Representing Kriegspiel States with Metapositions

Paolo Ciancarini and Gian Piero Favini
Dipartimento di Scienze dell’Informazione, University of Bologna, Italy
Email: {cianca,favini} @cs.unibo.it

Abstract

We describe a novel approach to incomplete infor-
mation board games, which is based on the concept
of metaposition as the merging of a very large set
of possible game states into a single entity which
contains at least every state in the current informa-
tion set. This merging operation allows an artifi-
cial player to apply traditional perfect information
game theory tools such as the Minimax theorem.

We apply this technique to the game of Kriegspiel,
a variant of chess characterized by strongly incom-
plete information as players cannot see their oppo-
nent’s pieces but can only try to guess their po-
sitions by listening to the messages of a referee.
We provide a general representation of Kriegspiel
states through metaposition trees and describe a
weighed maximax algorithm for evaluating meta-
positions. We have tested our approach competing
against both human and computer players.

1 Introduction

Incomplete information board games are an excellent testbed
for the study of decision making under uncertainty. In these
games, only a subset of the current state of the game is made
known to the players, who have to resort to various methods
in order to find an effective strategy.

Kriegspiel is a chess variant in which the players cannot
see their opponent’s pieces and moves: all rules of Chess
stay, but the game is transformed into an incomplete informa-
tion game. We have built a program called Darkboard, which
plays a whole game of Kriegspiel searching over a game tree
of metapositions. The preliminary results we have are quite
encouraging.

This paper is organized as follows: in the next section we
describe the concept of metaposition. Then we apply this con-
cept to Kriegspiel. In Sect. 3 we show how we apply weighed
maximax to metapositions; in Sect. 4 we introduce an eval-
uation function for a game tree of metapositions. Finally, in
Sect. 5 we describe some experimental results and draw our
conclusions.

2 Metapositions

The original concept of metaposition was introduced in
[Sakuta, 20011, where it was used to solve endgame posi-
tions for a Kriegspiel-like game based on Shogi. The primary
goal of representing an extensive form game through metapo-
sitions is to transform an imperfect information game into one
of perfect information, which offers several important advan-
tages and simplifications, including the applicability of tradi-
tional techniques associated with these games. A metaposi-
tion, as described in the quoted work, merges different, but
equally likely moves, into one state (but it can be extended to
treat moves with different priorities).

In its first formulation, a metaposition is a set of game
states grouping those states sharing the same strategy spaces
(legal moves) available to the player. A given move for the
first player is guaranteed to be legal across every state in the
set, or in none at all. If we consider the game tree from the
point of view of metapositions instead of single game states,
it is readily seen that the game becomes, nominally, one of
perfect information. When the first player moves, the current
metaposition (which coincides with the current information
set) is updated by playing that move on all the boards, as it is
certainly legal. The opponent’s moves generate a number of
metapositions, depending on the resulting strategy space for
the first player. If the first player knew his new strategy space
beforehand, he would be able to uniquely determine the new
metaposition because different metapositions have, by defini-
tion, different strategy spaces associated to them.

Unfortunately, a player’s strategy space is not known be-
forehand in such games as Kriegspiel. There is, obviously, no
way to find out whether a move is legal other than by trying
it. Therefore, an extension of the definition of metaposition is
needed, refining the concept of strategy space. Often, a move
which is likely to be illegal on the referee’s board is a good
strategy for the player. Illegal moves are the main mechanism
for acquiring information on the opponent’s piece setup. It
makes little sense to discard their analysis only because the
referee knows they are illegal.

A second formulation of metapositions is as follows.

Definition. If S is the set of all possible game states and
I C S is the information set comprising all game states com-
patible with a given sequence of observations (referee’s mes-
sages), a metaposition M is any opportunely coded subset of

I[JCAI-07
2450

SsuchthatIC M C S.

The strategy space for M is the set of moves that are legal
in at least one of the game states contained in the metaposi-
tion. These are pseudolegal moves, assumed to be legal from
the player’s standpoint but not necessarily from the referee’s.
A metaposition is endowed with the following functions:

e a pseudomove function pseudo that updates a metapo-
sition given a move try and an observation of the ref-
eree’s response to it;

e a metamove function meta that updates a metaposition
after the unknown move of the opponent, given the as-
sociated referee’s response;

e an evaluation function eval that outputs the desirability
of a given metaposition.

From this definition it follows that a metaposition is any su-
perset of the game’s information set (though clearly the per-
formance of any algorithm will improve as M tends to I).
Every plausible game state is contained in it, but a metapo-
sition can contain other states which are not compatible with
the history. The reason for this is two-fold: on one hand, be-
ing able to insert (opportune) impossible states enables the
agent to represent a metaposition in a very compact form, as
opposed to the immense amount of memory and computa-
tion time required if each state were to be listed explicitly; on
the other hand, a compact notation for a metaposition makes
it easy to develop an evaluation function that will evaluate
whole metapositions instead of single game states. This is
the very crux of the approach: metapositions give the player
an illusion of perfect information, but they mainly do so in or-
der to enable the player to use a Minimax-like method where
metapositions are evaluated instead of single states. For this
reason, it is important that metapositions be described in a
concise way so that a suitable evaluation function can be ap-
plied.

It is interesting to note that metapositions move in the op-
posite direction from such approaches as Monte Carlo sam-
pling, which aim to evaluate a situation based on a signifi-
cant subset of plausible game states. This is perhaps one of
the more interesting aspects of the present research, which
moves from the theoretical limits of Monte Carlo approaches
as stated, for example, in [Frank and Basin, 1998], and tries to
overcome them. In fact, a metaposition-based approach does
not assume that the opponent will react with a best defense
model, nor is it subject to strategy fusion because uncertainty
is artificially removed.

The nature of the “opportune coding” required to represent
a metaposition, a superset of the usually computationally in-
tractable information set I, will depend on the specific game.
As far as Kriegspiel is concerned, we move from the results in
[Ciancarini et al., 1997] on information set analysis in order
to win a Kriegspiel endgame. Here the authors use the infor-
mation set in order to recognize position patterns in the King
and Pawn versus King (KPK) endgame, however performing
no search in the problem space.

The first representation of Kriegspiel situations using meta-
positions together with an evaluation function was given in

[Bolognesi and Ciancarini, 2003] and [Bolognesi and Cian-
carini, 2004]. Their analysis is, however, limited to a few cho-
sen endgame examples, such as King and Rook versus King
(KRK). Because of the small size of the game’s information
set in these particular scenarios (which is limited to the pos-
sible squares where the opponent’s King may be), metaposi-
tions coincide exactly with the information set in the quoted
papers (M = I). The present work deals with a generic full
game of Kriegspiel, with the opponent controlling an arbi-
trary number of pieces, and such an assumption is unreason-
able.

Our approach to coding a Kriegspiel metaposition is, es-
sentially, the abstract representation of a chessboard contain-
ing both real pieces, belonging to the players and pseudo-
pieces (ghost pieces that may or may not exist). Trivially,
a metaposition coded in this fashion represents a number of
states equal to the product of the number of pseudopieces on
each square. Each square, therefore, has the following infor-
mation attached to it.

e Piece presence: whether the square contains an allied
piece.

e Pseudopiece presence: a bitfield representing the pos-
sible presence of opposing pieces at the given location.
There are seven possible pseudopieces, and any number
of them may appear simultaneously at the same square:
King, Queen, Rook, Bishop, Knight, Pawn and Empty.
The last is a special pseudopiece indicating whether the
square may be empty or is necessarily occupied.

e Age information: an integer representing the number of
moves since the agent last obtained information on the
state of this square. This field provides the integration of
some of the game’s history into a metaposition in a form
that is easily computable.

Moreover, a metaposition will store the usual information
concerning such things as castling rights and the fifty moves
counter, in addition to counters for enemy pawns and pieces
left on the chessboard. It is easy to notice that such a notation
is extremely compact; in fact, each square can be represented
by two bytes of data.

A pseudopiece is, essentially, a ghost piece with the same
properties as its real counterpart. It moves just like a real
piece, but can move through or over fellow pseudopieces, ex-
cept in specific cases. For example, it is possible to enforce
rules to prevent vertical movement across a file where an op-
ponent’s pawn is known to be.

A metaposition follows and mantains the following invari-
ant: if a pseudopiece is absent at a given location, then no
piece of that type can appear there in any state of the cur-
rent information set. The opposite is not true, and because
of their relaxed movement rules, pseudopieces may appear in
places where a real enemy piece could not be according to
the information set. This is equivalent to saying that I C M.
A metaposition then represents a much larger superset of the
information set, and in certain phases of the game, some pseu-
dopieces can be found at almost every location.

I[JCAI-07
2451

2.1 Updating knowledge

Metapositions not deal with moves, but with pseudomoves
and metamoves. A pseudomove represents the agent’s move,
which can be legal or illegal, and has an associated observa-
tion (a set of umpire messages sent in response to the move at-
tempt). A metamove represents the collective grouping of all
the possible opponent’s moves, and it is associated to an ob-
servation, too. Darkboard implements pseudo and meta by
accepting a metaposition and an observation, with an updated
metaposition being returned as the output. Clearly, pseudo
reduces the uncertainty by eliminating some pseudopieces,
whereas met a increases it by spawning new pseudopieces.

Intuitively, meta does such things as clearing all pseudo-
pieces on the moved piece’s path and infer the position of
the opponent’s King from check messages; pseudo has ev-
ery pseudopiece spawn copies of itself on every square it can
reach in one move. It is readily seen that such operations
maintain the I C M constraint that defines a metaposition.
A number of optimizations are possible to improve their ac-
curacy and therefore quality of play, but because of the loose
nature of a Kriegspiel metaposition, they are not required.

As a metaposition represents a grouping of a very large
number of positions which cannot be told apart from one an-
other, it is clear that updating such a data structure is no trivial
task; in truth, this process does account for the better part of
the agent’s computation time. Updating an explicitly listed
information set with a pseudomove would involve finding all
the positions compatible with the outcome of that move (le-
gal, not legal, check, etc.), discarding anything else, and ap-
plying the move to the compatible chessboards. Updating a
metaposition after a metamove would prove an even more
daunting task, as we would have to consider each possible
move for each possible chessboard in the set. Again, this is
a problem that can only be overcome through a suitable ap-
proximation (or by limiting the number of chessboards down
to a manageable pool, as in [Parker et al., 2005]).

It may appear strange that the heart of the program’s rea-
soning does not lie in the evaluation function eval but in
pseudo and meta: after all, their equivalent in a chess-
playing software would trivially update a position by clearing
a bit and setting another. However, the evaluation function’s
task is to evaluate the current knowledge. The updating algo-
rithms compute the knowledge itself: thus it is important to
infer as much information as possible in the process. In fact,
one interesting point about this approach is that the updating
functions and the evaluation function can be improved upon
separately, increasing the program’s performance without the
need for the two components to have any knowledge of each
other.

3 Game tree structure

Since a metaposition’s evolution depends exclusively on the
umpire’s messages, clearly it becomes necessary to simulate
the umpire’s next messages if a game tree is to be constructed.
Ideally, the game tree would have to include every possible
umpire message for every available pseudomove so that it can
be evaluated with a weighed algorithm keeping into account
the likelyhood of each observation. Unfortunately, a quick

estimate of the number of nodes involved rules out such an
option. It is readily seen that:

e All pseudomoves may be legal (or they would not have
been included by the generation algorithm), but most can
be illegal for some game state.

e All pseudomoves that move to non-empty squares can
capture (except for pawn moves), and we would need to
distinguish between pawn and piece captures.

e Most pseudomoves may lead to checks.

e Some pieces may lead to multiple check types, as well
as discovery checks.

e The enemy may or may not have pawn tries following
this move.

A simple multiplication of these factors may yield several
dozens potential umpire messages for any single move. But
worst of all, such an estimate does not even take into account
the possibility of illegal moves. An illegal move forces the
player to try another move, which can, in turn, yield more um-
pire messages and illegal moves, so that the number of cases
rises exponentially. Furthermore, the opponent’s metamoves
pose the same problem as they can lead to a large number of
different messages.

e On the opponent’s turn, most pieces can be captured,
unless they are heavily covered or in the endgame.

o The king may typically end up threatened from all direc-
tions through all of the 5 possible check types.

e Again, pawn tries may or may not occur, and can be one
or more.

For these reasons, any metaposition will be only evolved in
exactly one way, and according to one among many umpire
messages. This applies to both the player’s pseudomoves and
the opponent’s hidden metamoves. There will be heuristics in
place to pick a ‘reasonable’ message, and the more accurate
this is, the more effective the whole system will get.

As a consequence, the tree’s branching factor for the
player’s turns is equal to the number of potential moves, but it
is equal to 1 for the opponent’s own moves. This is equivalent
to saying that the player does not really see an opponent, but
acts like an agent in a hostile environment.

It should be noted that this is not the same assumption
that Minimax algorithms make when they suppose that player
MIN will choose the move that minimizes the evaluation
function. Here we are not expecting the opponent to play the
best possible move, but instead we assume an average move
will be played, one that does not alter the state of the game
substantially.

As aside effect, because only one possible umpire message
for the opponent’s metamove is explored, the metamove can
be merged with the move that generated it, so that each level
in the game tree no longer represents a ply, but a full move.

Interestingly, the branching factor for this Kriegspiel model
is significantly smaller than the average branching factor for
the typical chess game, seeing as in chess either player has
a set of about 30 potential moves at any given time, and
Kriegspiel is estimated to stand at approximately twice that

I[JCAI-07
2452

value (in theory; practice yields smaller values due to tighter
defence patterns). Therefore, a two-ply game tree of chess
will feature about 302 = 900 leaves, whereas the Kriegspiel
tree will only have 60. However, the computational over-
head associated with calculating 60 metaposition nodes is far
greater than that for simply generating 900 position nodes,
and as such some kind of pruning algorithm may be needed.

3.1 Umpire prediction heuristics

[Bolognesi and Ciancarini, 2003], in tackling Kriegspiel
endgames, where the artificial player’s moves have only
three possible outcomes (silent, check, illegal) and having to
choose one to expand upon, rely upon the evaluation function
to pick the most unfavorable option. However, even such a
modest luxury seems beyond reach in the present work due
to both the number of options and their different probabili-
ties. The only remaining way is for us to propose a set of
hard-coded heuristics that work well most of the time, and
make sure that they will work reasonably even when they are
proved wrong. Our player generates the umpire messages that
follow its own pseudomoves in the following way.

e Every move is always assumed to be legal. Most of the
time, an illegal move just provides information for free,
so a legal move is usually the less desirable alternative.

e The player’s moves do not generally capture anything,
with the following exceptions:

— Pawn tries. These are always capturing moves by
their own nature.

— Non-pawn moves where the destination square’s
Empty bit is not set, since the place is necessarily
non-empty. This encourages the program to retali-
ate on captures.

— After an illegal move, the agent may consider an
identical move, but shorter by one square, as a cap-
turing move.

e If any of the above apply, the captured entity is always
assumed to be a pawn, unless pawns should be impossi-
ble on that square, in which case it is a piece.

e Pawn tries for the opponent are generated if the piece
that just moved is the potential target of a pawn capture.

On the other hand, the following rules determine the um-
pire messages that follow a metamove.

e The opponent never captures any pieces, either. The
constant risk that allied pieces run is considered by the
evaluation function instead.

e The opponent never threatens the allied King. Again,
King protection is matter for the evaluation function.

e Pawn tries for the artificial player are never generated.

The above assumptions are overall reasonable, in that they
try to avoid sudden or unjustified peaks in the evaluation func-
tion. The umpire is silent most of the time, captures are only
considered when they are certain, and no move receives unfair
advantages over the others. There is no concept of a ‘lucky’
move that reveals the opponent’s king by pure coincidence,

though if that happens, our program will update its knowl-
edge accordingly.

Even so, the accuracy of the prediction drops rather
quickly. In the average middle game, the umpire answers
with a non-silent message about 20-30% of the time. Clearly,
the reliability of this method degrades quickly as the tree gets
deeper, and the exploration itself becomes pointless past a
certain limit. At the very least, this shows that any selection
algorithm based on this method will have to weigh evalua-
tions differently depending on where they are in the tree; with
shallow nodes weighing more than deeper ones, and even so,
exploration becomes fruitless past a certain threshold.

3.2 The selection algorithm

Now that the primitives have been discussed in detail,
it is possible to describe the selection algorithm for the
metaposition-based player. Several variants on this approach
have been developed, optimizing the algorithm for fast play
over the Internet Chess Club using such methods as pruning
and killer-like techniques; this is its first and basic formula-
tion.

The whole stratagem of metapositions was aimed at mak-
ing traditional minimax techniques work with Kriegspiel. Ac-
tually, since MIN’s moves do not really exist (MIN always
has only one choice) if we use the compact form for the
tree, with each node representing two plies, the algorithm
resembles a weighed maximax. Maximax is a well-known
criterion for decision-making under uncertainty. This variant
is weighed, meaning that it accepts an additional parameter
a €]0,1], called the prediction coefficient. The algorithm
also specifies a maximum depth level k for the search. Fur-
thermore, we define two special values, 00, as possible out-
put to the evaluation function eval. They represent situa-
tions so desirable or undesirable that they often coincide with
victory or defeat, and should not be expanded further.

Defining Mt as the set of all metapositions and Mv as the
set of all possible chess moves, the selection algorithm makes
use of the following functions:

e pseudo: (Mt x Mv) — Mt, which generates a
new metaposition from an existing one and a pseudo-
move, simulating the umpire’s responses as described in
the last section.

e meta: Mt — Mt, which generates a new metapo-
sition simulating the opponent’s move and, again, virtual
umpire messages.

e generate: Mt — Vectoryyy, the move genera-

tion function.

e eval: (MtxMvxMt)— R, the evaluation func-
tion, accepting a source metaposition, an evolved meta-
position (obtained by means of pseudo), and the move in
between.

The algorithm defines a value function for a metaposition
and a move, whose pseudocode is listed in Figure 1. The
actual implementation is somewhat more complex due to op-
timizations that minimize the calls to pseudo.

It is easily seen that such a function satisfies the property
that a node’s weight decrease exponentially with its depth.

I[JCAI-07
2453

function value (metaposition met, move mov, int depth): real
begin
metaposition met2 := pseudo(met, mov);
real staticvalue := eval(met, mov, met2);
if (depth < 0) or (staticvalue = =+ co)
return staticvalue
else
begin
//simulate opponent,
MAX.
metaposition met3 := meta(met2);
vector movevec := generate(met3);
real best := MaXyecmovevec Value(met3, x, depth-1);
//weighed average with parent’s

recursively find

value.
return (staticvalue*a)+best*(1 — «)
end
end.

Figure 1: Pseudocode listing for value function.

Given the best maximax sequence of depth d from root to leaf
mi,...,mq, where each node is provided with static value
S1,...,84, the actual value of m; will depend on the static
values of each node m; with relative weight of. Thus, as
the accuracy of the program’s foresight decreases, so do the
weights associated with it, and the engine will tend to favor
good positions in the short run.

Parameter o is meant to be variable, as it can be used to
adjust the algorithm’s willingness to take risks, as well as our
level of confidence in the heuristics that generate the sim-
ulated umpire messages. Higher values of « lead to more
conservative play for higher reward in the short run, whereas
lower values will tend to accept more risk in exchange for
possibly higher returns later on. Generally, the player who is
having the upper hand will favor open play whereas the los-
ing player tends to play conservatively to reduce the chance
of further increasing the material gap. Material balance and
other factors can therefore be used to dynamically adjust the
value of « during the game.

4 An evaluation function for metapositions

The evaluation functions for chess programs have usually
three main components: material count, mobility, and posi-
tion evaluation. A metaposition evaluation function, however,
does not work on a single chessboard, but on an entity repre-
senting billions of chessboards, and may need to introduce
equivalent, but different concepts. For example, our evalua-
tion function currently has three main components that it will
try to maximize throughout the game: material safety, posi-
tion, and information.

4.1 Material safety

Material safety is a function of type (Mt x Sq x Bool) —
[0,1]. Tt accepts a metaposition, a square and a boolean and
returns a safety coefficient for the friendly piece on the given
square. The boolean parameter tells whether the piece has

just been moved (as it is clear that a value of true decreases
the piece’s safety; statistically speaking, the risk of losing the
piece being moved is much higher). A value of 1 means it
is impossible for the piece to be captured on the next move,
whereas a value of 0 indicates a very high-risk situation with
an unprotected piece.

It should be noted, however, that material safety does not
represent a probability of the piece being captured, or even
an estimate of it; its result simply provides a reasonable mea-
sure of the exposure of a piece and the urgency with which it
should be protected or moved away from danger.

4.2 Position

Our player includes the following factors into its evaluation
function:

e A pawn advancement bonus. In addition, there is a fur-
ther bonus for the presence of multiple queens on the
chessboard.

e A bonus for files without pawns, and friendly pawns on
such files.

e A bonus for the number of controlled squares, as com-
puted with a special protection matrix. This factor is
akin to mobility in traditional chess-playing software.

In addition, the current position also affects material rating,
as certain situations may change the values of the player’s
pieces. For example, the value of pawns is increased if the
player lacks sufficient mating material.

An additional component is evaluated when Darkboard
is considering checkmating the opponent. A special func-
tion represents perceived progress towards winning the game,
partly borrowed from [Bolognesi and Ciancarini, 20031, thus
encouraging the program to push the opponent’s pseudokings
towards the edges of the chessboard.

4.3 Information

One of the crucial advantages of using metapositions lies in
the ability to estimate the quality and quantity of informa-
tion available to the player. In fact, because we are operating
with a large superset of the information set which necessarily
incorporates the current true state of the game, to acquire in-
formation simply means to aim towards reducing the size of
the metaposition’s position set; therefore, an indicator based
on size (for example, the sum of all the pseudopieces on the
chessboard) can enter the evaluation function and the player
will strive towards states with reduced uncertainty. An ap-
proch such as Monte Carlo cannot do this, as its belief state
works on a small subset of the information set wherein each
single state is dogma when evaluated.

Our player will attempt to gather information about the
state of the chessboard, as the evaluation function is designed
to make information desirable (precisely, it is designed to
make the lack of information undesirable) by reducing a func-
tion, which we call chessboard entropy (I), satisfying the
following.

e The function’s value increases after every metamove
from the opponent, that is (m2 = meta(my)) =

I[JCAI-07
2454

e The function’s value decreases after each pseudomove
from the player, that is (my = pseudo(my,z €
Mv)) = E(mz) < E(myq).

Therefore, the chessboard entropy is constantly af-
fected by two opposing forces, acting on alternate plies.
We can define AE(m,z),m € Mt,x € Mv as
E(pseudo(meta(m,x))) — E(m), the net result from two
plies. Our program will attempt to minimize AF in the eval-
uation function. In the beginning, entropy increases steeply
no matter what is done; however, in the endgame, the winner
is usually the player whose chessboard has less entropy.

Darkboard’s algorithm for computing entropy revolves
around the age matrix, encouraging the program to explore
squares with a higher age value (meaning that they have not
been visited in a long time). Clearly, there are constants
involved: making sure there are no enemy pawns on the
player’s second rank is more important than checking for their
presence on the fifth rank.

5 Experimental results and conclusions

We remark that the ruleset used for our program is the
one enforced on the Internet Chess Club, which currently
hosts the largest Kriegspiel community of human players.
Our metaposition-based Kriegspiel player, Darkboard, is cur-
rently, to the best of our knowledge, the only existing artifi-
cial player capable of facing human players over the Internet
on reasonable time control settings (three-minute games) and
achieve well above average rankings, with a best Elo rating
of 1814 which placed it at the time among the top 20 players
on the Internet Chess Club. We note that Darkboard plays an
average of only 1.415 tries per move, and therefore it does
not use the advantage of physical speed to try large amounts
of moves.

Darkboard defeats a random-moving opponent approxi-
mately 94.8% of the time. It defeats a random player with ba-
sic heuristics (a player which will always capture when pos-
sible but otherwise move randomly) approximately 79.3% of
the time; the rest are draws by either stalemate or repetition.

Darkboard won Gold medal at the Eleventh Computer
Olympiad which took place from May 24 to June 1, 2006 in
Turin. The player defeated an improved version of the Monte
Carlo player described in [Parker et al., 2005] with a score of
6-2.

In view of these results, we argue that using metapositions
to evaluate a superset of the current game state rather than a
subset of it yields very encouraging results for those games
with strongly incomplete information and an extremely large
belief state.

References

[Bolognesi and Ciancarini, 2003] A. Bolognesi and P. Cian-
carini. Computer Programming of Kriegspiel Endings: the
case of KR vs K. InJ. van den Herik, H. Iida, and E. Heinz,
editors, Advances in Computer Games 10, pages 325-342.
Kluwer, 2003.

[Bolognesi and Ciancarini, 2004] A. Bolognesi and P. Cian-
carini. Searching over Metapositions in Kriegspiel. In

J. van den Herik and H. Iida, editors, Computer and Games
04, volume (to appear) of Lecture Notes in Artificial Intel-
ligence. Springer, 2004.

[Ciancarini et al., 1997] P. Ciancarini, F. DallaLibera, and
F. Maran. Decision Making under Uncertainty: A Rational
Approach to Kriegspiel. In J. van den Herik and J. Uiter-
wijk, editors, Advances in Computer Chess 8, pages 277—
298. Univ. of Rulimburg, 1997.

[Frank and Basin, 1998] I. Frank and D. Basin. Search in
games with incomplete information: A case study using
bridge card play. Artificial Intelligence, 100(1-2):87-123,
1998.

[Parker et al., 20051 A. Parker, D. Nau, and VS. Subrahma-
nian. Game-Tree Search with Combinatorially Large Be-
lief States. In Int. Joint Conf. on Artificial Intelligence (1J-
CAI0S5), volume (to appear), Edinburgh, Scotland, 2005.

[Sakuta, 2001] M. Sakuta. Deterministic Solving of Prob-
lems with Uncertainty. PhD thesis, Shizuoka University,
Japan, 2001.

I[JCAI-07
2455

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

