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Abstract

Although clustering is probably the most fre-
quently used tool for data mining gene expres-
sion data, existing clustering approaches face at
least one of the following problems in this do-
main: a huge number of variables (genes) as
compared to the number of samples, high noise
levels, the inability to naturally deal with over-
lapping clusters, the instability of the resulting
clusters w.r.t. the initialization of the algorithm
as well as the difficulty in clustering genes and
samples simultaneously. In this paper we show
that al/ of these problems can be elegantly dealt
with by using nonnegative matrix factorizations
to cluster genes and samples simultancously
while allowing for bicluster overlaps and by em-
ploying Positive Tensor Factorization to perform
a two-way meta-clustering of the biclusters pro-
duced in several different clustering runs
(thereby addressing the above-mentioned insta-
bility). The application of our approach to a
large lung cancer dataset proved computationally
tractable and was able to recover the histological
classification of the various cancer subtypes rep-
resented in the dataset.

1 Introduction and motivation

The recent advent of high-throughput experimental data,
especially in molecular biology and genomics, poses new
challenges to existing data mining tools. Measuring the
expression levels of virtually every gene of a given or-
ganism in a given state has become a routine procedure in
many research labs worldwide and has also reached the
commercial stage in the last decade. Such gene chips, or
microarrays, could in principle be used to determine the
variation in gene expression profiles responsible for com-
plex diseases, such as cancer. However, the large num-
bers of genes involved (up to a few tens of thousands)
compared to the small number of samples (tens to a few
hundreds), as well as the large experimental noise levels
pose significant challenges to current data mining tools.
Moreover, most currently used clustering algorithms
produce non-overlapping clusters, which represents a
serious limitation in this domain, since a gene is typically

involved in several biological processes. In this paper we
make the biologically plausible simplifying assumption
that the overlap of influences (biological processes) is
additive

X =ZCX(s,g|c) (D
where X, is the expression level of gene g in data sample
s, while X(s,g | ¢) is the expression level of g in s due to
biological process c¢. We also assume that X(s,g le) is
multiplicatively decomposable into the expression level
A, of the biological process (cluster) ¢ in sample s and
the membership degree S, of gene g in c:

X(s,glo)=4,-S, @)

Fuzzy k-means [Bezdek, 1981] or Nonnegative Matrix
Factorization (NMF) [Lee and Seung, 2001] could be
used to produce potentially overlapping clusters, but
these approaches are affected by the instability of the
resulting clusters w.r.t. the initialization of the algorithm.
This is not surprising if we adopt a unifying view of clus-
tering as a constrained optimization problem, since the
fitness landscape of such a complex problem may involve
many different local minima into which the algorithm
may get caught when started off from different initial
states. Although such an instability seems hard to avoid,
we may be interested in the clusters that keep reappearing
in the majority of the runs of the algorithm. This is re-
lated to the problem of combining multiple clustering
systems, which is the unsupervised analog of the classi-
fier combination problem but involves solving an addi-
tional so-called cluster correspondence problem, which
amounts to finding the best matches between clusters
generated in different runs.

The cluster correspondence problem can also be cast as
an unsupervised optimization problem, which can be
solved by a meta-clustering algorithm. Choosing an ap-
propriate meta-clustering algorithm for dealing with this
problem crucially depends on the precise notion of clus-
ter correspondence.

Since a very strict notion of perfect one-to-one corre-
spondence between the clusters of each pair of clustering
runs may be too tough to be realized in most practical
cases, we could look for clusters that are most similar
(although not necessarily identical) across all runs. This
is closest to performing something similar to single-
linkage hierarchical clustering on the sets of clusters pro-
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duced in the various clustering runs, with the additional
constraint of allowing in each meta-cluster no more than
a single cluster from each individual run. Unfortunately,
this constraint will render the meta-clustering algorithm
highly unstable. Thus, while trying to address the insta-
bility of (object-level) clustering using meta-level clus-
tering, we end up with instability in the meta-clustering
algorithm itself. Therefore, a “softer” notion of cluster
correspondence is needed.

In a previous paper [Badea, 2005], we have shown that
a generalization of NMF called Positive Tensor Factori-
zation [Welling and Weber, 2001] is precisely the tool
needed for meta-clustering “soft”, potentially overlap-
ping biclusters produced in different clustering runs by
fuzzy k-means or NMF. Here we demonstrate that this
approach can be successfully used for biclustering a large
lung cancer gene expression dataset.

2 Generating overlapping clusters with
NMF

Combining (1) and (2) leads to a reformulation of our
clustering problem as a nonnegative factorization of the
ngxng, (samples X genes) gene expression matrix X as a
product of an nyxn, (samples X clusters) matrix 4 and an
neXng (clusters x genes) matrix S:

XSg = ZC AS(7 ! SCg (3)
with the additional nonnegativity constraints:
Ae20, S 20. @)

(Expression levels and membership degrees cannot be
negative.) More formally, this can be cast as a con-
strained optimization problem:
minC(A,S):%HX—A~S||f,:%2(X—A~S)fg )
5.8
subject to the nonnegativity constraints (4), and could be
solved using Lee and Seung’s seminal Nonnegative Ma-
trix Factorization (NMF) algorithm [Lee and Seung,
2001] (s a small regularization parameter):

NMF!X: on Sgl o d !A,é!
A« Ay S Sy (typically 4y,S) are initialized randomly)
loop until convergence

(A" X),,
cg <« cg T

(A"-4-9), +e
T

ASC sC (X ST )Sﬁ

(4-S-ST), +e

S

As explained above, such a factorization can be viewed
as a “soft” clustering algorithm allowing for overlapping
clusters, since we may have several significant S,, entries
on a given column g of S (so a gene g may “belong” to
several clusters c).

Allowing for cluster overlap alleviates but does not
completely eliminate the instability of clustering, since

the optimization problem (5), (4) is non-convex. In par-
ticular, the NMF algorithm produces different factoriza-
tions (biclusters) (4”,5") for different initializations, so
meta-clustering the resulting “soft” clusters might be
needed to obtain a more stable set of clusters. However,
using a “hard” meta-clustering algorithm would once
again entail an unwanted instability.

In this paper we use Positive Tensor Factorization
(PTF) as a “soft” meta-clustering approach able to deal
with biclusters. This not only alleviates the instability of
a “hard” meta-clustering algorithm, but also produces a
“base” set of “bicluster prototypes”, out of which all bi-
clusters of all individual runs can be recomposed, despite
the fact that they may not correspond to identically reoc-
curring clusters in all individual runs.

3 Two-way metaclustering with PTF

We use NMF for object-level clustering and PTF for
meta-clustering. This unified approach solves in an ele-
gant manner both the clustering and the cluster corre-
spondence problem. More precisely, we first run NMF as
object-level clustering r times:

X =40.80 i=1l.,r (6)
where X is the gene expression matrix to be factorized
(samples x genes), 4 (samples x clusters) and S (clus-
ters X genes).

To allow the comparison of membership degrees S,
for different clusters ¢, we scale the rows of S to unit
norm by taking advantage of the scaling invariance of the
above factorization (6): 4 < A - D, S « D'- S, where D
is a positive diagonal matrix with elements

d. =2 5 -

Next, we perform meta-clustering of the resulting bi-
clusters (A", 7). This is in contrast with as far as we
know all existing meta-clustering approaches, which take
only one dimension into account (either the object- or the
sample dimension). Although such one-way approaches
work well in many cases, they will fail whenever two
clusters correspond to very similar sets of genes, while
differing along the sample dimension.

In the following, we show that a slight generalization
of NMF, namely Positive Tensor Factorization (PTF)
[Welling and Weber, 2001] can be successfully used to
perform two-way meta-clustering, taking both the gene
and the sample dimensions into account.

Naively, one would be tempted to try clustering the bi-
clusters' A" . 5" instead of the gene clusters §”, but this

is practically infeasible in most real-life datasets because
it involves factorizing a matrix of size r- n. X n,- ng. On
closer inspection, however, it turns out that it is not nec-
essary to construct this full-blown matrix — actually we

! A" s the column ¢ of A while §Wis the row ¢ of SO,
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are searching for a Positive Tensor Factorization of this
matrix

Al S =30 el By i Q)
The indices in (7) have the following domains: s — sam-
ples, g — genes, ¢ — clusters, k — metaclusters. To simplify

the notation, we merge the indices i and ¢ into a single
index (ic):
n k

Ay *Stierg = Z/c;l iy B Vg (7
Note that Band yare the “unified” versions of A and S
respectively. More precisely, the columns S of  and the
corresponding rows %. of ¥ make up a base set of biclus-
ter prototypes Bi-%. out of which all biclusters of all in-
dividual runs can be recomposed, while « encodes the
(bi)cluster-metacluster correspondence.

Ideally (in case of a perfect one-to-one correspondence
of biclusters across runs), we would expect the rows of «
to contain a single significant entry ;¢ m(c), S0 that each
bicluster 4 . §'” corresponds to a single bicluster proto-

type Buniie) ¥mtie) (Where m(i,c) is a function of i and c¢):
0, g _
Ac ' Sc - a(ic).m(i,c) : ﬂ-m(i.c) ! ym(i,r)- (8)

Additionally, each metacluster m should contain no more
than a single bicluster from each run, i.e. there should be

no significant entries iy and iy with ¢'#c".

Although it could be easily solved by a hard meta-
clustering algorithm, such an ideal cluster correspon-
dence is only very seldom encountered in practice,
mainly due to the instability of most clustering algo-
rithms. Thus, instead of such a perfect correspondence
(8), we settle for a weaker one (7’) in which the rows of
o can contain several significant entries, so that all bi-
clusters Aﬁ") .Si") are recovered as combinations of biclus-

ter prototypes S %.

The nonnegativity constraints of PTF meta-clustering
are essential both for allowing the interpretation of S;-%.
as bicluster prototypes, as well as for obtaining sparse
factorizations. (In practice, the rows of « tend to contain
typically one or only very few significant entries.)

The factorization (7’) can be computed using the fol-
lowing multiplicative update rules:

(47 -B)*(S-7")
a- (BB =yl
L Alax(S-y"] )
Pl ey
o (A7 - )" -5
[ o)« (B BT 7

a—o*

v

2 By solving the constrained optimization problem

2
i ! D) _ N o >
mmC(a,ﬁ,y):7§ (Aic’Si;—Zaiﬁ xk},ng s.t. o, B,y =0.
k=1

ic.s.g

where ‘*’ and ‘—’ denote element-wise multiplication
and division of matrices, while -’ is ordinary matrix mul-
tiplication.

After convergence of the PTF update rules, we make
the prototype gene clusters directly comparable to each
other by normalizing the rows of yto unit norm, as well
as the columns of « such that Zic O =7 (r being the

number of runs) and then run NMF initialized with (8, 9)
to produce the final factorization X = 4-S.

4 Evaluation on synthetic data

Before addressing real-world gene expression datasets,
we evaluated our algorithm on synthetic datasets that
match as closely as possible real microarray data. Clus-
ters were modelled using a hidden-variable graphical
model, in which each hidden variable A. corresponds to
the cluster of genes influenced by A, (clusters can over-
lap since an observable variable X, can be influenced by
several hidden variables 4,.).

Since real-world microarray data are log-normally dis-
tributed, we sampled the hidden variables from a log,-
normal distribution with parameters p=2, 0=0.5, while
the influence coefficients S, between hidden and observ-
able variables were sampled from a uniform distribution
over the interval [1,2]. Finally, we added log,-normally
distributed noise € with parameters f,y;sc=0, Op0i5c=0.5.
Thus we generated our data using the model X = 4-S+&

We used #,ampies=50, Mgenes=100 and a number of genes
(respectively samples) per cluster 30 (respectively 15).
We compared 4 meta-clustering algorithms (fuzzy k-
means, NMF, PTF and the best run’) over 10 object-level
NMF clustering runs. (Other object level clustering
methods perform very poorly and are not shown here).

Figures 1-3 below present a comparison of the meta-
clustering algorithms w.r.t. the number of clusters (rang-
ing from 2 to 16). The Figures depict average values over
10 separate runs of the whole algorithm (with different
randomly generated clusters), as well as the associated
SEM (Standard Error of the Mean) bars. Note that al-
though all algorithms produce quite low relative er-
rorsg  =[| X—4-S|/|| x| (under 16%)", they behave quite

differently when it comes to recovering the original clus-
ters. In a certain way, the match of the recovered clusters
with the original ones is more important than the relative
error (see [Badea, 2005] for the definition of the match
between two sets of possibly overlapping clusters).
Figure 2 shows that PTF consistently outperforms the
other meta-clustering algorithms in terms of recovering
the original clusters. Note that since clusters were gener-
ated randomly, their overlap increases with their number,

3 i.e. the one with the smallest relative error.

* Except for fuzzy k-means which misbehaves for large numbers of
clusters.
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so it is increasingly difficult for the meta-clustering algo-
rithm to discern between them, leading to a decreasing
match.

algorithms (mean over 10 runs)
022~

02
o0.18
0.16
0.14

§ 0.12

0.1
0.08
0.08

0.04

0.@0

Figure 1. Relative errors versus number of clusters
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Figure 2. Mean match versus number of clusters

This can be directly seen in Figure 3, where we depict
both the cluster overlaps (in the initial data) and the
matches of the recovered clusters with the original ones.
The inverse correlation between bicluster overlap and
matches is obvious (Pearson correlation -0.92).
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Figure 3. Overlaps and matches are inversely correlated
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Among all object-level clustering algorithms tried (k-
means, fuzzy k-means and NMF), only NMF behaves
consistently well. The conceptual elegance of the combi-
nation of NMF as object-level clustering and PTF as
meta-clustering thus pays off in terms of performance.

S Metaclustering a lung cancer gene
expression dataset

We applied our meta-clustering approach to a large lung
cancer microarray dataset available from the Meyerson
lab at Harvard. Using HG-U95Av2 Affymetrix oligonu-
cleotide microarrays, Bhattacharjee et al. [2001] have
measured mRNA expression levels of 12600 genes in 186
lung tumor samples (139 adenocarcinomas, 21 squamous
cell lung carcinomas, 6 small cell lung cancers, 20 pul-
monary carcinoids) and 17 normal lung samples (203
samples in total). Whereas the non-adeno classes are
more or less well defined histologically, adenocarcino-
mas are very heterogeneous, with poorly defined histo-
logical and molecular level sub-classifications, despite
the large variability in survival times and responsiveness
to medication. Therefore, we applied our algorithm to the
full dataset and used the histological classification of the
non-adeno samples (provided in the supplementary mate-
rial to the original paper) as a gold standard for the
evaluation of the biclustering results.

To eliminate the bias towards genes with high expres-
sion values, the gene expression matrix was normalized
by separate scalings of the genes to equalize their norms.’

Although nonnegative factorizations have the advan-
tage of obtaining sparse and easily interpretable decom-
positions, they cannot directly account for gene down-
regulation. To deal with gene down-regulation in the con-
text of NMF, we extended the gene expression matrix
with new “down-regulated genes” g’ = pos(mean(g,ormar)
— g) associated to the original genes g  where
mean(g,orma) 18 the average of the gene over the normal
samples, while pos(-) is the Heaviside step function.

To avoid overfitting, we estimated the number of clus-
ters n. as the number of dimensions around which the
change in relative error de¢ /dn, of the factorization of the
real data “reaches from above” the change in relative
error obtained for a randomized dataset (similar to [Kim
and Tidor, 2003]).

We then used our metaclustering algorithm to factorize
the extended gene expression matrix X by running PTF
over 20 NMF runs with the number of clusters deter-
mined above (n.~=10). (The matrix X has 203 rows (sam-
ples) and 2x3529=7058 columns (extended genes).) Fig-
ure 4 shows the resulting sample cluster matrix 4. Note
that the algorithm has recovered the non-adeno sample
clusters with high accuracy, despite the very large num-
ber of variables (genes), many of these potentially irrele-

> Genes with nearly constant and very low expression values (aver-
age expression levels<30 and STD<50) had been discarded, leav-
ing 3529 genes that are expressed in the lung cancer samples.
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vant in this problem. More precisely, the clusters 6, 7, 8
on the diagonal of A4 correspond to the classes
‘squamous’, ‘small cell’ and ‘normal’ respectively, while
clusters 9 and 10 are two subtypes of carcinoids (which,
like adenos, are heterogeneous and form two partially
overlapping clusters). Note that unlike most clustering
methods, our approach allows for overlapping clusters.
The accuracy of the sample cluster overlaps can be tested
for example in the case of the samples AD341, AD275,
AD234 and AD241, which were classified by histo-
pathologists as adeno-squamous and also appear in the
overlap of our ‘squamous’ cluster with other ‘adeno’
clusters. Similarly, the overlap between the small cell and
squamous sample clusters corresponds to mixed small
cell-squamous cases, which are mentioned in the litera-
ture.

g

i
:

?

T o e

Figure 4. The sample clusters (matrix 4 — normalized columns)

The gene clusters S recovered genes with well known
involvement in the lung cancer subtypes under study. For
example, the squamous cluster contained numerous kera-
tin genes (keratins 6A, 5, 17, 14, 13, 16, 19), typical for
squamous differentiation, the keratinocyte-specific pro-
tein stratifin, the p53 tumor suppressor analog TP73L,
etc. More details on the gene clusters and a larger version
of Figure 4 can be found in the supplementary material at
http://www.ai.ici.ro/ijcai07/. (Note that genes with large
See tend to be differentially expressed between the
classes, although the class information was never pro-
vided to the algorithm.)

The Table below shows the relative reconstruction er-
rors € = ||[X=4-S||r / ||X||r for k-means, fuzzy k-means,’
NMF and PTF (we display the mean, STD and min errors
for 20 clustering runs of each algorithm and clustering
dimensions 5, 10, 14 and 20). PTF meta-clustering exhib-
its slightly smaller relative errors than the best runs of
k-means, fuzzy k-means and NMF, and the improvement
also increases slightly with the number of clusters.

k fcm NMF

n.| k-means k-means fcm best NMF best | PTF

¢Imean(STD) best runjmean(STD) run mean(STD) run
0.4460 0.4459 0.4208

5| (0.0010) | 2445| (0.0007) “44%" (0.0004) 0440604406
0.4247 0.4219 0.4062

101 (0.0030) | 94198 | (0.0017) [>4184 (0.0005) [*-40560-4052
0.4151 0.4111 0.3866

141 0.0035) | 9419 (0.0025) [>4068 (0.0009) [0-38590-3849
0.4002 0.3978 0.3642

20| (0.0045) | 23938 | (0.0039) 03898 (0.000s) [-36340-362

Fuzzy k-means clustering required a very delicate fine-
tuning of the fuzzy exponent for obtaining non-trivial
clusters: we used a fuzzy exponent of 1.1, whereas a
slightly higher value of 1.15 produced only trivial, non-
informative clusters. However, such a small fuzzy expo-
nent leads to very categorical membership degrees even
for very small differences in distance between gene pro-
files, so the results are similar to those of hard clustering
(plain k-means). This is probably due to the different
interpretations of cluster overlap in fuzzy k-means and
NMF respectively: whereas fuzzy k-means views over-
laps in terms of membership degrees, NMF and PTF in-
terpret overlaps as mixtures (as in the case of the adeno-
squamous samples — see also assumptions (1) and (2)
above).

However, much more important than a small improve-
ment in error is the stability of the resulting clusters. All
studied methods recovered the non-adeno sample clusters
satisfactorily (with differences in the adeno clusters that
cannot be judged based on current histological evidence).
To study the variability of the gene clusters S in different
runs of each algorithm, we computed the average relative
differences |[|S—S;||/||S/|| between pairs of gene cluster
matrices S; obtained in 20 different runs (of each algo-
rithm) for n.=10 clusters, as well as the corresponding
mismatches between gene clusters matrices. We display
the cluster mismatches for progressively larger cutoff
thresholds’ to show that the differences between clusters
obtained in different runs involve not just the small, but
also the large coefficients of S.

% For both plain and fuzzy k-means, 4 is constructed from the clus-

ter membership function, while S is given by the cluster centers.

7 Cluster membership degrees S, were considered significant if
they exceeded the thresholds 6, =1/ \/Z , 26), and 30, respec-

tively. Note that the rows of S are normalized to unit norm.
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k-means Fcm NMF best NMF PTF
mean(STD)mean(STD)mean(STD)mean(STD)mean(STD)
rz:?rtel\r/e 01755 | 0.0803 | 03117 | 0.1591 | 0.0354
ence | (0.0238) | (0.0265) | (0.0599) | (0.0939) | (0.0167)
m”a“tih 0.1730 | 0.0748 | 0.1457 | 0.0747 | 0.0165
o, | (0.0204) | (0.0225) | (0.0296) | (0.0433) | (0.0080)
0g
m’g'ti'h 0.3345 | 0.1354 | 02720 | 0.1397 | 0.0269
(0.0973) | (0.0987) | (0.0579) | (0.0836) | (0.0130)
S>264,
mrg'tf;'h 07121 | 0.3215 | 0.3059 | 0.1228 | 0.0283
Gong. | (0.1658) | (0.1863) | (0.0885) | (0.0738) | (0.0130)
0g

As the inter-run variability of S is quite large for all
clustering methods tried®, except PTF (e.g. 31% for NMF
with #n.=10), using such clustering algorithms for deter-
mining gene clusters is highly unreliable. On the other
hand, PTF is preferable to the other methods due to its
increased stability (only about 3% variability of S).

Moreover, PTF is preferable to fuzzy k-means in clus-
tering gene expression data since it is able to reconstruct
gene profiles of samples that represent mixtures of fre-
quently occurring profiles. For example, the Meyerson
dataset studied here contains numerous samples with ex-
pression profiles similar to a squamous profile SQ, as
well as other samples with a different, adeno profile AD
(by a gene expression profile we mean a set of gene ex-
pression values for all genes represented on the microar-
ray chip). These two different sample groups will lead to
two distinct columns of 4 representing the SQ and AD
profiles. However, the Meyerson dataset also contains
adeno-squamous samples with a mixed AD + SQ profile,
which can be easily represented by NMF and PTF fac-
torizations, but not by fuzzy or plain k-means.

6 Related work and conclusions

A detailed review of the clustering methods applicable to
gene expression data is out of the scope of this paper, due
to space constraints. Briefly, our approach is significantly
different from other biclustering approaches, such as
Cheng and Church’s [Cheng and Church, 2000], which is
based on a simpler additive model that is not scale in-
variant (and thus problematic in the case of gene expres-
sion data). On the other hand, approaches based on singu-
lar value decompositions, or the Iterative Signature Algo-
rithm [Bergmann et al., 2003], tend to produce holistic
decompositions as opposed to the more parts-based ones
obtained here (holistic decompositions being typically
hard to interpret in this domain). Closest to our approach
are [Kim and Tidor, 2003] and [Brunet et al., 2004]. Kim
and Tidor [2003] used NMF decompositions for analyz-
ing a yeast gene expression compendium, but their ap-
proach still suffers from the instability of NMF. On the
other hand, Brunet et al. [2004] used NMF for non-

8 It also increases with the number of clusters (results not shown).

overlapping iterative clustering of samples, rather than
biclustering as we do.

In this paper we show that nonnegative decompositions
such as NMF and PTF can be combined in a non-trivial
way to obtain an improved meta-clustering algorithm for
gene expression data. The approach deals with overlap-
ping clusters and alleviates the annoying instability of
currently used algorithms by using an advanced two-way
meta-clustering technique based on femsor (rather than
matrix) factorizations.

It is encouraging that PTF recovers the main known
lung cancer subtypes, including subtle classifications of
certain samples in overlapping classes (adeno-squamous),
in a large dataset in which 70% of the samples represent
the poorly characterized adenocarcinoma.

And although the improvements in error obtained by
PTF are only marginal, it leads to increased stability of
the gene clusters (which are extremely important for de-
termining the genes causing the disease). Moreover, PTF
proves more adequate in this domain than other methods
like fuzzy k-means, due to its interpretation of cluster
overlaps as mixtures, fuzzy k-means being extremely
sensitive to minute changes in the fuzzy exponent.
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