill, 1998; Munagala and
Ranade, 1999; Korf, 2004; Edelkamp et al., 2004]. Sorting-
based DDD takes a file of nodes on the search frontier, (e.g.,
the nodes in the frontier layer of a breadth-first search graph),
generates their successors and writes them to another file
without checking for duplicates, sorts the file of generated
nodes by the state representation so that all duplicate nodes
are adjacent to each other, and scans the file to remove du-
plicates. The I/O complexity of this approach is dominated
by the I/O complexity of external sorting, and experiments
confirm that external sorting is its most expensive step.

Hash-based DDD

Hash-based DDD [Korf and Schultze, 2005] is a more effi-
cient form of DDD. To avoid the I/O complexity of exter-
nal sorting in DDD, it uses two orthogonal hash functions.
During node expansion, successor nodes are written to differ-
ent files based on the value of the first hash function, which
means all duplicates are mapped to the same file. Once a
file of successor nodes has been fully generated, duplicates
can be removed from it. To avoid the overhead of external
sorting in removing duplicates, a second hash function maps
all duplicates to the same location of a hash table, which ac-
complishes by hashing what otherwise would require sorting.
Since the hash table corresponding to the second hash func-
tion must fit in internal memory, hash-based DDD has a min-
imum internal-memory requirement that corresponds to the
largest set of unique nodes in any file. Thus, this approach re-
quires some care in designing the first hash function to make
sure it does not map too many unique nodes to a single file.

Although hash-based DDD in its original form does not
depend on, or leverage, the structure of a graph, an impor-
tant improvement, called “interleaving expansion and merg-
ing” [Korf and Schultze, 2005], does. It works as follows.
The nodes on the search frontier are stored in multiple files,
called “parent files,” depending on the first hash function,
and the successor nodes that are generated when the nodes in
the parent files are expanded are also stored in multiple files,

called “child files.” Instead of waiting until all parent files at
a given depth are expanded before merging any child files at
the next depth to remove duplicates, a child file is merged
as soon as all parent files that could possibly add successor
nodes to it have been expanded. In other words, interleav-
ing expansion and merging makes it possible to remove du-
plicates early. Because DDD generates duplicates and stores
them on disk before eventually removing them, the technique
of “interleaving expansion and merging” reduces the amount
of extra disk storage needed by DDD. In fact, in the best case,
it can reduce the amount of extra disk storage need by DDD
by a factor of b, where b is the average branching factor, al-
though the actual reduction may be less.

To allow “interleaving expansion and merging,” the first
hash function must be designed in such a way that it cap-
tures local structure in the search graph. In particular, a
child file must only contain successor nodes generated from a
small number of parent files. A generic hash function cannot
be used for this since it will typically hash nodes uniformly
across all files. Instead, a problem-specific hash function that
captures local structure must be designed. In the following,
we explain how this enhancement of hash-based DDD ex-
ploits and, thus, depends on the local structure of a graph,
and how it can further exploit edge partitioning.

6.2 Edge partitioning in DDD

To see how edge partitioning can be used to improve the per-
formance of hash-based DDD, we first consider how the kind
of local structure exploited by “interleaving expansion and
merging” is related to the kind of local structure exploited by
SDD. As previously pointed out, hash-based DDD requires a
problem-specific hash function, and the “interleaving expan-
sion and merging” technique is only effective when this hash
function maps nodes to files in such a way that the nodes in
one file (the child file) are generated from nodes in only a
small number of other files (its parent files). In fact, these
relationships can be represented by an abstract state-space
graph in which abstract nodes correspond to files, and an ab-
stract edge is present when nodes in one file have successor
nodes in the other file. This should make it clear that the first
hash function used by hash-based DDD is actually a state-
space projection function, and, for “interleaving expansion
and merging” to be effective, this hash function should cap-
ture the same kind of local structure that is exploited by SDD.
The following concept will help make this more precise.

Definition 2 The predecessor-expansion scope of a child file
for an abstract node y′ under a state-space projection func-
tion Π corresponds to the union of nodes in the parent files
for abstract nodes y ∈ predecessors(y′), that is,

⋃

y∈ predecessors(y′)

Π−1(y),

where predecessors(y′) is the set of predecessors of y′ in the
abstract graph, and Π−1(y) is the set of nodes in the parent
file for an abstract node y.

An important property of the predecessor-expansion scope
is that it is guaranteed to contain all stored predecessors of
nodes in a child file, which leads to the following theorem.
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Theorem 2 Merging duplicate nodes after expanding all
nodes in the predecessor-expansion scope of a child file is
guaranteed to eliminate all duplicates that could be gener-
ated for the child file.

The concept of predecessor-expansion scope lets us iden-
tify the local graph structure needed by “interleaving expan-
sion and merging” in a principled way, and relate it to the kind
of local structure exploited by SDD. For undirected graphs,
they are exactly the same, since the set of predecessors of an
abstract node always coincides with the set of its successors.
For directed graphs, they may or may not be the same.

This analysis also lets us specify a condition under which
“interleaving expansion and merging” will not be effective,
at least by itself. When the abstract graph is fully connected,
the predecessor-expansion scope of any child file is the entire
set of parent files. This means the earliest time a child file
can be merged is when all nodes at the current depth have
been expanded, which prevents the application of interleaving
expansion and merging. We are now ready to show how edge
partitioning allows “interleaving of expansion and merging”
to be effective even in this case.

The idea is to force nodes within the predecessor-
expansion scope of a child file to generate successors only
for that child file alone, without generating successor nodes
for other child files at the same time. This can be achieved
as follows. Let y′ be the abstract node that corresponds to
the child file that is the target of merging. To merge duplicate
nodes in this file as early as possible, edge partitioning only
uses operators o ∈ Oy,y′ to generate the successors of nodes
in the parent files for abstract nodes y ∈ predecessors(y′).

Once all nodes in the parent files have generated their suc-
cessors for this child file, merging can take place as usual.
The advantage of edge partitioning is that it saves external
memory by not generating (possibly duplicate) successors
for any other child files before merging is performed. Af-
ter merging duplicates in a child file, edge partitioning picks
another child file as the next merging target, until all the child
files have been merged. It can be shown that by the time the
last child file is merged, edge partitioning must have used all
the operators to generate all the successor nodes for the cur-
rent depth. By doing so in an incremental way, it ensures that
the local structure needed by the “interleaving expansion and
merging” technique is always present.

Although we do not present empirical results for edge par-
titioning in DDD, our analysis helps to clarify the relationship
between SDD and hash-based DDD with interleaving of ex-
pansion and merging. Both exploit the same local structure
of a graph, and thus the performance of both can be enhanced
by using edge partitioning in a similar way.

7 Conclusion

We have introduced a technique, called edge partitioning, that
improves the scalability of structured approaches to external-
memory graph search by using a strategy of incremental node
expansion to localize memory references in duplicate detec-
tion. Results show that it significantly reduces the inter-
nal memory requirements of structured duplicate detection
(SDD). Moreover, it is guaranteed to be effective regardless

of the structure of the graph, and this guarantees that SDD
can be applied to any search problem. Finally, we have shown
that it can also be used to reduce the amount of disk storage
needed by delayed duplicate detection.

There are a number of directions for future work. One pos-
sibility is to vary the degree of incremental expansion. For
example, instead of using one operator group at a time, edge
partitioning can use multiple (but not all) operator groups to
generate successor nodes at a time. If enough internal mem-
ory is available, this can reduce the overall number of (incre-
mental) expansions. With edge partitioning, we now have two
options to reduce the internal-memory requirements of SDD.
We can either increase the granularity of the state-space pro-
jection function, or we can use edge partitioning. Which op-
tion is better under what circumstances is an interesting ques-
tion, and the answer is likely to help us understand how to
best trade off internal-memory requirements with the number
of disk I/O operations needed by SDD.
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