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Abstract

Tracking the movements of a target based on lim-
ited observations plays a role in many interest-
ing applications. Existing probabilistic tracking
techniques have shown considerable success but
the majority assume simplistic motion models suit-
able for short-term, local motion prediction. Agent
movements are often governed by more sophisti-
cated mechanisms such as a goal-directed path-
planning algorithm. In such contexts we must
go beyond estimating a target’s current location to
consider its future path and ultimate goal.

We show how to use complex, “black box” motion
models to infer distributions over a target’s current
position, origin, and destination, using only lim-
ited observations of the full path. Our approach ac-
commodates motion models defined over a graph,
including complex pathing algorithms such as A*.
Robust and practical inference is achieved by using
hidden semi-Markov models (HSMMs) and graph
abstraction. The method has also been extended to
effectively track multiple, indistinguishable agents
via a greedy heuristic.

1 Introduction

Many interesting applications require the tracking of agents
that move in a complex fashion through an environment in
which only partial observations are possible. Examples in-
clude real-time strategy games, aerial surveillance, traffic, vi-
sual tracking with occlusion, and sensor networks. Related
problems have been well-addressed in robotics and vision do-
mains where approaches often start by assuming a known mo-
tion model that characterizes the movement in question. For
example, Monte Carlo localization usually employs a motion
model for short-term predictions, capturing simple move-
ments via some tractable mathematical formulation. Unfor-
tunately, in many applications, the movements of agents may
be quite complex and involve long-term goals governed by
sophisticated algorithms such as goal-directed path-planners.
Traditional tracking approaches that rely on simple motion
models may not prove effective. Furthermore, one may wish
to draw inferences about the long-term behaviour of the agent
rather than simply track its current location.

As an example, consider real-time strategy (RTS) games,
a popular genre of commercial video games in which users
control armies consisting of tens or even hundreds of units.
The units are largely autonomous and the user provides only
high-level instructions to most units. For instance, a unit can
be commanded to move to a new location simply by specify-
ing the destination. A pathfinding routine then computes the
actual path to reach this destination and the unit travels there
automatically. Another key feature of these games is the so-
called fog of war—a limitation whereby the user can only
observe activity in the immediate vicinity of their own units.
This limited field of view means that enemy movements can
only be observed when they occur close to an allied unit. This
results in a series of short, disconnected observations of en-
emy movements. Additionally, most units of a given type
(e.g., tanks) are indistinguishable from one another, so it may
be uncertain whether or not two separate observations per-
tain to the same unit. Several interesting strategic questions
can be asked in relation to these observations. How many en-
emy units are there? Which observations correspond to which
unit? Where is an enemy when unobserved? Where was an
enemy unit coming from and going to?

The method we propose and demonstrate facilitates infer-
ence using complex motion models in the form of a “black
box”. Given two points, the motion model need only return
a path; the algorithm producing that path can be arbitrary
and unknown. Our method infers answers to several of the
above questions, employing abstraction to efficiently handle
large numbers of possible paths and probabilistic models to
robustly handle inaccurate motion models or noise in the ob-
servations. It is important to emphasize that the approach
does not learn a model of the opponent’s motion. Instead, we
use existing motion models to infer complex behaviour. We
demonstrate our results in a RTS-like context and discuss its
use in real world domains.

2 Related Work

While there is a great deal of work on tracking, we are un-
aware of any work that employs complex black box motion
models in the manner we describe here. The work of Bruce
and Gordon on tracking human movements for robotic obsta-
cle avoidance is close in spirit inasmuch as it works with the
assumption that humans will follow optimal, and therefore
potentially complex, paths [Bruce and Gordon, 2004]. An-
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other closely related project is work on learning goal-driven
human movements from GPS data [Liao et al., 2004]. This
work also employs hidden semi-Markov models and abstrac-
tions of the environment, although the details differ substan-
tially. Similarly, the work described in [Bennewitz et al.,
2004] attempts to model complex human motion as a hid-
den Markov model learned from past observations. However,
all of these examples relied on previous examples of move-
ments and/or goals in order to learn models. Our work uses
an existing but potentially very complex motion model and
can be readily applied to new environments. The indistin-
guishable multi-agent task we identify here is very similar to
that explored by [Sidenbladh and Wirkander, 2003] but they
assume simplistic motion models. Work on multiple hypothe-
sis tracking [Reid, 1979] and goal recognition also addresses
similar issues. Finally, Bererton has applied a particle fil-
tering approach to track human players in games to achieve
realistic behaviours for game enemies [Bererton, 2004].

3 Formalism

Motion Models To formalize the discussion, we start with a
known environment described by a graph G = (V, E), where
the vertices V = {v1, · · · , vn} correspond to a set of lo-
cations and the set of edges E indicates their connectivity.
We assume the availability of a parameterized motion model
M : θ, G→ p, where θ are the parameters and p is a sequence
of vertices from V that specifies a directed path through G.
Specifically, we will consider endpoint motion models that
take parameters of the form θ = (vi, vj ), where vi, vj ∈ V
are endpoints. Figure 1 (a) shows an example graph and path.
Any target we seek to track is assumed to be using M with
some specific, but unknown, endpoint parameters. The model
M is treated as a “black box” and the mechanism by which
M generates paths is unimportant. We need only be able to
query M for a path, given some endpoints.

The availability of such motion models for RTS is quite
immediate as the game provides an algorithm for this pur-
pose. Other applications might require constructing or learn-
ing a motion model (as in [Bennewitz et al., 2004]), but in
some domains reasonable models may already be available.
For example, the various online mapping services can pro-
vide road paths between travel locations. Another avenue is
to assume some cost-sensitive pathing algorithm such as A*
search—a very reasonable choice in the case of RTS where
most pathing algorithms are variants of A*. Note that most
useful pathing algorithms require edge costs or other infor-
mation beyond the graph itself. Any such extra information
is assumed to be available along with the graph.

Observations Time is treated as advancing in discrete
steps. At each time step t, the observations made are de-
scribed by a set of vertex-result pairs, Ot. The observation
results for a vertex vi can be negative (nothing was seen
there) or positive (a target was seen). For example, O3 =
{(v2, +), (v5,−)}would mean that, at the third timestep, ver-
tices v2 and v5 were under observation, and a target was seen
at v2 while no target was seen at v5. All other vertices were
not under observation. This arrangement allows for the fact

(a) (b)

Figure 1: (a) Path from an endpoint motion model. (b) Noisy
version of the proposed path.

that our observer(s) may be moving through the environment
and/or have a varying field of view. We use O1:t to denote the
sequence of observations made from timestep 1 to timestep t.

4 Inference with Complex Motion Models

We seek to infer details of target movements given our ob-
servations and the parameterized motion model. The overall
approach we adopt is Bayesian inference. For now, we will
consider only a single target and return to the multiple target
case presently. We assume that the target is using the mo-
tion model M with two unknown parameters (the endpoints).
If we can estimate these parameters, we can characterize the
motion of the agent.

4.1 Prior and Posterior

We start by assuming a prior over endpoint parameters, P (θ),
where θ is a pair specifying the origin and destination ver-
tices. In many applications we may have well-informed pri-
ors. For example, in RTS games, targets typically move be-
tween a handful of locations, such as the players’ bases and
sources of resources. In all results presented here, we employ
a uniform prior over endpoints, although our implementation
accepts more informative priors. Much may be gained by ex-
ploiting prior knowledge of potential agent goals.

At any given timestep t, we compute the posterior distri-
bution over endpoints, given all past observations, P (θ|O1:t).
By Bayes’ rule, P (θ|O1:t) ∝ P (O1:t|θ)P (θ), giving an un-
normalized version of the target distribution by computing the
probability of the observations given the parameters. Note
that for many purposes, the unnormalized distribution is per-
fectly acceptable, but normalization can be applied if neces-
sary. We compute the full posterior distribution in our work
here but it is straightforward to compute the max a posteri-
ori estimate of the parameters to identify a “most probable”
path. In the simplest scenario, P (O1:t|θ) can be computed for
all possible endpoints θ. We will address the obvious scaling
issues with this approach shortly.

4.2 Hidden Semi-Markov Model

We must now explain how we will compute P (O1:t|θ) for
one particular setting of θ. The black box M is used to gen-
erate the proposed path p corresponding to θ. An obvious
method for calculating the probability would be to perform
exact path matching, testing to see whether the observations
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O1:t exactly match what we would expect to see if the target
traversed p. This results in a probability of 0 or 1. However,
this approach is not robust. If our model M is not perfectly
correct—perhaps because we do not have access to the true
pathing routine but only an approximation—it will lead to
problems. Also, in real-world domains we may have the ad-
ditional problem of noisy observations, such as erroneously
seeing or not seeing the target, or incorrectly identifying its
exact location when seen. Finally, variable movement rates
can result in observations inconsistent with p.

In order to compensate for these potential inconsistencies,
we use p as the basis for a noise-tolerant observation model
instead of using it directly. This model is a hidden semi-
Markov model (HSMM) based on p. A HSMM is a discrete
time model in which a sequence of hidden states (S1, · · · ,St)
is visited and observations are emitted depending on the hid-
den state (see [Murphy, 2002] for a good overview). HSMMs
extend the common hidden Markov model by allowing for a
distribution over the time spent in each distinct hidden state.
More precisely, a HSMM consists of:

• a set of hidden states (the vertices V in our case)

• a prior over initial hidden state, P (S1 = vi)), ∀vi ∈ V

• a transition function—a distribution over successor
states given that a transition occurs at time t, P (St+1 =
vi|St = vj), ∀vi, vj ∈ V

• an observation function—a distribution over observa-
tions, for each state, P (Ot|St = vi), ∀vi ∈ V

• a duration function—a distribution over the time to the
next transition, for each state, P (dt|St = vi), ∀vi ∈ V .1

For each proposed endpoint pair θ, we build a correspond-
ing HSMM whose parameters (the above distributions) we

will denote by θ̃. We use the distribution of the observations

given these θ̃ parameter settings as a noise-tolerant, unnor-
malized estimate of the distribution over the original θ param-

eters, P (θ|O1:t) ∝ P (O1:t|θ)P (θ) ≈ P (O1:t|θ̃)P (θ̃), where

P (θ̃) = P (θ). We will defer explanation of how we construct

θ̃ for now, and explain how we compute the probabilities first.

Inference Inference in HSMMs can be achieved using the
forward-backward algorithm [Murphy, 2002]. Only the “for-
ward” part is required to compute most of the distributions
of interest. The forward algorithm computes the joint prob-
ability of the hidden state and the history of observations,

P (St, O1:t|θ̃), for each time step t, which we will abbre-
viate by αt : V → [0, 1]. Each function αt is a func-
tion of earlier functions, αs, s < t, so the probability can
be efficiently updated after each new observation. Setting
α1(vi) = P (S1 = vi), ∀vi ∈ V , the remaining α’s are com-

1If the observers are moving then the observation distribution
changes over time (our implementation fully supports this). The
transition and duration functions are stationary.

puted as

αt(St) =
∑

d

P (d|St)

[
t∏

u=t−d+1

P (Ou|St)

]
⎡
⎣∑

Sj

P (St|Sj)αt−d(Sj)

⎤
⎦

Note that the α’s and the distributions used to compute them

are all specific to a single HSMM, θ̃. The conditioning on

θ̃ was omitted for readability. By computing the α functions

for all θ̃’s, we can obtain answers to some of our original

questions, so we explicitly condition on θ̃ hereafter.

Endpoint and Filtering Distributions One interesting
strategic question was “where is the target going to and com-
ing from”. We can obtain the unnormalized distribution over
endpoints by marginalizing out the hidden state variable St

P (θ|O1:t) ∝ P (O1:t|θ)P (θ)

≈ P (O1:t|θ̃)P (θ̃) =
∑
St

P (St, O1:t|θ̃)P (θ̃)

Another interesting question was “where is the target
now”—the current hidden state of the target. This is often
called the filtering distribution and can be computed as

P (St|O1:t) ∝
∑

θ

P (St, O1:t|θ)P (θ)

≈
∑

θ̃

P (St, O1:t|θ̃)P (θ̃)

4.3 Building the HSMMs

We still need to specify how to generate a HSMM θ̃ from a
proposed path p based on θ. In the simplest case, one could
construct the transition function so it deterministically gen-
erates p, the observation model to give 0/1 probabilities for
(not) observing the target where p dictates, and the duration
distribution to give probability 1 to a duration of 1. This is
equivalent to the exact path-matching model. Importantly,
by changing the distributions that make up the HSMM, we
can relax the exact matching in several ways to achieve ro-
bustness. We describe such a relaxation for handling inac-
curate black boxes and noisy real-world observations imme-
diately below. However, relaxations can also facilitate ap-
proximations that are computationally motivated, such as the
abstracted graph approximation described in Section 5.

Noisy Pathing

One way to deal with inaccuracies in M (i.e., differences be-
tween true paths and proposed paths) is to introduce some
noise into the transition functions of the HSMMs. This cre-
ates a noisy version of the original model M . In our imple-
mentation, we introduce a small probability of straying from
the exact path proposed by M to vertices neighbouring the
vertices in the path, with a high probability of returning to
vertices on the path. This creates a probabilistic “corridor” so
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that small deviations from M will be tolerated. Figure 1 (b)
shows an example of this idea.

There are many other possibilities for introducing noise
(e.g., make the probability of error related to the edge weight
of neighbours or distance from vertices in p). We explore
only this simple transition noise here. Another, quite distinct,
option is to introduce noise into the observation function in-
stead. Uncertainty in real-world applications may come from
M , or the observations, or both. Practically speaking, noisy
transition functions and observations functions can serve to
address either source of error (e.g., treating errors in proposed
paths as though they were observation errors). We have not
experimented with noisy observation functions but they might
offer advantages by keeping the HSMM transition functions
sparse, reducing memory usage and computation.

5 Abstraction

We can perform exact inference simply by considering all
endpoint pairs. If the number of possible pairs is prohibitively
high, we could approximate by Monte Carlo sampling or
even employ a form of particle filtering. The former is fairly
straightforward and the latter is certainly possible. However,
we will not expand on these options here.

A complementary strategy for reducing computational cost
is to abstract the original base graph G that describes the en-

vironment to obtain a smaller abstract graph Ĝ = (V̂ , Ê)
that more coarsely models locations in the environment. An
abstraction φ(G) maps every vertex in V to some member

of the smaller set of abstracted vertices V̂ , thereby reducing
the set of possible endpoints. This effectively scales down
the number of HSMMs to store and compute. If the motion
model M requires any additional information such as edge
costs, these must be abstracted as well. In the work presented
here we use clique abstraction [Sturtevant and Buro, 2005],
which averages edge costs from G to produce edge costs for

Ĝ, but our implementation accepts any graph abstraction pro-
vided. For many purposes the resulting loss in precision is an
acceptable tradeoff (e.g., it suffices to know that an enemy’s
goal is “near” some location).

Some flexibility is required to handle graph abstraction.

First, each vertex in V̂ corresponds to a set of vertices in V ,
some of which may have been under observation and the rest
unobserved. We abstract our observations O1:t from the ver-
tices in the base graph to observations Ô1:t = {Ô1, . . . , Ôt}
such that we record a positive observation at an abstracted
vertex if a target was seen in any of the corresponding base
vertices under observation. These partially-observed abstract
vertices introduce uncertainty when a negative observation is
made; it is still possible that a target is in one of the unob-
served base nodes. Fortunately, the use of HSMMs means
that we can incorporate this uncertainty readily by changing
the observation function. We use a simple and obvious model
where the probability of a negative observation at some ab-
stracted vertex, given that a target is actually at that vertex, is
equal to the proportion of base vertices that are unobserved.

Similarly, the grouping of base vertices into a single ab-
stract vertex means that, even if movements at the base level
take unit time, movement through an abstracted node can take

variable amounts of time. Again, we need only change the
duration function for our HSMM to approximately account
for this. We build this distribution for each abstract vertex
by generating all base paths covered by the vertex and count-
ing the number of paths of each length. We then assume a
uniform distribution over paths through the abstract vertex.

The abstraction of graphs and observations may lead to
discrepancies between abstracted observations and proposed
paths, because the set of proposed paths is computed by M

within Ĝ, while a target’s actual path is computed within G.
As a result, there may be mismatches between the actual path
and abstracted path due to details in M ’s algorithm and, par-
ticularly, the abstraction of extra information such as edge
cost. On the other hand, abstraction can serve to mitigate
minor differences between the true motion model and our as-
sumed motion model M since many base level paths will con-

form to a single path in Ĝ. The noisy pathing described earlier
is one possible remedy for the former situation.

6 Multiple Targets

In general, we expect multiple targets in the world. How-
ever, as mentioned earlier, it may not be possible to distin-
guish one target from another. We therefore seek to establish
which agents generated which observations. We use the fol-
lowing natural grouping of observations as a starting point.
While a target is in view, it is assumed that it can be accu-
rately tracked, and so all consecutive positive observations of
a target are taken to be a single trajectory.2

We now wish to associate these trajectories with targets.
Consider a set of integer “labels” {1, · · · , m}, where m is
the number of trajectories, and a labelling L that maps every
observed trajectory onto the set of labels. In place of our ear-
lier notation for observations, we here denote the trajectories
associated with a single label j under labelling L, by YL(j).3

Conceptually, each label corresponds to a distinct target that
generates the trajectories associated with that label. Some la-
bellings will propose grouping a set of trajectories under one
label that could not have been generated by a single target.
Such labellings will have a zero posterior probability. Other
labellings will be consistent but will differ in how well they
explain the observations. Ideally then, we want to find a la-
belling that gives the best explanation—one that maximizes
the posterior probability of the observations

max
L

P (YL(1), · · · , YL(m)|L)P (L)

≈ max
L

m∏
j=1

P (YL(j)|L)P (L)

= max
L

m∏
j=1

∑
θ̃i

P (YL(j)|L, θ̃i)P (θ̃i)P (L)

2Tracking is easy for RTS but generally hard. Failure to identify
trajectories will simply fragment what should be one trajectory into
several, and so does not pose any insuperable problem.

3Computationally, α functions for the negative observations can
be computed separately and shared by all positive trajectories, offer-
ing a considerable savings in computation and space.
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where P (L) is a prior over labellings. This formulation effec-
tively assumes that the targets associated with the labels gen-
erate observations independently, an approximation we ac-
cept for the sake of reducing computation.

Maximizing over all possible labellings of the trajectories
is still expensive, however, so we use the following greedy
approximation. We start with the labelling L, which gives
each trajectory a unique label (essentially claiming that each
was generated by a separate target and that there are m tar-
gets), and then proceed iteratively. At each step, we select a
candidate pair of labels j and k to merge, by which we mean
that the trajectories of both labels are now associated with
one of the labels. This gives us a new labelling, L′ such that
YL′(j) = YL(j) ∪ YL(k) and YL′(k) = ∅. Next, we compare
the likelihoods of the labellings L and L′, rejecting the merge
if L is more likely, or keeping the new labelling L ← L′

otherwise. We then select a new candidate pair and repeat.
We heuristically order the candidate label pairs by com-

puting the KL divergence of the endpoint distributions for
all pairs of labels and selecting minj,k KL(P (θ|YL(j) ‖
P (θ|YL(k)) + KL(P (θ|YL(k) ‖ P (θ|YL(j)).4 If a pair is
merged, we update the KL divergences and repeat. If a pair is
rejected for merging, we select the next smallest divergence,
and so on. Merging stops when no candidates remain.

Intuitively, this heuristic proposes pairs of labels whose tra-
jectories induce similar endpoint distributions (i.e., it prefers
two hypothesized targets with similar origins/destinations
given their separate observations). If the pair’s observations
were in fact generated by one target’s path, then the merge
should produce high posterior probability. However, it is also
possible that there really were two targets and that when the
observations are combined, an inconsistency is detected (e.g.,
two similar paths that overlap in time and so cannot be a sin-
gle target). The divergence is simply intended to propose can-
didates in an order guided by the similarity of likely paths.

7 Experimental Results

We have implemented our approach on top of the HOG
framework for pathfinding research [Sturtevant and Buro,
2005]. It provides the simulation, visualization facility,
pathfinding routines and abstractions. The clique abstraction
we use is hierarchical, providing a succession of abstractions,
each abstracting the graph from the previous level. Abstrac-
tion level 0 is the original, unabstracted base graph, level 1
is an abstraction of that, 2 is abstraction of level 1, etc. The
baseline case—no abstraction and a perfect motion model—
obtains the true posterior distributions given the observations
made. The usefulness of even the baseline case is necessar-
ily limited by the available observations. If a target is never
observed, or observed only at points in the trajectory that are
consistent with a wide variety of paths, then the conclusions
will be correspondingly vague.

Experiments were run to gauge the impact of the approxi-
mations involved in abstraction and the mechanisms used to
handle noise. As we are unaware of any alternative method
that performs inference with complex motion models of the

4KL divergence is not symmetric so we adopt the common sym-
metrized version.

Figure 2: (a) Penta map showing target’s path from at top
right to bottom centre (b) Superimposed images of origin and
destination posterior distributions

kind we discuss here, our experiments are focused on show-
ing that the approximations we use compare well to the base-
line and improve on computational costs. We use four dif-
ferent maps for the most exhaustive tests. The first map,
Penta, shown in Figure 2(a), is a 32 × 32 map created for
our experiments specifically to demonstrate how endpoints
can be accurately inferred. The other three maps, Adrenaline
(65 × 65), Harrow (96 × 96), and Borderlands (96 × 96),
are all maps found in the commercial RTS game “Warcraft
3”5 by Blizzard Entertainment (see Figures 3, 4, and 5).
Supplemental colour images and animations are available at
http://ijcai2007.googlepages.com/.

Within these environments, we place observers and targets.
Observers have a 5 × 5 field of view centered at their loca-
tion. Targets move using the PRA* pathfinding algorithm de-
scribed in [Sturtevant and Buro, 2005], a fast variant of A*
that generates sub-optimal paths similar to A* paths. We can
test the effect of inaccurate models by comparing the use of
PRA* for the modelling (a correct assumption) vs. A* (incor-
rect). In each trial, endpoints are randomly selected for the
targets and observers are placed randomly along the paths,
guaranteeing at least one observation. The simulation runs
until all targets reach their destinations, plus an additional ten
steps. Endpoint and filtering distributions are computed at
every timestep and results averaged over 50 trials.

An example of the posterior distributions over the origin
and destination of a target on Penta is shown in 2(b), ten time
steps after the target (black dot) has completed the journey,
viewed by two different observers (white dots) on the way.
For compactness, the two distributions are superimposed—
the shading at the top right is the origin distribution and the
shading at the bottom center is the destination distribution.

To assess what might be called the “accuracy” of the
method in the single target case, all paths are ranked accord-
ing to their posterior probability at the end of the trial. We
report the percentile ranking of the target’s true path, aver-
aged over all trials (higher is better). Results are reported for
several abstraction levels, for the different modelling assump-
tions (correct: PRA* vs. incorrect: A*), and for noisy/non-
noisy transition functions. This captures the penalty suffered
by abstraction and an inaccurate model. We highlight the
baseline case (no abstraction, no noise, and accurate model),

5http://www.blizzard.com/war3/
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Figure 3: Adrenaline map

Figure 4: Harrow map with observers and a target

the best one can achieve given the observations. The num-
ber of vertices for each abstraction is also reported. We also
report the average time per trial in seconds.

Results for the Penta map in Table 1 show high accuracy
in all cases, but this map is very small. When the modelling
assumption is correct (PRA* modelled by PRA*), the noisy
transition function damages results, even at higher abstrac-
tions. The incorrect modelling assumption (PRA* modelled
by A*) does further damage, but noisy transitions mitigate
this slightly at the highest abstraction level. While all very
similar, the averaged results do not capture the fact that a low
percentile ranking on an individual run is often because the
actual path was given 0 probability. Under noisy transitions,
results tend to be smoother and failures less catastrophic.

The other three maps are too large to run the baseline or
first level of abstraction. Having evidence from the Penta map

Avg Time PRA* by PRA* PRA* by A*

|V | per step (s) Normal Noisy Normal Noisy

No Abs 1024 0.4335 99.99 99.99 99.99 99.99

Abs 1 330 0.0486 99.99 99.99 99.99 99.99

Abs 2 123 0.0145 99.97 99.96 99.97 99.96

Abs 3 50 0.0134 99.89 99.89 99.89 99.89

Abs 4 18 0.0133 99.26 99.19 99.28 99.29

Table 1: Penta Map: Percentile of Actual Path

Figure 5: Borderlands map

Avg Time PRA* by PRA* PRA* by A*

|V | per step (s) Normal Noisy Normal Noisy

Abs 2 521 0.0305 99.99 99.99 99.99 99.99

Abs 3 216 0.0156 99.99 99.99 99.99 99.99

Abs 4 88 0.0130 99.95 99.94 99.97 99.96

Abs 5 40 0.0128 99.84 99.84 99.86 99.86

Table 2: Adrenaline Map: Percentile of Actual Path

that results at the second level are quite close to the baseline,
we present Tables 2, 3, and 4 to evaluate performance on real
RTS maps. In all cases, performance degrades gracefully as
abstraction increases, with Harrow showing the greatest loss,
probably due to its less structured layout. Note that even un-
der the correct modelling assumption, the noisy transitions
can mitigate the effects of abstraction in Harrow although
noise typically damages higher abstraction levels. The same
noise parameters are used for all abstractions and were never
tuned. The level of noise is simply too high for the very crude
Harrow abstractions where a path deviation of one vertex is
comparatively large. These results show that effective infer-
ence can be performed even at fairly high abstractions.

Runtime improves dramatically for early abstraction lev-
els but exhibits diminishing returns as the number of vertices
grows very small. Currently the speed exceeds what is nec-
essary for real-time tracking of a single target in RTS and
more optimization is possible. The average runtime per step
of the simulation is reported and these times reflect the costli-
est mode of running at a given abstraction (i.e., noisy transi-
tions with A* modelling, which is the slowest mode).

Finally, we test the multiple target trajectory association
by measuring how often trajectories are correctly identified
as coming from the same target. In each case, two targets
with random paths are observed by two observers. The asso-
ciation is computed at the end of the trial. Table 5 shows the

Avg Time PRA* by PRA* PRA* by A*

|V | per step (s) Normal Noisy Normal Noisy

Abs 2 807 1.2309 99.87 99.88 99.87 98.87

Abs 3 297 0.1941 99.50 99.52 99.50 99.53

Abs 4 110 0.0521 98.86 98.87 98.86 98.87

Abs 5 47 0.0284 98.31 98.25 98.29 98.26

Abs 6 19 0.0235 95.15 94.72 95.05 94.70

Abs 7 7 0.0223 93.39 92.73 93.39 92.73

Table 3: Harrow Map: Percentile of Actual Path
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Avg Time PRA* by PRA* PRA* by A*

|V | per step (s) Normal Noisy Normal Noisy

Abs 2 910 0.1052 99.99 99.99 99.99 99.99

Abs 3 346 0.0320 99.99 99.99 99.99 99.99

Abs 4 136 0.0231 99.98 99.96 99.98 99.96

Abs 5 59 0.0218 99.88 99.84 99.88 99.84

Abs 6 21 0.0215 99.58 99.58 99.58 99.58

Table 4: Borderlands Map: Percentile of Actual Path

PRA* by PRA* PRA* by A*

Normal Noisy Normal Noisy

No Abs 94.58 92.41 82.37 89.00

Abs 1 92.77 89.46 77.81 86.63

Abs 2 86.57 84.18 82.98 82.37

Abs 3 79.94 76.40 75.08 72.95

Abs 4 67.26 65.49 68.39 64.74

Table 5: Penta Map: Trajectory association accuracy

percentage of correctly classified trajectories (i.e., correctly
associated with any trajectories generated by the same tar-
get), averaged over all trials on the Penta map, giving overall
high success rates. The results for Adrenaline, Harrow, and
Borderlands in Tables 6, 7, and 8 reflect the single agent re-
sults. Harrow is clearly the most difficult, with the wide-open
spaces allowing for many possible interpretations of obser-
vations. Interestingly, noise is more damaging to association
results overall, suggesting than any “blurring” of goals can
easily lead to misassociations. The robustness to abstraction
seen on most maps shows that good associations are obtain-
able even at high abstractions unsuited to endpoint inference.

8 Conclusions

We have presented a method for inferring the movements
and intentions of moving targets given only partial observa-
tions of their paths. The target can be governed by com-
plex motion models incorporating long-term, cost-sensitive
objectives. Given a black box M that describes the motion,
a hidden semi-Markov model is constructed for each candi-
date path generated by M . Using HSMMs lets the system
accommodate uncertainty in observations, paths, and the du-
ration of each move. The implementation also supports in-
ference on abstractions of the original map, allowing its use
even on complex maps from real-time strategy games. The
method has been tested using a complex motion model based
on A* pathfinding. Finally, a greedy approximation has been
proposed for associating observed trajectories with multiple,
indistinguishable agents based on the posterior probability of
joint observations and tested with good results. Future work
includes Monte Carlo and particle filtering—allowing weak
hypotheses to drop in favour of the stronger; better approxi-

PRA* by PRA* PRA* by A*

Normal Noisy Normal Noisy

Abs 2 96.60 94.33 96.60 94.72

Abs 3 93.56 92.80 93.56 92.80

Abs 4 87.65 84.77 87.65 84.77

Abs 5 82.85 82.46 82.84 82.43

Table 6: Adrenaline Map: Trajectory association accuracy

PRA* by PRA* PRA* by A*

Normal Noisy Normal Noisy

Abs 2 87.38 86.11 87.38 85.71

Abs 3 80.79 67.88 81.13 67.55

Abs 4 68.06 63.54 80.56 63.54

Abs 5 64.16 56.99 65.59 57.71

Abs 6 60.53 57.52 61.28 56.77

Abs 7 46.99 49.25 46.99 49.25

Table 7: Harrow Map: Trajectory association accuracy

PRA* by PRA* PRA* by A*

Normal Noisy Normal Noisy

Abs 2 95.86 94.48 95.17 94.83

Abs 3 94.06 91.26 93.36 91.26

Abs 4 88.69 84.31 88.69 84.31

Abs 5 80.66 79.56 79.92 80.29

Abs 6 78.21 78.21 78.21 78.21

Table 8: Borderlands Map: Trajectory association accuracy

mations for the multiple agent case; and parameterized mo-
tion models that include parameters other than the endpoints.
Even without these improvements, this approach has demon-
strated great potential for addressing complex applications in-
volving agents with long-term goals.
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