
Pablo Samuel Castro and Doina Precup

McGill University

School of Computer Science

{pcastr,dprecup}@cs.mcgill.ca

Abstract

A key problem in reinforcement learning is find-
ing a good balance between the need to explore the
environment and the need to gain rewards by ex-
ploiting existing knowledge. Much research has
been devoted to this topic, and many of the pro-
posed methods are aimed simply at ensuring that
enough samples are gathered to estimate well the
value function. In contrast, [Bellman and Kal-
aba, 1959] proposed constructing a representation
in which the states of the original system are paired
with knowledge about the current model. Hence,
knowledge about the possible Markov models of
the environment is represented and maintained ex-
plicitly. Unfortunately, this approach is intractable
except for bandit problems (where it gives rise to
Gittins indices, an optimal exploration method). In
this paper, we explore ideas for making this method
computationally tractable. We maintain a model of
the environment as a Markov Decision Process. We
sample finite-length trajectories from the infinite
tree using ideas based on sparse sampling. Find-
ing the values of the nodes of this sparse subtree
can then be expressed as an optimization problem,
which we solve using Linear Programming. We il-
lustrate this approach on a few domains and com-
pare it with other exploration algorithms.

1 Introduction

A key problem in reinforcement learning is posed by the
need to explore the environment sufficiently in order to dis-
cover the sources of reward, while at the same time exploit-
ing the knowledge that the agent has already, by taking ac-
tions that yield high return. The most popular techniques
in the current literature (e.g.,ε-greedy or Boltzmann explo-
ration) are not aimed at efficient exploration; instead, they
ensure that action choices are randomized, which enables
the agent to try out all actions in all states. This approach
guarantees the convergence of reinforcement learning algo-
rithms, but is not efficient from the point of view of the
number of samples gathered, and may cause the agent to re-
peatedly try harmful actions. An extensive line of research
has been devoted to directed exploration methods, most of

which are based on heuristics that help the agent get data
while trying to protect it from “danger”, e.g. [Thrun, 1992;
Meuleau and Bourgine, 1999]. Recently, several algo-
rithms have been proposed which carry guarantees in terms
of the number of samples necessary for the agent to at-
tain almost optimal performance [Kearns and Singh, 1998;
Brafman and Tennenholtz, 2001; Strehl and Littman, 2005;
Strehl et al., 2006].

In this paper we explore a Bayesian approach to explo-
ration. The initial idea was due to Bellman [1959] who sug-
gested keeping information about the agent’s current state of
knowledge, in addition to the model being learned by the
agent. This method is Bayes-optimal from the point of view
of decision making, but its complexity grows exponentially
with the horizon considered. This makes it inapplicable ex-
cept for the case of bandit problems, where it gives rise to
Gittins indices. Recently, a body of work on Bayesian rein-
forcement learning has developed method for approximating
the Bayes-optimal procedure for the case of general MDPs
[Dearden et al., 1999; Duff, 2002; Wang et al., 2005]. In
this paper, we pursue a similar idea, but with two important
differences. First, we propose to use linear programming in
order to approximate the value function during this proce-
dure. Second, we use a sampling approximation based on the
value function to expand the horizon of the decision making
process.

The paper is organized as follows. In Section 2 we present
the necessary background. In Section 3 we present the lin-
ear programming approach to this problem. In Section 4 we
present empirical results in three domains.

2 Background

A finite Markov Decision Process (MDP) is a tuple
〈S,A, T ,R〉, where S is the finite state space, A is the finite
action space, T : S×A×S → � defines the transition prob-
abilities, and R : S×A → � is the reward function, bounded
by RMAX . If the agent is in state s ∈ S and performs action
a ∈ A, T (s, a, ·) is the distribution over next possible states
and R(s, a) is the expected immediate reward. A determinis-
tic stationary policy π : S → A is a function that determines
what action to take depending on the current state. One of
the goals of reinforcement learning is to find the policy that
maximizes the expected discounted return received, given by∑∞

t=1
γt−1rt, where rt is the reward received at time step t

Using Linear Programming for Bayesian Exploration in
Markov Decision Processes

IJCAI-07
2437

and γ ∈ (0, 1) is a discount factor. The value of a state V π(s)
is given by the expected discounted return received when ex-
ecuting policy π starting from state s:

V π(s) = Eπ

[
∞∑

t=1

γt−1rt

]
(1)

Note that the upper bound on the value of any policy from
any state is RMAX/(1 − γ)

2.1 Hyperstate MDPs

In this paper we consider MDPs in which the transition prob-
abilities T and rewards R are unknown. In this situation,
the agent maintains an estimate of the MDP model based
on prior knowledge and its observations. For the transition
probabilities, it is convenient to use a distribution that is
closed under updates performed after observing a state tran-
sition. For MDPs with finite state and action sets, the es-
timate of the transition probabilities can be maintained in a
matrix P of size |S| × |A| × |S|. As shown in [Martin,
1967], the Matrix Beta distribution is closed under updates
and is a natural choice of distribution for this case. We de-
note by M =

[
ma

ij

]
the current indexing parameters of the

distribution, where ma
ij is simply the number of observed

transitions from state i to state j under action a. The ex-
pected transition probabilities based on this model are given

by E
[
pa

ij

]
= p̄a

ij = ma
ij/

∑|S|
k=1

ma
ik . Letting the matrix

N =
[
nk

ij

]
denote an additional number of observed transi-

tions from state i to state j under action a, in [Martin, 1967]

it is shown that the posterior distribution P ′ with parameters
M′ = M + N is also a Matrix Beta distribution. In what
follows, we will denote by Da

ij(M) the new distribution ob-
tained from M, through this operation, after observing on
transition from state i to state j under action a.

The estimated reward received when performing action a

from state i can then be estimated by r̄a
i =

∑|S|
j=1

p̄a
ij r̃

a
ij ,

where r̃a
ij is the average reward obtained when going for state

i to state j under action a. These rewards can be summarized
in a matrix R̄.

The Matrix Beta distribution can be viewed as a summary
of the information that the agent has accumulated so far. This
information, together with the original MDP states and ac-
tions, will form a new, Hyperstate-MDP (HMDP). The ac-
tions in the HMDP are the same as in the original MDP. The
states of the HMDP consist of pairings of states from S with
possible information states M. A hyperstate (i,M, R̄) con-
tains an MDP state i, all the counts summarizing the agent’s
experience so far M, and all the estimates of the expected
rewards R̄. The counts define a distribution over all MDP
models consistent with the data observed so far.

At any given time step when action a is taken in the orig-
inal MDP from state i, precisely one transition is observed,
to some state j. So, from any given hyperstate (i,M, R̄),
we can consider taking all possible actions a ∈ A. If such
an action results in a state j, the new hyperstate will be
(j, Da

ij(M), Da
ij(R̄)), where we have updated the innforma-

tion model as described above to reflect the new transition.
We note that this update only affects the parameters for state

i; all parameters for other states do not change. Assuming
that there are a fixed number of rewards R that can be ob-
served, each hyperstate in the HMDP has at most |A|×|S|×R
successors. Moreover, each successor hyperstate is uniquely
indexed. Hence, the HMDP is an infinite tree. Note also that
the HMDP takes into account all possible transitions. Hence,
it is fully known, even though the MDP itself is not.

One can express the Bellman optimality equations for an
HMDP as:

V (i,M, R̄) = max
a∈A

8<
:R̄

a
i + γ

X
j

p̄a
ij(M)V (j, Da

ij(M), Da
ij(R̄))

9=
;

Solving this set of equations exactly would yield an optimal
policy [Bellman and Kalaba, 1959; Martin, 1967]. However,
it is clear that the number of states in the HMDP is infinite, so
an exact solution is intractable. It is also clear that the num-
ber of hyperstates increases exponentially with the depth of
the tree, so an exact solution of a finite-horizon subset of the
tree would be limited to very shallow depths. The focus of
this paper is to present an algorithm for computing an em-
pirically good learning policy from a finite subset of the tree.
Theoretical guarantees will be left for future work and we
will focus on comparing the performance of our algorithm to
other well-known exploration techniques.

2.2 Related Work

Optimal learning has seen an increase in interest in recent
years. Much of the recent work has been spurred by [Kearns
and Singh, 1998], where the authors introduce E3, an algo-
rithm that is guaranteed to converge to an optimal learning
policy in polynomial time. The drawbacks with this algo-
rithm are its difficulty of implementation, and the intuition
that it does not necessarily scale well to large state spaces. A
practical model-based algorithm with similar guarantees was
given in [Brafman and Tennenholtz, 2001]. More advanced
model-based algorithms with PAC guarantees, based on real-
time dynamic programming, have been recently proposed in
[Strehl and Littman, 2005; Strehl et al., 2006]. These meth-
ods explore by assigning a reward for exploratory actions.
The drawback of both [Kearns and Singh, 1998] and [Strehl
et al., 2006] is that their strategies are myopic - they do not
consider the long term effects their actions may have on the
total reward.

Using hyperstates as the model for exploration overcomes
this myopic behavior. The concept of hyperstates was first
introduced in [Bellman and Kalaba, 1959], which refers to
this model as an adaptive control process. Although math-
ematically rich, the paper presents no algorithmic approach
for this idea. In [Duff, 2002], various heuristic methods are
presented for approximating an exact solution to the adaptive
control process. These produce empirically good results, but
with no general theoretical guarantees.

Wang et al [2005] propose sampling from the infinite hy-
pertree to produce a small, more manageable tree. They solve
exactly the MDPs along the path they are sampling, which
gives them estimates for the values of different actions. Then,
they use Thompson sampling to expand the tree locally under
promising actions. The authors estimate unsampled regions
by effectively ‘copying’ the last sampled node down to the

IJCAI-07
2438

current planning horizon. Finally, sparse sampling [Kearns et
al., 1999] is used to decide what action is optimal. A correc-
tion procedure is used when the desired horizon has not been
reached. Empirical results demonstrate that the algorithm
performs well in comparison to other algorithms. Further-
more, the sparse sampling technique enables the algorithm to
be able to handle infinite state and action spaces.

3 Solving the hyperstate MDP

In this paper we take an approach similar to [Wang et al.,
2005] but with two key differences. First, action-value esti-
mates are maintained for the state-action pairs of the origi-
nal MDP, in addition to hyperstate values. The action-values
are updated from the obtained samples using standard Q-
learning [Sutton and Barto, 1998]. Hence, we always have
an easy estimate of how good different actions are. Second,
we compute the value of the hyperstates using Linear Pro-
gramming. Linear Programming (LP) is a technique that has
been around for a long time, is well understood and has an el-
egant theory [Puterman, 1994]. Furthermore, recent work in
approximate linear programming [de Farias and Roy, 2003;
2004; Hauskrecht and Kveton, 2004]) suggests that this ap-
proach can be used to work with continuous states using lin-
ear function approximation. We are hopeful that such tech-
niques could eventually be used to generalize our approach to
continuous MDPs. However, for now we limit ourselves to
discrete MDPs.

In a manner similar to [Schweitzer and Seidmann, 1985],
the optimality equations for the hyperstate MDP can be for-
mulated as a linear program as follows:

minimize
∑

i

V (i,M, R̄)

such that

V (i,M, R̄)−

"
R̄

a
i + γ

X
j

p̄
a
ij(M)V (j, Da

ij(M),Da
ij(R̄))

#
≥ 0

for all states i ∈ S, all actions a ∈ A and all information
states M. We will refer to this formulation as the exact LP.
However, at a depth d, the number of hyperstates is at least
O

(
(|S| × |A|)d

)
(more if we consider several possible re-

ward levels). This means that for depth d the linear program
has at least O

(
(|S| × |A|)d

)
variables and constraints, a pro-

hibitive amount.

In [Kearns et al., 1999] the authors overcome a similar
obstacle by constructing a sparse sample tree. We apply a
similar idea here and construct a sampling tree incrementally.
More precisely, we sample from the hyperstate MDP using
our current estimates of the action values to decide what to
do. At each node, we use the corresponding estimate of the
dynamics of the system to sample the next node in the trajec-
tory. Each trajectory is completed to a desired horizon. We
continue constructing trajectories in this way until a maxi-
mum desired number of samples has been reached.

If we encounter a hyperstate for which a value was com-
puted already using an LP, we use the LP-based estimate
(which, in the limit, approaches the true optimal value of the

corresponding MDP state). If such a value has not been com-
puted, the action-value function for the MDP state is used
instead. Note that any unsampled regions constitute a sub-
tree of our hyperstate MDP. These unsampled subtrees are
estimated by setting the value of the hyperstate at the root
of the subtree, (i,M,R) to the value of the correspondinng
MDP state i. With this method, we can effectively choose
how many variables and constraints we want to use in the lin-
ear program.

Once the sampled hyper tree is built, we can solve it using
linear programming. Then, in order to gather more samples,
we will choose action greedily based on the values computed
by the linear program. If we enter an unsampled region, the
action choice becomes greedy with respect to the value esti-
mates attached to the original MDP states, until we decide to
construct a new hyper tree and compute new values.

1: Initialize the matrix of counts to all 1s (uniform distribu-
tion)

2: while epochs ≤ maxEpochs do
3: Construct a hyper-tree of a depth of levels using

maxSamples sampled trajectories
4: Solve the LP of the sample hypertree
5: Choose action greedily based on hyperstate values
6: Observe transition and update hyper parameter for ob-

served transition
7: for i = 1 to numSteps do
8: Choose action greedily based either on current hy-

perstate value or current estimate of state values
9: Observe transition and update hyper parameters

based on the observed transition
10: end for
11: epochs ← epochs + numSteps1
12: end while

Algorithm 1 presents an outline for our approach. The
maxEpochs parameter defines how many total samples will
be gathered from the environment. The levels parameter de-
scribes the depth to which we will expand the sampled hyper-
tree. The maxSamples parameter controls how many tra-
jectories are sampled (i.e., the width of the tree). Together,
these two parameters control how large each linear program
is. The numSteps parameter defines how many steps in the
environment are taken before the LP solution is recomputed.
This allows us to trade off the precision of the computation
against time. Obviously, if we re-compute the LP after every
sample, we always generate samples based on the action that
is truly believed to be best. If we wait longer, we may start
selecting actions based on imperfect estimates of the values
of the underlying MDP. However, this speeds up the compu-
tation significantly.

4 Empirical results

We tested our algorithm on three different problems. For all
domains, results are averaged over 30 independent runs. We
compared our approach with a Q-learning agent (with α =
0.1) using an ε-greedy approach (with varying values of ε),

IJCAI-07
2439

Algorithm 1 Explore(levels, maxSamples, numSteps, maxEpochs)

Figure 1: Two-state, three-action MDP: dynamics (left, comparison with the other algorithm (center) and effect of parameters
(right)

and with the algorithm described in [Wang et al., 2005]. We
also experimented with a myopic agent (acting only based
on immediate reward), and against an agent which chooses
actions randomly. These last two algorithms did far worse
than all the others, and so are omitted here for clarity. For our
algorithm, we experimented with different parameter settings,
as explained in more detail below. Because the primal LP has
more constraints than variables, the dual was solved instead.

We also considered two different possible uses of the
model that is constructed by our algorithm. In the first ver-
sion, once the desired number of epochs has been completed,
we perform dynamic programming using the acquired model,
to determine a value function for the original MDP. In the
second setting, We just use the values determined by the LP
as value estimates. Obviously, this latter approach is faster,
since no extra computation is required, but it is also more im-
precise.

Small MDP

The first problem was a two-state, three-action MDP, de-
scribed in the left panel of Figure 3. Intuitively, the best pol-
icy is to perform action 1 until state 2 is reached, then do
action 3 and keep in the same state.

The center graph compares our algorithm, with parameters
levels = 7,numSteps = 6,maxSamples = 35, with Q-
learning using three different values of ε (0.01, 0.1 and 0.5)
and the approach by Wang et al. For all algorithms we plot
average return per episode. Note that the implementation of
the algorithm described in [Wang et al., 2005] was not able to
handle more than 35 samples, which is why we performed the
comparison at this level. Although Q-Learning with ε = 0.1
outperformed all the other algorithms in this graph, we can
see that if we allow our algorithm 50 samples to construct the
hypertree, it performs better than the rest. Interestingly, in
this case, using the values from the LP also gives better per-
formance than doing one last step of dynamic programming.

Bandit problem

The second problem is similar to a bandit problem with two
slot machines (bandits) and three actions. This problem was
modeled using three states and three actions, with dynam-
ics as given in figure 4. The dynamics are shown in the

left panel for action 1 (solid), action 2 (dashed) and action
3 (solid grey). The leftmost state corresponds to not winning,
the middle state corresponds to winning under machine 1 and
the rightmost state corresponds to winning under machine 2.
There is no cost associated with gambling.

For the comparison between algorithms, we use parameters
levels = 6,numSteps = 5,maxSamples = 45. For this
problem [Wang et al., 2005]’s algorithm was able to handle
up to 45 samples as well. Our algorithm outperformed all
the others. In Figure 4 we can see that even with only 15
samples, our algorithm does almost as well as the best Q-
learning algorithm.

Grid World

The third problem is a 2x4 gridWorld with a reward of +1
in the top right state and 0 everywhere else. There are four
actions (north, south, west and east) with a 0.1 probability
of remaining in the same state. If the agent tries to move
into a wall it will deterministically stay in the same state.
The parameter values used are levels = 9,numSteps =
8,maxSamples = 15.

This is a larger problem than the first two, and all the other
algorithms are ‘stuck’ with low reward, while our algorithm
is able to find a good policy. In figure ?? it is clear that
using Dynamic Programming to obtain state value estimates
is advantageous for this task.

It is interesting to see that in the first two problems us-
ing the values returned by the LP to estimate the state val-
ues yields better returns initially. This is probably because of
the ‘lookahead’ nature of HMDP. However, for the gridWorld
problem the performance is much better when using the DP
solution to estimate the state values. This behavior is most
probably due to the size of the hypertree created. As the state
and action space get bigger, more samples are needed to ob-
tain state value estimates that are closer to the true values. It
should be noted that even when the DP was not solved ex-
actly, in all cases the performance when using HMDPs was
superior to the other algorithms. We note that we also ex-
perimented with Boltzmann exploration algorithms (omitted
from the plots for clarity), but in all cases their performance
was similar to the Q-learning algorithms.

IJCAI-07
2440

Figure 2: Bandit problem: dynamics (left), comparison of different algorithms (center) and parameter influence (right)

Figure 3: Comparison of algorithms (left) and influence of parameters (right) in the gridworld task

Running time

The results demonstrate that our approach has an advantage
compared to the other methods in terms of accuracy. How-
ever, in terms of computation time, using hyperstates is obvi-
ously much slower than Q-learning. Table 1 plots the average
running time per episode when solving the DP to estimate the
state values versus using the values returned by the LP for the
different domains, as well as the running time of [Wang et
al., 2005]’s algorithm. It is worth observing the difference in
performance/running time depending on how the state values
are estimated (solving with DP or using the values returned
by the LP). Although our algorithm is considerably slower
when solving with DP, it is faster than [Wang et al., 2005]’s
algorithm when using the values returned by the LP solution.
However, for the gridWorld problem, although solving with
HMDP is slower than [Wang et al., 2005]’s algorithm, the
savings when using [Wang et al., 2005]’s algorithm are in-
significant when compared against the superior performance
demonstrated in figure 3.

HMDP Wang
Using DP No DP

Small MDP 0.0065 2.8408e-04 5.3850e-04
Bandit 0.0094 3.3234e-04 3.4113e-04

Grid world 0.0548 0.0083 0.0025

Table 1: Comparison of running times

5 Conclusions and future work

The aim of this paper was to demonstrate the performance of
Bayesian learning using sparse sampling and linear program-
ming. It was observed that in general using hyperstates does
lead to greater average returns when exploring an unknown
environment than if we used simpler exploration techniques
or even state-of-the-art techniques such as the algorithm pre-
sented in [Wang et al., 2005]. The drawback of this technique
is that it may leave certain areas of the environment unex-
plored, but this could be the desired behavior. If you con-
sider a physical agent (such as a robot) placed with the task
of exploring a new environment, you would want the agent to
avoid areas which could cause harm to its mechanical parts
or even to other people around it, yet still explore sufficiently
to try to reach states with high reward. A situation like that
would justify the increase in computation. Furthermore, the
method of sparse sampling could allow the hypertree to have
a greater depth, and thus, the agent could see states that other
myopic methods may not be able to. This ability to value ac-
tions not only on their immediate but long-term effect makes
Bayesian learning a good candidate for exploratory agents.

The next step is to obtain theoretical guarantees for our
algorithm. We would also like to implement the algorithms
presented in [Strehl et al., 2006] and possibly [Duff, 2002] to
empirically compare our algorithm against more of the latest
advances in Bayesian decision theory. It would also be inter-
esting to try our algorithm against problems with continuous
state and/or action spaces. Placing a Gaussian over sampled

IJCAI-07
2441

points could assist us in approximating the full hypertree bet-
ter. Further work could be to apply approximation techniques
to the full hyper-tree, in a manner similar to what was done
in [de Farias and Roy, 2003] and [Hauskrecht and Kveton,
2004] for MDPs with very large state spaces.

5.1 Acknowledgments

This work was supported in part by NSERC and FQRNT.

References

[Bellman and Kalaba, 1959] R. Bellman and R. Kalaba. On
adaptive control processes. In IRE Trans., volume 4, pages
1–9, 1959.

[Brafman and Tennenholtz, 2001] R. I. Brafman and M. Ten-
nenholtz. R-MAX — a general polynomial time algorithm
for near-optimal reinforcement learning. In IJCAI, pages
953–958, 2001.

[de Farias and Roy, 2003] D.P. de Farias and B. Van Roy.
The linear programming approach to approximate dy-
namic programming. Operations Research, 51(6):850–
865, 2003.

[de Farias and Roy, 2004] D.P. de Farias and B. Van Roy. On
constraint sampling for the linear programming approach
to approximate dynamic programming. Mathematics of
Operations Research, 29(3):462–478, 2004.

[Dearden et al., 1999] R. Dearden, N. Friedman, and D. An-
dre. Model-based bayesian exploration. In Proc. 15th UAI
Conference, pages 150–159, 1999.

[Duff, 2002] M. O. Duff. Optimal Learning: Computational
procedures for Bayes-adaptive Markov decision processes.
PhD thesis, University of Massachussets, 2002.

[Duff, 2003] M. O. Duff. Design for an optimal probe. In
International Conference on Machine Learning, 2003.

[Gittins and Jones, 1979] J.C. Gittins and D. Jones. Bandit
processes and dynamic allocation indices. Journal of the
Royal Statistical Society, Series B, 41(2):148–177, 1979.

[Hauskrecht and Kveton, 2004] M. Hauskrecht and B. Kve-
ton. Linear program approximations for factored
continuous-state markov decision processes. In Advances
in Neural Information Processing Systems 17, 2004.

[Kearns and Singh, 1998] M. Kearns and S. Singh. Near-
optimal reinforcement learning in polynomial time. In
Proc. 15th ICML, pages 260–268, 1998.

[Kearns et al., 1999] M. Kearns, Y. Mansour, and A. Y. Ng.
A sparse sampling algorithm for near-optimal planning in
large markov decision processes. In IJCAI, pages 1324–
1231, 1999.

[Martin, 1967] J.J. Martin. Bayesian Decision Problems and
Markov Chains. John Wiley & Sons, New York, 1967.

[Meuleau and Bourgine, 1999] N. Meuleau and P. Bourgine.
Exploration of multi-state environments: Local measures
and back-propagation of uncertainty. Machine Learning,
35(2):117–154, 1999.

[Puterman, 1994] M. L. Puterman. Markov Decision Pro-
cesses. John Wily & Sons, New York, 1994.

[Schweitzer and Seidmann, 1985] P. Schweitzer and A. Sei-
dmann. Generalized polynomial approximations in
markovian decision processes. J. Math. Anal. Appl.,
110:568–582, 1985.

[Strehl and Littman, 2005] A. L. Strehl and M. L. Littman.
A theoretical analysis of model-based interval estimation.
In Proc. 21st ICML, 2005.

[Strehl et al., 2006] A. L. Strehl, L. Li, and M. L. Littman.
Incremental model-based learners with formal learning-
time guarantees. In Proc. 21st UAI Conference, 2006.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement Learning: An Introduction. MIT Press, Cam-
bridge, Massachusetts, 1998.

[Thrun, 1992] S. Thrun. Efficient exploration in rein-
forcement learning. Technical Report CMU-CS-92-102,
Carnegie Mellon University, School of Computer Science,
1992.

[Wang et al., 2005] T. Wang, D. Lizotte, M. Bowling, and
D. Schuurmans. Bayesian sparse sampling for on-line re-
ward optimization. In Proceedings of Twenty-First Inter-
national Conference on Machine Learning, 2005.

IJCAI-07
2442

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

