Using a Hierarchical Bayesian Model to Handle High Cardinality Attributes
with Relevant Interactions in a Classification Problem *

Jorge Jambeiro Filho
Secretaria da Receita Federal
Alfndega do Aeroporto de Viracopos
Rodovia Santos Dummont, Km 66
Campinas-SP, Brazil, CEP 13055-900
jorge.filho@jambeiro.com.br

Abstract

We employed a multilevel hierarchical Bayesian
model in the task of exploiting relevant interactions
among high cardinality attributes in a classification
problem without overfitting. With this model, we
calculate posterior class probabilities for a pattern
W combining the observations of W in the train-
ing set with prior class probabilities that are ob-
tained recursively from the observations of patterns
that are strictly more generic than W. The model
achieved performance improvements over standard
Bayesian network methods like Naive Bayes and
Tree Augmented Naive Bayes, over Bayesian Net-
works where traditional conditional probability ta-
bles were substituted by Noisy-or gates, Default Ta-
bles, Decision Trees and Decision Graphs, and over
Bayesian Networks constructed after a cardinality
reduction preprocessing phase using the Agglom-
erative Information Bottleneck method.

1 Introduction

In most countries, imported goods must be declared by the
importer to belong to one of large set of classes (customs
codes). It is important that each good is correctly classified,
because each of the customs codes mean not only different
customs duties but also different administrative, sanitary, and
safety requirements. The goal of this project is to develop
a tool that, considering four attributes: declared custom code
(DCC), importer (IMP), country of production (CP) and entry
point in the receiving country (EPR), will estimate, for each
new example, the probability that it involves a misclassifica-
tion. Such estimates will be used latter by a larger system that
allocates human resources for different types of anti-fraud op-
erations.

Our data set has 47826 examples of correct classification
(which we will call negative examples) and 590 examples of
misclassification (positive examples). In this dataset, the first
attribute has 3826 distinct values, the second, 1991 values,
the third, 101 values, and the fourth 52 values.
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With only 1.2% of positive examples, dataset is imbal-
anced what is usually handled with different resampling
strategies [Chawla et al., 2002]. However, resampling re-
quires retraining the classifiers for each different assignment
of costs for false positives and false negatives. In our con-
text, such costs are not known in advance (priorities changes
acording to other anti-fraud demands) and they may vary
from example to example (not all false negatives cost the
same). Thus we cannot train the classifiers for all possible
cost assignments in advance.

On the other hand, if we can produce reliable probability
estimates directly from the original dataset the work of the
human resource allocation system becomes much easier. It
can, for example, at any time, define a selection rate SR that
matches the available human resources for the specific task
of detecting wrong customs codes considering all other anti-
fraud demands at the moment. The examples to be verified
will naturally be the SR examples that are most likely to
involve a misclassification. The allocation system may also
combine the probability estimates with costs that may vary
from to example to example without any retraining. It be-
comes also unnecessary that customs administration discuss
their cost criteria with us. Thus we decided to concentrate on
Bayesian techniques and not to use resampling or any other
technique that requires retraining when costs change.

Domain specialists claim that there are combinations of at-
tributes values (some involving all of them) that make the
probability of an instance being positive significantly higher
then it could be expected looking at each value separately.
They call such combinations critical patterns. To benefit
from critical patterns we would like to use a Bayesian Net-
work (BN)[Pearl, 1988] where all attribute nodes are parents
of the class node. We call such structure the Direct BN Struc-
ture.

In a BN, considering that zj; is a possible value for node
X; and 7, is a complete combination of values for 11;, the
set of parents of node X, the vector, 0,1, such that 0; =
P(z;i|m k), contained in the CPT of a node X, is assessed
from the frequencies of the values of X; among the training
instances where II; = ;. The distributions of X; given any
two different combinations of values for the parents of X; are
assumed to be independent and a Dirichlet prior probability
distribution for 6;;, is usually adopted. Applying Bayes rule
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and integrating over all possible values for 6;;, it is found that:
Niki + ki
Njk + ajk

where Njj; is the number of simultaneous observations of
x;; and 7y, in the training set, N;;, = sz‘ Njki, g is the
value of one of the parameters of the Dirichlet prior probabil-
ity distribution and o, = >\, ajki, the equivalent sample
size of the prior probability distribution.

The Dirichlet prior probability distribution is usually as-
sumed to be noninformative, what yields to:

Nijki + A
Nk + AM;

where all parameters of Dirichlet distribution are equal to a
small smoothing constant A, and M is the number of possible
values for node X ;. We call this Direct Estimation (DE).

In the Direct BN Structure the node whose CPT is to be
estimated is the class node and all other attribute nodes are
its parents. The Conditional Probability Table (CPT) of the
class node in such a structure contains more than 40 x 10°
parameters. It is clear that for rarely seen combinations of
attributes the choice of the structure in the Direct BN Struc-
ture and equation 2 tends to produce unreliable probabilities
whose calculation is dominated by the noninformative prior
probability distribution. This suggests that using the Direct
BN Structure and traditional CPTs we will have overfitting
problems.

Instead of the Direct BN Structure, we can choose a net-
work structure that does not lead to too large tables. This
can be achieved limiting the number of parents for a network
node. Naive Bayes [Duda and Hart, 1973] is an extreme ex-
ample where the maximum number of parents is limited to
one (the class node is the only parent of any other node). Tree
augmented Naive Bayes (TAN) [Friedman et al., 1997] adds
a tree to the structure of Naives Bayes connecting the non-
class attributes, and thus limits the maximum number of par-
ent nodes to two. However, limiting the maximum number of
parents also limits our ability to capture interactions among
attributes and benefit from critical patterns. Thus, we would
prefer not to do it.

Since the high cardinality of our attributes is creating trou-
ble, it is a reasonable idea to preprocess the data, reducing the
cardinality of the attributes. We can use, for example, the Ag-
glomerative Information Bottleneck (AIBN) method [Slonim
and Tishby, 1999] in this task. However, the process of re-
ducing the cardinality of one attribute is blind in respect to
the others (except to the class attribute), and thus it is un-
likely that cardinality reduction will result in any significant
improvement in the ability to capture critical patterns, which
always depend on more than one attribute.

When the number of probabilities to be estimated is too
large when compared to the size of the training set and
we cannot fill the traditional conditional probability tables
(CPTs) satisfactorily and [Pearl, 1988] recommends the
adoption of a model that resorts to causal independence as-
sumptions like the Noisy-Or gate. Using a Noisy-Or the num-
ber of parameters required to represent the conditional prob-
ability distribution (CPD) of a node given its parents, instead

EOjki) = P(xji|mjx) = (1)

P(xjilmj) = ()

of being proportional to the product of the cardinality of all
parents attributes, becomes proportional to the sum of their
cardinality. However, causal independence assumptions are
incompatible with our goal of capturing critical patterns.

It is possible to use more flexible representations for the
conditional probability distributions of a node given its par-
ents, like Default Tables (DFs) [Friedman and Goldszmidt,
19961, Decision Trees (DTs) [Friedman and Goldszmidt,
19961 and Decision Graphs (DGs) [Chickering et al., 1997].
According to [Friedman and Goldszmidt, 1996], using such
representations together with adequate learning procedures
induces models that better emulate the real complexity of
the interactions present in the data and the resulting network
structures tend to be more complex (in terms of arcs) but
require fewer parameters. Fewer parameter may result in
smaller overfitting problems. On the other hand, using tra-
ditional CPTs, we assume that the probability distributions
for a node given any two combinations of values for the par-
ents are independent. If some of these distribution are actu-
ally identical, DTs, DFs and DGs, can reflect it and represent
the CPD using a variable number of parameters that is only
proportional to the number of actually different distributions.

Using DTs, DFs or DGs to represent the conditional distri-
bution of a node given its parents, we assume that the prob-
ability distribution of the node given two different combina-
tions of values for the parents may be either identical or com-
pletely independent. It is possible that neither of the two as-
sumptions hold.

In [Gelman et al., 2003] it is asserted that modeling hierar-
chical data nonhierarchically leads to poor results. With few
parameters nonhierarchical models cannot fit the data accu-
rately. With many parameters they fit the existing data well
but lead to inferior predictions for new data. In other words
they overfit. In contrast hierarchical models can fit the data
well without overfitting. They can reflect similarities among
distributions without assuming equality.

Observing an slight modification in equation 2 used
in [Friedman ef al., 1997] in the definition of a smoothing
schema for TAN we can see that the data that is used to es-
timate the CPT of any node that has at least one parent is
hierarchical:

Njki +S - P(xj)
Nz + S

P(xjilmn) = ©)
where S is a constant that defines the equivalent sample size
of the prior probability distribution. We call this Almost Di-
rect Estimation (ADE). ADE uses the probability distribution
assessed in a wider population to build an informative prior
probability distribution for a narrower population and so it
has a hierarchical nature. Such approach was also used, for
example, in [Cestnik, 1990]. ADE is the consequence of in-
stead of a noninformative Dirichlet prior probability distribu-
tion, adopting a Dirichlet prior probability Distribution where
Qjk; X P(,Tﬂ)

ADE gets closer to the true probability distribution, but its
discrimination power is not significantly better than DE. It is
a linear combination of two factors Njx; /N, and P(z;;).
The second factor is closer to the true probability distribution
than its constant counterpart in Direct Estimation but it is still
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equal for any combination of values of IT; and thus has no
discrimination power.

ADE jumps from a very specific population (the set of
training examples where II; = ;) to a very general pop-
ulation (the whole training set). In contrast, we present a
model, that we call Hierarchical Pattern Bayes (HPB), which
moves slowly from smaller populations to larger ones bene-
fiting from the discrimination power available at each level.

2 The Hierarchical Pattern Bayes Classifier

HPB is a generalization of ADE that employs a hierarchy of
patterns. It combines the influence of different level patterns
in a way that the most specific patterns always dominate if
they are well represented and combines patterns in the same
level making strong independence assumptions and a calibra-
tion mechanism.

HPB works for classification problems where all attributes
are nominal. Given a pattern W and a training set of pairs
(X,C), where C is a class label and X is a pattern, HPB
calculates P(C,.|[W) for any class C, where a pattern is as
defined below:

Definition 1 A pattern is a set of pairs of the form
(Attribute = Value), where any attribute can appear at
most once. An attribute that is not in the set is said to be
undefined or missing.

Definition 2 A pattern Y is more generic than a pattern W
ifand only if Y C W. If'Y is more generic than W, we say
that W satisfies Y.

Definition 3 A pattern Y is strictly more generic than W if
and only if Y C W.

Definition 4 The level of a pattern W, level (W), is the num-
ber of attributes defined in W.

Definition 5 G(W) is the set of all patterns strictly more
generic than a pattern W

2.1 The Hierarchical Model

HPB calculates the posterior probability P(C,.|W), us-
ing a strategy that is similar to Almost Direct Estimation,
but the prior probabilities are considered to be given by
P(C,G(W)).

The parameters of the Dirichlet prior probability distrib-
ution used by HPB are given by: a, = S - P(C,.|G(W)),
where S is a smoothing coefficient. Consequently:

Nur + 8- P(Cr|G(W))
N, +S

where N, is the number of patterns in the training set satisfy-
ing the pattern W and N,,, is the number of instances in the
training set satisfying the pattern W whose class label is C;.

Given equation 4, the problem becomes to calculate
P(C,|G(W)). Our basic idea is to write P(C,.|G(W)) as a
function of the various P(C,.|W;) where the W are patterns
belonging to G(W) and calculate each P(C,.|W;) recursively
using equation 4.

Definition 6 g(W) is the subset of G(W) whose elements
have level equal to level (W) — 1.

“

For example, if Wis {A =a,B =b,C = ¢}, g(W) is:
{{B=bC=c},{A=0a,C=c},{A=a,B=0b}}

We consider that only g(W) influences P(C,.|G(W)) di-
rectly, so that P(C,.|G(W)) = P(C,|g(W)). The influence
of the other patterns in G(W) are captured by the recursive
process. The first step for the decomposition of P(C,.|g(W))
in an expression that can be evaluated recursively is to apply
Bayes theorem:

PlgW)|Cr)P(Cr)
P(g(W))
X P(W17W27"'7WL|OT)P(CT)
where W1, Wa,..., Wy, are the elements of g(1V).
Then we  approximate the joint probability

P(Wy,Wa,...,W.|C,) by the product of the marginal
probabilities:

P(Crlg(W))

L

j=1
but apply a calibration mechanism:
P(Crlg(W)) o P'(Cylg(W)) + B.P(Cr)  (6)

where B is a calibration coefficient.
Given equations 5 and 6 we need to calculate P(W;|C,.).
Applying Bayes theorem:

P(C|W;)P(W;)
P(C;)

We estimate P(C)) using the maximum likelihood ap-
proach: P(C,) = N,/N, where N, is the number of ex-
amples in the training set belonging to class C,., and N is the
total number of examples in the training set. If it happens
that IV, is zero we cannot use equation 7. In this case we just
define that P(C,.|W) is zero for any pattern .

We know that when we substitute P(1;|C,) by the right
side of equation 7 into equation 5 we are able to clear out the
factor P(W;) because it is identical for all classes, so we do
not need to worry about it.

Since W; is a pattern, the estimation of P(C,|W;) can
be done recursively using equation 4. The recursion ends
when ¢g(TW) contains only the empty pattern. In this case
P(C,[g(W)) becomes P(C,|{{}}) = P(C,).

P(W;|Cy) = (7

2.2 Calibration Mechanism

In spite of its strong independence assumptions, Naive Bayes
is know to perform well in many domains when only misclas-
sification rate is considered [Domingos and Pazzani, 1997].
However, Naive Bayes is also know to produce unbalanced
probability estimates that are typically too “extreme” in the
sense that they are too close to zero or too close to one.
In the aim of obtaining better posterior probability distribu-
tions, calibration mechanisms which try to compensate the
overly confident predictions of Naive Bayes have been pro-
posed [Bennett, 2000; Zadrozny, 2001].

Using equation 5 we are making stronger independence
assumptions than Naive Bayes. Naive Bayes assumes that
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attributes are independent given the class, what is at least
possible. Equation 5 assumes that some aggregations of at-
tributes are independent given the class. Since many of these
aggregations have attributes in common we know that such
assumption is false. The main consequences of our stronger
and unrealistic assumption are even more extreme probabil-
ity estimates than Naive Bayes’ ones. This is compensated
by the calibration mechanism in equation 6. This calibration
mechanism is analogous to the one used in [Zadrozny, 2001]
in the calibration of decision tree probability estimates.

2.3 Selecting HPB Coefficients

Equations 4 and 6 require respectively the specifications of
coefficients S and B. In the classification of a single in-
stance, these equations are applied by HPB in the calculation
of P(C,.|W) for several different patterns, W. The optimal
values of S and B can be different for each pattern.

In the case of the B coefficients, we use an heuristic mo-
tivated by the fact that the level of any pattern in g(W) is
level(W) — 1. The higher such level is, the more attributes
in common the aggregations have, the more extreme proba-
bility estimates are and the stronger must be the effect of the
calibration mechanism. Thus, we made the coefficient B in
equation 6 equal to b(level(W) — 1) where b is an experi-
mental constant.

In the case of the S coefficients, we employ a greed opti-
mization approach that starts from the most general pattern
family and move toward the more specific ones, where a pat-
tern family is the set containing all patterns that define exactly
the same attributes (possibly with different values).

Assuming that the S coefficients have already been fixed
for all pattern families that are more generic than a family
F, there is a single S coefficient that needs to be specified
to allow the use of equation 4 to calculate P(C,.|W) where
W is any pattern belonging to F' . We select this coefficient,
using leave one out cross validation, in order to maximize the
area under the hit curve that is induced when we calculate
P(C,|W) for all training patterns, W, in F.

3 Experimental results

All classification methods were tested by the Weka Experi-
menter tool [Witten and Frank, 1999] using 5 fold cross val-
idation. We compared classifiers built using the following
methods:

e HPB: HPB as described in this paper;

e NB: Naive Bayes;

® Noisy-Or: BN with the Direct BN Structure using Noisy-Or instead of a CPT;

e TAN: TAN with traditional CPTs;

® ADE: Almost Direct Estimation. BN with the Direct BN Structure and the smoothing schema
described in [Friedman et al., 19971;

o DE: Direct Estimation. BN with the Direct BN Structure and traditional CPTs;

o AIBN/TAN: TAN with traditional CPTs trained over a dataset where cardinality reduction
using AIBN was previously applied;

e DG CBM: BN with DGs. Complete splits, binary splits and merges enabled;
o DG CB: BN with DGs. Complete splits and binary splits enabled;

e DG C: BN with DGs. Only complete splits enabled;

e DG CM: BN with DGs. Complete splits and merges enabled;

e HC DT: BN with Decision Trees learned using Hill Climbing (HC) and MDL as the scoring
metric;

e HC DF: BN with Default Tables learned using HC and MDL.

® PRIOR: Trivial classifier that assigns the prior probability to every instance.

All models involving DGs were constructed follow-
ing [Chickering et al., 1997]. The models involving DFs and
DTs were constructed following [Friedman and Goldszmidt,
1996] using the MDL scoring metric.

We tried different parameterizations for each method and
sticked with the parameter set that provided the best results,
where best results mean best area under the hit curve ! up to
20% of selection rate (AUC20) 2. In the 1y axis, we chose to
represent the Recall = Nrppyepositives /N Positives, instead
of the absolute number of hits, because this does not change
the form of the curve and makes interpretation easier. We rep-
resented the selection rate in log scale to emphasize the begin-
ning of the curves. Besides using the hit curve, we compared
the probability distributions estimated by the models with the
distribution actually found in the test set using two measures:
Root Mean Squared Error (RMSE) and Mean Cross Entropy
(MCE). Figure 1, table 1 and table 2 show our results.

Selection of method parameters is explained below:

The smoothing coefficients employed by HPB are all au-
tomatically optimized. Such optimization involves a leave
one out cross validation that takes place absolutely within
the current training set (the 5 fold cross validation varies the
current training set) eliminating the possibility of fitting the
test set. The B coefficients are defined by the heuristic de-
scribed in section 2.3 and by the constant b. We varied b
over the enumeration {0.5, 1.0, 1.5,2.0, 2.5, 3.0} and sticked
with 2.0, which was the constant that produced the best re-
sults in a 5 fold cross validation process. To avoid the effects
of fine tuning, we reshuffled the data set before starting an-
other 5 fold cross validation process. The HPB results that
we present here came from the second process.
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Figure 1: Selection Rate X Recall (to avoid pollution we
only present curves related to a subset of the tested meth-
ods)

The optimization of AIBN/TAN involves 3 parameters:
The TAN smoothing constant (S74y), the AIBN smooth-

'We employed hit curves, instead of the more popular ROC
curves, because they match the interests of the customs adminis-
trations directly, i.e, the human resource allocation system defines
a selection rate and needs an estimate for the number of positives
instances that will be detected.

2All selection rates of interest are below 20%
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ing constant S4;py, and the minimum mutual informa-
tion constant M MI. Varying Span over the enumera-
tion {0.01,0.05,0.1,0.2,0.5,1.0,2.0}, Sarpn over the enu-
meration [0.1,0.2,0.5,1.0] and M M over the enumeration
{0.99,0.999,0.9999} we found that the best results are ob-
tained with the triple BestTriple = (Sian = 0.5, Sar1BN =
0.5,MMI = 0.999). We did not cover the whole grid
but since we did not observe any abrupt variations in hit
curves and since we covered all immediate neighbors of the
BestT'riple we believe that such exhaustive covering was not
necessary.

Method 1% 2% 5% 10% 20%

HPB 17.84+3.2 25.4+1.3 43.24+2.3 56.4+2.1 72.3£5.0
TAN 8.84+2.6 17.4+1.3 34.0+2.0 48.6+3.3 67.1+3.4
AIBN/TAN 10.84+2.3 17.2£2.7 32.2+2.7 47.6+3.2 68.2+2.7
NB 8.840.9 14.2+3.1 28.9%+3.9 47.44+4.6 65.4+5.8
Noisy-Or 8.6+2.1 15.2+2.1 30.3x1.5 45.94+3.3 61.5£1.5

BNDG CB 17.6+3.4 21.8+£4.5 28.6+3.3 40.84+4.8 53.7£6.5
BNDGCBJ  14.7£2.6 20.6%+3.0 32.2+3.5 40.6+2.9 51.5+2.6
BNDG C 9.14+2.2 12.242.5 21.1+2.9 30.1+2.2 46.4+1.6
ADE 14.04+2.8 15.4£2.8 20.5+2.4 28.14+3.3 43.4+4.0
DE 10.2+£2.0 12.0+2.5 18.1+2.2 24.7+3.1 41.1+£3.6
BNDG CJ 3.7£0.7 7.8£0.7 15.5+3.7 24.0+£2.4 39.3+3.4
HC DF 4.0£1.8 5.0+3.0 10.8%£3.9 22.2+3.1 35.4%1.8
HCDT 1.0+£1.0 1.3+1.1 6.7+2.4 11.5+2.5 24.7+3.8
PRIOR 0.840.0 1.74+0.0 4.24+0.0 10.24+0.0 20.34+0.0

Table 1: Recall for different selection rates with std. dev.

Method AUC AUC20 RMSE MCE  Parameterization
HPB 84.5+1.6 53.5£2.3 10.6+0.0 4.0+0.1 b=2.0
TAN 82.2+0.9 46.2+2.5 14.140.8 7.1+£0.4 s = 0.025
AIBN/TAN 82.1+1.3 46.0£1.2 12.54+0.5 5.3+0.3 BestTriple
NB 81.0+2.1 43.6+£3.4 14.54+0.1 6.6+£0.2 s = 0.025
Noisy-Or 78.24+0.9 43.0+1.6 11.9£0.0 infinity

BNDG CB 68.4+3.7 40.1+3.7 11.440.1 6.2+0.2 s =0.5
BNDG CBJ 70.94+2.7 39.2+2.5 11.7+0.1 7.1+1.2 s =0.1
BNDG C 70.4+2.0 30.1£1.7 11.0%+0.1 4.6+0.1 s = 0.01
ADE 73.7+1.1 28.7+3.0 11.1+£0.2 4.940.1 s = 0.025
DE 72.7+1.3 25.94+2.7 37.5+£0.0 31.6+0.0 s =2.0
BNDG CJ 68.5+1.4 24.24+2.2 11.14+0.1 4.740.1 s = 0.01
HC DF 62.9+3.4 21.3£1.8 10.940.0 4.6%+0.0 s = 0.05
HCDT 51.8+0.5 12.9£+1.8 10.940.0 4.74+0.0 s = 0.25
PRIOR 50.0+£0.0 10.2£0.0 10.940.0 4.74+0.0

Table 2: Area Under Curve, Accuracy of Probability Esti-
mates and Optimal parametrization

Noisy-or and PRIOR have no parameters. The optimiza-
tion of all other methods involves only the smoothing con-
stant, which, in all cases, was exhaustively varied over the
enumeration {0.01, 0.025,0.05,0.1,0.25,0.5,1.0,2.0}. This
enumeration covers different magnitudes for the smoothing
constant and at the same time avoids fine tuning.

Naive Bayes and Noisy-Or are both unable to capture inter-
actions among the attributes and cannot explore critical pat-
terns. This explains their performance in the very beginning
of the hit curve. Tree Augmented Naive Bayes explores in-
teractions among some attributes and performed better than
Naive Bayes or Noisy-Or. However, it cannot benefit from
some critical patterns involving many attributes that are deci-
sive at the selection rate of 1% and 2%.

Applying cardinality reduction to the attributes before con-
structing the TAN model did not lead to any significant im-
provements in the hit curve.

Substituting the traditional CPTs of Bayesian Network by
Decision Trees, Default Tables and Decision Graphs with bi-
nary splits disabled only made the hit curves worse. The

learned Default Tables included very few rows. The learned
Decision Trees and Decision Graphs involved very few splits.
As a consequence, in all cases, the resulting models had little
discrimination power.

Using Decision Graphs with binary splits enabled, the most
critical patterns were separated from the others, what re-
sulted in a significant improvement in the beginning of the
hit curves. The other patterns were, almost all, left together
what resulted in loss of discrimination power for selection
rates above 5%.

Hypothesis tests, show that HPB is significantly better than
all other classifiers in what regards to AUC, AUC20, RMSE
and MCE. We also performed Hypothesis tests for every se-
lection rate from 1% to 100% in steps of 1%. HPB is signif-
icantly better than all other classifiers for every selection rate
below 30% with the exceptions that it is not significantly bet-
ter than: TAN in [17%, 19%)] and [27%, 28%)]; AIBN TAN in
[18%,21%)] and [24%, 28%]; BNDG CBJ at 1%; BNDG CB
at 1% and 2%.

HPB benefits from critical patterns involving many or even
all attributes but also considers the influence of less specific
patterns. As a consequence, it performs well for any selection
rate.

4 Conclusions

In the domain of preselection of imported goods for verifi-
cation some combinations of attribute values can constitute
critical patterns whose influence over the probability of find-
ing a positive instance is very significant. Due to the high
cardinality of the attributes in this domain, exploiting such
patterns without overfitting is challenging. We addressed the
problem using HPB a novel classification method based on a
multilevel hierarchical Bayesian model.

HPB was shown capable of capturing the influence of crit-
ical patterns without overfitting and without loosing discrim-
ination power after the exhaustion of critical patterns in the
test set. HPB resulted in a hit curve that is almost unambigu-
ously better than any of the other methods. HPB also pro-
duced better probability estimates according to two accuracy
measures (table 2).

HPB was only validated in a specialized domain, however,
its equations are too simple to reflect any particularities of
the domain, except that it is characterized by few high cardi-
nality attributes and relevant interactions among them. Thus
the use of HPB may be a good option for domains with the
same characteristics or, at least, provide some light on how to
develop good models for such domains.

HPB training time is exponential in the number of at-
tributes, linear in the number of training instances and in-
dependent of the attributes cardinality. Thus HPB is only
applicable to domains where there are few attributes, but in
such domains it is much faster than methods whose training
time depends on the cardinality of the attributes.

HPB is not a full Bayesian model in the sense of [Gel-
man et al., 2003], where the parameters associated with a
sub-population are assumed to be drawn from a general dis-
tribution and the calculation of all involved probability dis-
tributions is done at once considering all available evidence.
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Instead, HPB estimates the probability distributions for the
more general populations first and use the results in the es-
timation of the probability distributions related to the more
specific populations. HPB is a generalization of the smooth-
ing techniques used in [Cestnik, 1990] and [Friedman et al.,
1997]. In the sense of [Gelman er al., 2003], it is an empirical
model.

Hierarchical Bayesian models have been widely used in
the marketing community under the name of Hierarchical
Bayes [Allenby et al., 1999; Lenk et al., 1996]. These mod-
els have also been used in medical domains [Andreassen et
al., 2003] and robotics [Stewart et al., 2003]. However, we
are not aware of any hierarchical Bayesian model that can be
employed to handle high cardinality attributes with relevant
interactions in a classification problem. This makes HPB rel-
evant. Moreover, HPB differs from other models by dealing
with a multi level hierarchy recursively and also handling the
fact that one sub-population is contained by several overlap-
ping super-populations and not only by one super-population.

Based on the literature [Friedman and Goldszmidt, 1996],
one can expect that Bayesian Networks with Default Tables,
Decision Trees or Decision Graphs can emulate the real com-
plexity of the interactions present in the data with without
serious overfitting problems. Another contribution of this pa-
per is to show that BNs with DFs, DTs or DGs, in spite of
their theoretical motivations, actually do not result in better
overall performance than simpler methods like NB or TAN,
in a practical domain where their abilities are truly necessary.

Preprocessing the data reducing the cardinality of the
attributes using the Agglomerative Information Bottleneck
method did not result in any significant improvements in the
hit curves.

Our present mechanism for selecting the smoothing and
the calibration coefficients in HPB equations is too simplistic.
We leave its improvement as future work.
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