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Abstract

Markov models are commonly used for joint in-
ference of label sequences. Unfortunately, infer-
ence scales quadratically in the number of labels,
which is problematic for training methods where
inference is repeatedly preformed and is the pri-
mary computational bottleneck for large label sets.
Recent work has used output coding to address this
issue by converting a problem with many labels to
a set of problems with binary labels. Models were
independently trained for each binary problem, at
a much reduced computational cost, and then com-
bined for joint inference over the original labels.
Here we revisit this idea and show through exper-
iments on synthetic and benchmark data sets that
the approach can perform poorly when it is critical
to explicitly capture the Markovian transition struc-
ture of the large-label problem. We then describe a
simple cascade-training approach and show that it
can improve performance on such problems with
negligible computational overhead.

1 Introduction

Sequence labeling is the problem of assigning a class label
to each element of an input sequence. We study supervised
learning for sequence-labeling problems where the number
of labels is large. Markov models are widely used for se-
quence labeling, however, the time complexity of standard
inference algorithms, such as Viterbi and forward-backward,
scales quadratically with the number of labels. When this
number is large, this can be problematic when predictions
must be made quickly. Even more problematic is the fact
that a number of recent approaches for training Markov mod-
els, e.g. [Lafferty et al., 2001; Tsochantaridis et al., 2004;
Collins, 2002], repeatedly perform inference during learning.
As the number of labels grows, such approaches quickly be-
come computationally impractical.

This problem has led to recent work that considers various
approaches to reducing computation while maintaining high
accuracy. One approach has been to integrate approximate-
inference techniques such as beam search into the learning
process [Collins and Roark, 2004; Pal et al., 2006]. A sec-
ond approach has been to consider learning subclasses of
Markov models that facilitate sub-quadratic inference—e.g.
using linear embedding models [Felzenszwalb et al., 2003],
or bounding the number of distinct transition costs [Siddiqi

and Moore, 2005]. Both of these approaches have demon-
strated good performance on a number of sequence-labeling
problems that satisfy the assumptions of the models.

A third recent approach, which is the focus of this paper, is
sequential error-correcting output coding (SECOC) [Cohn et
al., 2005] motivated by the success of error-correcting output
coding (ECOC) for non-sequential problems [Dietterich and
Bakiri, 1995]. The idea is to use an output code to “reduce” a
multi-label sequence-learning problem to a set of binary-label
problems. SECOC solves each binary problem independently
and then combines the learned models to make predictions
over the original large label set. The computational cost of
learning and inference scales linearly in the number of binary
models and is independent of the number of labels. Experi-
ments on several data sets showed that SECOC significantly
reduced training and labeling time with little loss in accuracy.

While the initial SECOC results were encouraging, the
study did not address SECOC’s general applicability and its
potential limitations. For non-sequential learning, ECOC has
been shown to be a formal reduction from multi-label to bi-
nary label classification [Langford and Beygelzimer, 2005].
One contribution of this paper is to show that this result does
not hold for sequential learning. That is, there are sequence
labeling problems, such that for any output code, SECOC per-
forms poorly compared to directly learning on the large label
set, even assuming optimal learning for the binary problems.

Given the theoretical limitations of SECOC, and the prior
empirical success, the main goals of this paper are: 1) to bet-
ter understand the types of problems for which SECOC is
suited, 2) to suggest a simple approach to overcoming the
limitations of SECOC and to evaluate its performance. We
present experiments on synthetic and benchmark data sets.
The results show that the originally introduced SECOC per-
forms poorly for problems where the Markovian transition
structure is important, but where the transition information is
not captured well by the input features. These results suggest
that when it is critical to explicitly capture Markovian transi-
tion structure SECOC may not be a good choice.

In response we introduce a simple extension to SECOC
called cascaded SECOC where the predictions of previously
learned binary models are used as features for later mod-
els. Cascading allows for richer transition structure to be
encoded in the learned model with little computational over-
head. Our results show that cascading can significantly im-
prove on SECOC for problems where capturing the Markov-
ian structure is critical.
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2 Conditional Random Fields

We study the sequence-labeling problem, where the goal
is to learn a classifier that when given an observation se-
quence X = (x1,x2, . . . ,xT ) returns a label sequence Y =
(y1, y2, . . . , yT ) that assigns the correct class label to each
observation. In this work, we will use conditional random
fields (CRFs) for sequence labeling. A (sequential) CRF is
a Markov random field [Geman and Geman, 1984] over the
label sequence Y globally conditioned on the observation se-
quence X. The Hammersley-Clifford theorem states that the
conditional distribution P (Y |X) has the following form:

P (Y |X) =
1

Z(X)
exp

∑

t

Ψ(yt−1, yt,X),

where Z(X) is a normalization constant, and Ψ(yt−1, yt,X)
is the potential function defined on the clique (yt−1, yt). For
simplicity, we only consider the pair-wise cliques (yt−1, yt),
i. e. chain-structured CRFs, and assume that the potential
function does not depend on position t. As in [Lafferty et
al., 2001], the potential function is usually represented as a
linear combination of binary features:

Ψ(yt−1, yt,X) =
∑

α

λαfα(yt,X) +
∑

β

γβgβ(yt, yt−1, X).

The functions f capture the relationship between the label yt

and the input sequence X; the boolean functions g capture
the transitions between yt−1 and yt (conditioned on X).

Many CRF training algorithms have been proposed for
training the parameters λ and γ, however, most all of these
methods involve the repeated computation of the partition
function Z(X) and/or maximizing over label sequences,
which is usually done using the forward-backward and
Viterbi algorithms. The time complexity of these algorithms
is O(T ·Lk+1), where L is the number of class labels, k is the
order of Markov model, and T is the sequence length. So even
for first order CRFs, training and inference scale quadratically
in the number of class labels, which becomes computationally
demanding for large label sets. Below we describe the use of
output coding for combating this computational burden.

3 ECOC for Sequence Labeling

For non-sequential supervised classification, the idea of
Error-Correcting Output Coding (ECOC) has been success-
fully used to solve multi-class problems [Dietterich and
Bakiri, 1995]. A multi-class learning problem with train-
ing examples {(xi, yi)} is reduced to a number of binary-
class learning problems by assigning each class label j a bi-
nary vector, or code word, Cj of length n. A code matrix
M is built by taking the code words as rows. Each column
bk in M can be regarded as a binary partition of the origi-
nal label set, bk(y) ∈ {0, 1}. We can then learn a binary
classifier hk using training examples {(xi, bk(yi))}. To pre-
dict the label of a new instance x, we concatenate the pre-
dictions of each binary classifier to get a vector H(x) =
(h1(x), h2(x), . . . , hn(x). The predicted label ŷ is then given
by ŷ = argminj Δ(H(x), Cj), where Δ is some distance
measure, such as Hamming distance. In some implementa-
tions H(x) stores probabilities rather than binary labels.

This idea has recently been applied to sequence labeling
problems under the name sequential error-correcting output
coding (SECOC) [Cohn et al., 2005], with the motivation of
reducing computation time for large label sets. In SECOC,
instead of training a multi-class CRF, we train a binary-class
CRF hk for each column bk of a code matrix M . More specif-
ically the training data for CRF hk is given by {(Xi, bk(Yi))},
where bk(Y ) = (bk(y1), bk(y2), . . . , bk(yT )) is a binary la-
bel sequence. Given a set of binary classifiers for a code ma-
trix and an observation sequence X we compute the multi-
label output sequence as follows. We first use the forward-
backward algorithm on each hk to compute the probabil-
ity that each sequence position should be labeled 1. For
each sequence element xt we then form a probability vector
H(xt) = (p1, ..., pn) where pk is the probability computed
by hk for xt. We then let the label for xt be the class label yt

whose codeword is closest to H(xt) based on L1 distance.
The complexity of this inference process is just O(n · T )
where n is the codeword length, which is typically much
smaller than the number of labels squared. Thus, SECOC
can significantly speed inference time for large label sets.

Prior work [Cohn et al., 2005] has demonstrated on several
problems that SECOC can significantly speed training time
without significantly hurting accuracy. However, this work
did not address the potential limitations of the SECOC ap-
proach. A key characteristic of SECOC is that each binary
CRF is trained completely independently of one another and
each binary CRF only sees a very coarse view of the multi-
class label sequences. Intuitively, it appears difficult to repre-
sent complex multi-class transition models between yt−1 and
yt using such independent chains. This raises the fundamen-
tal question of the representational capacity of the SECOC
model. The following counter example gives a partial answer
to this question, showing that the SECOC model is unable to
represent relatively simple multi-label transition models.

SECOC Counter Example. Consider a simple Markov
model with three states Y = {1, 2, 3} and deterministic tran-
sitions 1 → 2, 2 → 3 and 3 → 1. A 3-by-3 diagonal code
matrix is sufficient for capturing all non-trivial codewords for
this label set—i. e. all non-trivial binary partitions of Y . Be-
low we show an example label sequence and the correspond-
ing binary code sequences.

y1 y2 y3 y4 y5 y6 y7

Y 1 2 3 1 2 3 1
b1(Y ) 1 0 0 1 0 0 1
b2(Y ) 0 1 0 0 1 0 0
b3(Y ) 0 0 1 0 0 1 0

Given a label sequence Y = {1, 2, 3, 1, 2, 3, 1, . . .}, a first-
order Markov model learned for b1(Y ) will converge to
P (yt = 1|yt−1 = 0) = P (yt = 0|yt−1 = 0) = 0.5. It can
be shown that as the sequence length grows such a model will
make i.i.d. predictions according to the stationary distribution
that predicts 1 with probability 1/3. The same is true for b2

and b3. Since the i.i.d. predictions between the binary CRFs
are independent, using these models to make predictions via
SECOC will yield a substantial error rate, even though the
sequence is perfectly predictable. Independent first-order bi-
nary transition models are simply unable to capture the tran-
sition structure in this problem. Our experimental results will
show that this deficiency is also exhibited in real data.
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4 Cascaded SECOC Training of CRFs

Each binary CRF in SECOC has very limited knowledge
about the Markovian transition structure. One possibility to
improve this situation is to provide limited coupling between
the binary CRFs. One way to do this is to include observation
features in each binary CRF that record the binary predictions
of previous CRFs. We call this approach cascaded SECOC
(c-SECOC), as opposed to independent SECOC (i-SECOC).

Given training examples S = {(Xi, Yi)}, let Y
(j)
i be the

prediction of the binary CRF learned with the j-th binary par-

tition bj and y
(j)
it be the t-th element of Y

(j)
i . To train the

binary CRF hk based on binary partition bk, each training ex-
ample (Xi, Yi) is extended to (X′

i, bk(Yi)), where each x
′

it is
the union of the observation features xit and the predictions
of the previous h binary CRFs at sequence positions from t−l
to t + r (l = r = 1 in our experiments) except position t:

x
′

it = (xit, y
(k−1)
i,t−l , . . . , y

(k−1)
i,t−1 , y

(k−1)
i,t+1 , . . . , y

(k−1)
i,t+r ,

. . . , y
(k−h)
i,t−l , . . . , y

(k−h)
i,t−1 , y

(k−h)
i,t+1 , . . . , y

(k−h)
i,t+r ).

We refer to h as the cascade history length. We do not use the
previous binary predictions at position t as part of x

′

it, since
such features have significant autocorrelation which can eas-
ily lead to overfitting. To predict Y for a given observation se-
quence X, we make predictions from the first binary CRF to
the last, feeding predictions into later binary CRFs as appro-
priate, and then use the same decoding process as i-SECOC.

Via the use of previous binary predictions, c-SECOC has
the potential to capture Markovian transition structure that i-
SECOC cannot. Our experiments show that this is impor-
tant for problems where the transition structure is critical
to sequence labeling, but is not reflected in the observation
features. The computational overhead of c-SECOC over i-
SECOC is to increase the number of observation features,
which typically has negligible impact on the overall training
time. As the cascade history grows, however, there is the po-
tential for c-SECOC to overfit with the additional features.
We will discuss this issue further in the next section.

5 Experimental Results

We compare CRFs trained using i-SECOC, c-SECOC, and
beam search over the full label set. We consider two existing
base CRF algorithms: gradient-tree boosting (GTB) [Diet-
terich et al., 2004] and voted perceptron (VP) [Collins, 2002].
GTB is able to construct complex features from the primitive
observations and labels, whereas VP is only able to combine
the observations and labels linearly. Thus, GTB has more
expressive power, but can require substantially more compu-
tational effort. In all cases we use the forward-backward al-
gorithm to make label-sequence predictions and measure ac-
curacy according to the fraction of correctly labeled sequence
elements. We used random code matrices constrained so that
no columns are identical or complementary, and no class la-
bels have the same code word.

First, we consider a non-sequential baseline model denoted
as “iid” which treats all sequence elements as independent
examples, effectively using non-sequential ECOC at the se-
quence element level. In particular, we train iid using i-
SECOC with zeroth-order binary CRF, i. e. CRFs with no

transition model. This model allows us to assess the accuracy
that can be attained by looking at only a window of observa-
tion features. Second, we denote by “i-SECOC” the use of
i-SECOC to train first-order binary CRFs. Third, we denote
by “c-SECOC(h)” the use of c-SECOC to train first-order bi-
nary CRFs using a cascade history of length h.

Summary of Results. The results presented below justify
five main claims: 1) i-SECOC can fail to capture significant
transition structures, leading to poor accuracy. Such obser-
vations were not made in the original evaluation of i-SECOC
[Cohn et al., 2005]. 2) c-SECOC can significantly improve
on i-SECOC through the use of cascade features. 3) The per-
formance of c-SECOC can depend strongly on the base CRF
algorithm. In particular, it appears critical that the algorithm
be able to capture complex (non-linear) interactions in the ob-
servation and cascade features. 4) c-SECOC can improve on
models trained using beam search when GTB is used as the
base CRF algorithm. 5) When using weaker base learning
methods such as VP, beam search can outperform c-SECOC.

5.1 Nettalk Data Set

The Nettalk task [Sejnowski and Rosenberg, 1987] is to as-
sign a phoneme and stress symbol to each letter of a word so
that the word is pronounced correctly. Here the observations
correspond to letters yielding a total of 26 binary observa-
tion features at each sequence position. Labels correspond to
phoneme-stress pairs yielding a total of 134 labels. We use
the standard 1000 training and 1000 test sequences.

Comparing to i-SECOC. Figures 1a and 1b show the re-
sults for training our various models using GTB with window
sizes 1 and 3. For window size 1, we see that i-SECOC is
able to significantly improve over iid, which indicates that
i-SECOC is able to capture useful transition structure to im-
prove accuracy. However, we see that by increasing the cas-
cade history length c-SECOC is able to substantially improve
over i-SECOC. Even with h = 1 the accuracy improves by
over 10 percentage points. This indicates that the indepen-
dent CRF training strategy of i-SECOC is unable to capture
important transition structure in this problem. c-SECOC is
able to exploit the cascade history features in order to cap-
ture this transition information, which is particularly critical
in this problem where apparently just using the information in
the observation window of length 1 is not sufficient to make
accurate predictions (as indicated by the iid results).

Results for window size 3 are similar. However, the im-
provement of i-SECOC over iid and of c-SECOC over i-
SECOC are smaller. This is expected since the larger window
size spans multiple sequence positions, allowing the model to
capture transition information using the observations alone,
making the need for an explicit transition model less impor-
tant. Nevertheless, both SECOC methods can capture useful
transition structure that iid cannot, with c-SECOC benefiting
from the use of cascade features. For both window sizes, we
see that c-SECOC performs best for a particular cascade his-
tory length, and increasing beyond that length decreases ac-
curacy by a small amount. This indicates that c-SECOC can
suffer from overfitting as the cascade history grows.

Figures 1c and 1d show corresponding results for VP. We
still observe that including cascade features allows c-SECOC
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Figure 1: Nettalk data set with window sizes 1 and 3 trained by GTB and VP.

to improve upon i-SECOC, though compared to GTB longer
cascade histories are required to achieve improvement. No
overfitting was observed up to cascade history length 50.
However, we were able to observe overfitting after code
length 160 by including all possible cascade history bits, de-
noted by c-SECOC(all). All of our overfitting results suggest
that in practice a limited validation process should be used to
select the cascade history for c-SECOC. For large label sets,
trying a small number of cascade history lengths is a much
more practical alternative than training on the full label set.

GTB versus VP. c-SECOC using GTB performs signifi-
cantly better than using VP. We explain this by noting that
the critical feature of c-SECOC is that the binary CRFs are
able exploit the cascade features in order to better capture the
transition structure. VP considers only linear combinations
of these features, whereas GTB is able to capture non-linear
relationships by inducing complex combinations of these fea-
tures and hence capturing richer transition structure. This in-
dicates that when using c-SECOC it can be important to use
training methods such as GTB that are able to capture rich
patterns in the observations and hence of the cascade features.

Comparing to Beam Search. Here we compare the per-
formance of c-SECOC with multi-label CRF models trained
using beam search in place of full-Viterbi and forward-
backward inference, which is a common approach to achiev-
ing practical inference with large label sets. For beam search,
we tried various beam-sizes within reasonable computational
limits. Figure 2 shows the accuracy/training-time trade-offs
for the best beam-search results and the best results achieved
for SECOC with 200 code-word bits and various cascade his-
tories. The graph shows the test set performance versus the
amount of training time in CPU seconds. First notice that
GTB with beam search is significantly worse than for VP. We

believe this is because GTB requires forward-backward infer-
ence during training whereas VP does not, and this is more
adversely affected by beam search. Rather, c-SECOC using
GTB performs significantly better than VP with beam search.

5.2 Noun Phrase Chunking

We consider the CoNLL 2000 Noun Phrase Chunking (NPC)
shared task that involves labeling the words of sentences.
This was one of the problems used in the original evaluation
of i-SECOC. There are 121 class labels, which are combi-
nations of Part-of-speech tagging labels and NPC labels, and
21,589 observation features for each word in the sequences.
There are 8,936 sequences in the training set and 2,012 se-
quences in the test set. Due to the large number of observa-
tion features, we can not get good results for GTB using our
current implementation and only present results for VP.

Comparing to i-SECOC. As shown in Figure 3a, for win-
dow size 1, i-SECOC outperforms iid and incorporating cas-
cade features allows c-SECOC to outperform i-SECOC by
a small margin. Again we see overfitting for c-SECOC for
larger numbers of cascade features. Moving to window size
3 changes the story. Here a large amount of observation in-
formation is included from the current and adjacent sentence
positions, and as a result the iid performs as well as any of the
SECOC approaches. The large amount of observation infor-
mation at each sequence position appears to capture enough
transition information so that SECOC gets little benefit from
learning an explicit transition model. This suggests that the
performance of the SECOC methods in this domain are pri-
marily a reflection of the ability of non-sequential ECOC.
This is interesting given the i-SECOC results in [Cohn et al.,
2005], where all domains involved a large amount of local
observation information. IID results were not reported there.
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Figure 2: Nettalk: comparison between SECOC and beam search.
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Figure 3: NPC data set with window sizes 1 and 3 trained by VP.

Comparing to Beam Search. We compare the accuracy
versus training-time for models trained with SECOC and with
beam search, using the already described experimental setup.
Figure 4 shows that beam search performs much better than
the c-SECOC methods within the same training time using
VP as the base learning algorithm. We believe the poor per-
formance of c-SECOC compared to beam search is that us-
ing VP does not allow for rich patterns to be captured in the
observations which include the cascade features. We hypoth-
esize, as observed in Nettalk, that c-SECOC would perform
as well or better than beam search given a base CRF method
that can capture complex patterns in the observations.

5.3 Synthetic Data Sets

Our results suggest that i-SECOC does poorly when critical
transition structure is not captured by the observation features
and that c-SECOC can improve on i-SECOC in such cases.
Here we further evaluate these hypotheses.

We generated data using a hidden Markov model (HMM)
with 40 labels/states {l1, . . . , l40} and 40 possible observa-
tions {o1, . . . , o40}. To specify the observation distribution,
for each label li we randomly draw a set Oi of ko observations
not including oi. If the current state is li, then the HMM gen-
erates the observation oi with probability po and otherwise
generates a randomly selected observation from Oi. The ob-
servation model is made more important by increasing po and
decreasing ko. The transition model is defined in a similar
way. For each label li we randomly draw a set Li of kl labels
not including li. If the current state is li then the HMM sets
the next state to li with probability pl and otherwise generates
a random next state from Li. Increasing pl and decreasing kl

increases the transition model importance.
“Transition” Data Set. Here we use po = 0.2, ko = 8,

pl = 0.6, kl = 2, so that the transition structure is very im-
portant and observation features are quite uninformative. Fig-
ure 5a shows the results for GTB training using window size
1. We see that i-SECOC is significantly better than iid indicat-
ing that it is able to exploit transition structure not available
to iid. However, including cascade features allows c-SECOC
to further improve performance, showing that i-SECOC was
unable to fully exploit information in the transition model. As
in our previous experiments we observe that c-SECOC does
overfit for the largest number of cascade features. For win-
dow size 3 (graph not shown) the results are similar except
that the relative improvements are less since more observa-
tion information is available, making the transition model less
critical. These results mirror those for the Nettalk data set.

“Both” Data Set. Here we use po = 0.6, ko = 2, pl = 0.6,
kl = 2 so that both the transition structure and observation
features are very informative. Figure 5b shows results for
GTB with window size 3. The observation features provide a
large amount of information and performance of iid is similar
to that of the SECOC variants. Also we see that c-SECOC
is unable to improve on i-SECOC in this case. This suggests
that the observation information captures the bulk of the tran-
sition information, and the performance of the SECOC meth-
ods is a reflection of non-sequential ECOC, rather than of
their ability to explicitly capture transition structure.

6 Summary

We uncovered empirical and theoretical shortcomings of in-
dependently trained SECOC. Independent training of binary
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Figure 4: NPC: comparison between SECOC and beam search using VP.
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Figure 5: Synthetic data sets trained by GTB.

CRFs can perform poorly when it is critical to explicitly
capture complex transition models. We proposed cascaded
SECOC and showed that it can improve accuracy in such sit-
uations. We also showed that when using less powerful CRF
base learning algorithms, approaches other than SECOC (e.g.
beam search) may be preferable. Future directions include
efficient validation procedures for selecting cascade history
lengths, incremental generation of code words, and a wide
comparison of methods for dealing with large label sets.
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