
Although clustering is probably the most fre-
quently used tool for data mining gene expres-
sion data, existing clustering approaches face at 
least one of the following problems in this do-
main: a huge number of variables (genes) as 
compared to the number of samples, high noise 
levels, the inability to naturally deal with over-
lapping clusters, the instability of the resulting 
clusters w.r.t. the initialization of the algorithm 
as well as the difficulty in clustering genes and 
samples simultaneously. In this paper we show 
that all of these problems can be elegantly dealt 
with by using nonnegative matrix factorizations 
to cluster genes and samples simultaneously 
while allowing for bicluster overlaps and by em-
ploying Positive Tensor Factorization to perform 
a two-way meta-clustering of the biclusters pro-
duced in several different clustering runs 
(thereby addressing the above-mentioned insta-
bility). The application of our approach to a 
large lung cancer dataset proved computationally 
tractable and was able to recover the histological 
classification of the various cancer subtypes rep-
resented in the dataset. 

The recent advent of high-throughput experimental data, 
especially in molecular biology and genomics, poses new 
challenges to existing data mining tools. Measuring the 
expression levels of virtually every gene of a given or-
ganism in a given state has become a routine procedure in 
many research labs worldwide and has also reached the 
commercial stage in the last decade. Such gene chips, or 
microarrays, could in principle be used to determine the 
variation in gene expression profiles responsible for com-
plex diseases, such as cancer. However, the large num-
bers of genes involved (up to a few tens of thousands) 
compared to the small number of samples (tens to a few 
hundreds), as well as the large experimental noise levels 
pose significant challenges to current data mining tools.

Moreover, most currently used clustering algorithms 
produce non-overlapping clusters, which represents a 
serious limitation in this domain, since a gene is typically 

involved in several biological processes. In this paper we 
make the biologically plausible simplifying assumption 
that the overlap of influences (biological processes) is 
additive

=
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where Xsg is the expression level of gene g in data sample 
s, while X(s,g ⎢c) is the expression level of g in s due to 
biological process c. We also assume that X(s,g ⎢c) is 
multiplicatively decomposable into the expression level 
Asc of the biological process (cluster) c in sample s and 
the membership degree Scg of gene g in c:

cgsc SAcgsX ⋅=)|,(                  (2) 
Fuzzy k-means [Bezdek, 1981] or Nonnegative Matrix 

Factorization (NMF) [Lee and Seung, 2001] could be 
used to produce potentially overlapping clusters, but 
these approaches are affected by the instability of the 
resulting clusters w.r.t. the initialization of the algorithm. 
This is not surprising if we adopt a unifying view of clus-
tering as a constrained optimization problem, since the 
fitness landscape of such a complex problem may involve 
many different local minima into which the algorithm 
may get caught when started off from different initial 
states. Although such an instability seems hard to avoid, 
we may be interested in the clusters that keep reappearing 
in the majority of the runs of the algorithm. This is re-
lated to the problem of combining multiple clustering 
systems, which is the unsupervised analog of the classi-
fier combination problem but involves solving an addi-
tional so-called cluster correspondence problem, which 
amounts to finding the best matches between clusters 
generated in different runs. 

The cluster correspondence problem can also be cast as 
an unsupervised optimization problem, which can be 
solved by a meta-clustering algorithm. Choosing an ap-
propriate meta-clustering algorithm for dealing with this 
problem crucially depends on the precise notion of clus-
ter correspondence.

Since a very strict notion of perfect one-to-one corre-
spondence between the clusters of each pair of clustering 
runs may be too tough to be realized in most practical 
cases, we could look for clusters that are most similar
(although not necessarily identical) across all runs. This 
is closest to performing something similar to single-
linkage hierarchical clustering on the sets of clusters pro-
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duced in the various clustering runs, with the additional 
constraint of allowing in each meta-cluster no more than 
a single cluster from each individual run. Unfortunately, 
this constraint will render the meta-clustering algorithm 
highly unstable. Thus, while trying to address the insta-
bility of (object-level) clustering using meta-level clus-
tering, we end up with instability in the meta-clustering 
algorithm itself. Therefore, a “softer” notion of cluster 
correspondence is needed. 

In a previous paper [Badea, 2005], we have shown that 
a generalization of NMF called Positive Tensor Factori-
zation [Welling and Weber, 2001] is precisely the tool 
needed for meta-clustering “soft”, potentially overlap-
ping biclusters produced in different clustering runs by 
fuzzy k-means or NMF. Here we demonstrate that this 
approach can be successfully used for biclustering a large 
lung cancer gene expression dataset. 

Combining (1) and (2) leads to a reformulation of our 
clustering problem as a nonnegative factorization of the 
ns×ng (samples × genes) gene expression matrix X as a 
product of an ns×nc (samples × clusters) matrix A and an 
nc×ng (clusters × genes) matrix S:

⋅≈
c cgscsg SAX                     (3) 

with the additional nonnegativity constraints:
Asc ≥ 0, Scg ≥ 0.                   (4) 

(Expression levels and membership degrees cannot be 
negative.) More formally, this can be cast as a con-
strained optimization problem: 
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subject to the nonnegativity constraints (4), and could be 
solved using Lee and Seung’s seminal Nonnegative Ma-
trix Factorization (NMF) algorithm [Lee and Seung, 
2001] (ε is a small regularization parameter): 

NMF(X, A0, S0) →→→→ (A,S)
A ← A0, S ← S0 (typically A0,S0 are initialized randomly) 
loop until convergence

ε+⋅⋅
⋅

←
cg

T
cg

T

cgcg SAA
XA

SS
)(
)(

ε+⋅⋅
⋅←

sc
T

sc
T

scsc SSA
SXAA

)(
)(

As explained above, such a factorization can be viewed 
as a “soft” clustering algorithm allowing for overlapping
clusters, since we may have several significant Scg entries
on a given column g of S (so a gene g may “belong” to 
several clusters c).

Allowing for cluster overlap alleviates but does not 
completely eliminate the instability of clustering, since 

the optimization problem (5), (4) is non-convex. In par-
ticular, the NMF algorithm produces different factoriza-
tions (biclusters) (A(i),S(i)) for different initializations, so 
meta-clustering the resulting “soft” clusters might be 
needed to obtain a more stable set of clusters. However, 
using a “hard” meta-clustering algorithm would once 
again entail an unwanted instability.

In this paper we use Positive Tensor Factorization 
(PTF) as a “soft” meta-clustering approach able to deal 
with biclusters. This not only alleviates the instability of 
a “hard” meta-clustering algorithm, but also produces a 
“base” set of “bicluster prototypes”, out of which all bi-
clusters of all individual runs can be recomposed, despite 
the fact that they may not correspond to identically reoc-
curring clusters in all individual runs. 

We use NMF for object-level clustering and PTF for 
meta-clustering. This unified approach solves in an ele-
gant manner both the clustering and the cluster corre-
spondence problem. More precisely, we first run NMF as 
object-level clustering r times: 

riSAX ii ,...,1)()( =⋅≈             (6)
where X is the gene expression matrix to be factorized 
(samples × genes), A(i) (samples × clusters) and S(i) (clus-
ters × genes). 

To allow the comparison of membership degrees Scg
for different clusters c, we scale the rows of S(i) to unit 
norm by taking advantage of the scaling invariance of the 
above factorization (6): A ← A ⋅ D, S ← D−1⋅ S, where D
is a positive diagonal matrix with elements 

=
g cgc Sd 2 .

Next, we perform meta-clustering of the resulting bi-
clusters (A(i), S(i)). This is in contrast with as far as we 
know all existing meta-clustering approaches, which take 
only one dimension into account (either the object- or the 
sample dimension). Although such one-way approaches 
work well in many cases, they will fail whenever two 
clusters correspond to very similar sets of genes, while 
differing along the sample dimension.

In the following, we show that a slight generalization 
of NMF, namely Positive Tensor Factorization (PTF)
[Welling and Weber, 2001] can be successfully used to 
perform two-way meta-clustering, taking both the gene 
and the sample dimensions into account.

Naively, one would be tempted to try clustering the bi-
clusters1 )()( i

c
i

c SA ⋅ instead of the gene clusters )( i
cS , but this 

is practically infeasible in most real-life datasets because 
it involves factorizing a matrix of size r⋅ nc × ns⋅ ng. On
closer inspection, however, it turns out that it is not nec-
essary to construct this full-blown matrix – actually we 

1 )( i
cA is the column c of A(i), while )(i

cS is the row c of S(i).
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are searching for a Positive Tensor Factorization of this 
matrix 2
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The indices in (7) have the following domains: s – sam-
ples, g – genes, c – clusters, k – metaclusters. To simplify 
the notation, we merge the indices i and c into a single 
index (ic):

=
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Note that β and γ are the “unified” versions of A(i) and S(i)

respectively. More precisely, the columns β⋅k of β and the 
corresponding rows γk⋅ of γ  make up a base set of biclus-
ter prototypes β⋅k⋅γk⋅ out of which all biclusters of all in-
dividual runs can be recomposed, while α encodes the 
(bi)cluster-metacluster correspondence.

Ideally (in case of a perfect one-to-one correspondence 
of biclusters across runs), we would expect the rows of α
to contain a single significant entry α(ic),m(i,c), so that each 
bicluster )()( i

c
i

c SA ⋅ corresponds to a single bicluster proto-
type β⋅m(i,c)⋅ γm(i,c)⋅ (where m(i,c) is a function of i and c):
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Additionally, each metacluster m should contain no more 
than a single bicluster from each run, i.e. there should be 
no significant entries mic ),'(α and mic ),"(α  with c'≠ c".

Although it could be easily solved by a hard meta-
clustering algorithm, such an ideal cluster correspon-
dence is only very seldom encountered in practice, 
mainly due to the instability of most clustering algo-
rithms. Thus, instead of such a perfect correspondence 
(8), we settle for a weaker one (7’) in which the rows of 
α can contain several significant entries, so that all bi-
clusters )()( i

c
i

c SA ⋅ are recovered as combinations of biclus-
ter prototypes β⋅k⋅γk⋅.

The nonnegativity constraints of PTF meta-clustering 
are essential both for allowing the interpretation of β⋅k⋅γk.
as bicluster prototypes, as well as for obtaining sparse 
factorizations. (In practice, the rows of α tend to contain 
typically one or only very few significant entries.)

The factorization (7’) can be computed using the fol-
lowing multiplicative update rules: 
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where ‘∗’ and ‘−−’ denote element-wise multiplication 
and division of matrices, while ‘⋅’ is ordinary matrix mul-
tiplication.

After convergence of the PTF update rules, we make 
the prototype gene clusters directly comparable to each 
other by normalizing the rows of γ to unit norm, as well 
as the columns of α such that =

ci kic r
, )(α  (r being the 

number of runs) and then run NMF initialized with (β,γ)
to produce the final factorization X ≈ A⋅S.

Before addressing real-world gene expression datasets, 
we evaluated our algorithm on synthetic datasets that 
match as closely as possible real microarray data. Clus-
ters were modelled using a hidden-variable graphical 
model, in which each hidden variable Ac corresponds to 
the cluster of genes influenced by Ac (clusters can over-
lap since an observable variable Xg can be influenced by 
several hidden variables Ac).

Since real-world microarray data are log-normally dis-
tributed, we sampled the hidden variables from a log2-
normal distribution with parameters μ=2, σ=0.5, while 
the influence coefficients Scg between hidden and observ-
able variables were sampled from a uniform distribution 
over the interval [1,2]. Finally, we added log2-normally
distributed noise ε with parameters μnoise=0, σnoise=0.5.
Thus we generated our data using the model X = A⋅S +ε.

We used nsamples=50, ngenes=100 and a number of genes 
(respectively samples) per cluster 30 (respectively 15). 
We compared 4 meta-clustering algorithms (fuzzy k-
means, NMF, PTF and the best run3) over 10 object-level 
NMF clustering runs. (Other object level clustering 
methods perform very poorly and are not shown here).

Figures 1-3 below present a comparison of the meta-
clustering algorithms w.r.t. the number of clusters (rang-
ing from 2 to 16). The Figures depict average values over 
10 separate runs of the whole algorithm (with different 
randomly generated clusters), as well as the associated 
SEM (Standard Error of the Mean) bars. Note that al-
though all algorithms produce quite low relative er-
rors ||||/|||| XSAXrel ⋅−=ε (under 16%)4, they behave quite 
differently when it comes to recovering the original clus-
ters. In a certain way, the match of the recovered clusters 
with the original ones is more important than the relative 
error (see [Badea, 2005] for the definition of the match
between two sets of possibly overlapping clusters).

Figure 2 shows that PTF consistently outperforms the 
other meta-clustering algorithms in terms of recovering 
the original clusters. Note that since clusters were gener-
ated randomly, their overlap increases with their number, 

3 i.e. the one with the smallest relative error. 
4 Except for fuzzy k-means which misbehaves for large numbers of 
clusters.
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so it is increasingly difficult for the meta-clustering algo-
rithm to discern between them, leading to a decreasing 
match.

Figure 1. Relative errors versus number of clusters

Figure 2. Mean match versus number of clusters

This can be directly seen in Figure 3, where we depict 
both the cluster overlaps (in the initial data) and the 
matches of the recovered clusters with the original ones. 
The inverse correlation between bicluster overlap and 
matches is obvious (Pearson correlation -0.92). 

Figure 3. Overlaps and matches are inversely correlated

Among all object-level clustering algorithms tried (k-
means, fuzzy k-means and NMF), only NMF behaves 
consistently well. The conceptual elegance of the combi-
nation of NMF as object-level clustering and PTF as 
meta-clustering thus pays off in terms of performance. 

We applied our meta-clustering approach to a large lung 
cancer microarray dataset available from the Meyerson 
lab at Harvard. Using HG-U95Av2 Affymetrix oligonu-
cleotide microarrays, Bhattacharjee et al. [2001] have 
measured mRNA expression levels of 12600 genes in 186 
lung tumor samples (139 adenocarcinomas, 21 squamous 
cell lung carcinomas, 6 small cell lung cancers, 20 pul-
monary carcinoids) and 17 normal lung samples (203 
samples in total). Whereas the non-adeno classes are 
more or less well defined histologically, adenocarcino-
mas are very heterogeneous, with poorly defined histo-
logical and molecular level sub-classifications, despite 
the large variability in survival times and responsiveness 
to medication. Therefore, we applied our algorithm to the 
full dataset and used the histological classification of the 
non-adeno samples (provided in the supplementary mate-
rial to the original paper) as a gold standard for the 
evaluation of the biclustering results. 

To eliminate the bias towards genes with high expres-
sion values, the gene expression matrix was normalized 
by separate scalings of the genes to equalize their norms.5

Although nonnegative factorizations have the advan-
tage of obtaining sparse and easily interpretable decom-
positions, they cannot directly account for gene down-
regulation. To deal with gene down-regulation in the con-
text of NMF, we extended the gene expression matrix 
with new “down-regulated genes” g’ = pos(mean(gnormal)
− g) associated to the original genes g, where
mean(gnormal) is the average of the gene over the normal
samples, while pos(⋅) is the Heaviside step function. 

To avoid overfitting, we estimated the number of clus-
ters nc as the number of dimensions around which the 
change in relative error dε /dnc of the factorization of the 
real data “reaches from above” the change in relative 
error obtained for a randomized dataset (similar to [Kim 
and Tidor, 2003]). 

We then used our metaclustering algorithm to factorize 
the extended gene expression matrix X by running PTF 
over 20 NMF runs with the number of clusters deter-
mined above (nc=10). (The matrix X has 203 rows (sam-
ples) and 2×3529=7058 columns (extended genes).) Fig-
ure 4 shows the resulting sample cluster matrix A. Note 
that the algorithm has recovered the non-adeno sample 
clusters with high accuracy, despite the very large num-
ber of variables (genes), many of these potentially irrele-

5 Genes with nearly constant and very low expression values (aver-
age expression levels<30 and STD<50) had been discarded, leav-
ing 3529 genes that are expressed in the lung cancer samples. 
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vant in this problem. More precisely, the clusters 6, 7, 8 
on the diagonal of A correspond to the classes 
‘squamous’, ‘small cell’ and ‘normal’ respectively, while 
clusters 9 and 10 are two subtypes of carcinoids (which, 
like adenos, are heterogeneous and form two partially 
overlapping clusters). Note that unlike most clustering 
methods, our approach allows for overlapping clusters. 
The accuracy of the sample cluster overlaps can be tested 
for example in the case of the samples AD341, AD275, 
AD234 and AD241, which were classified by histo-
pathologists as adeno-squamous and also appear in the 
overlap of our ‘squamous’ cluster with other ‘adeno’ 
clusters. Similarly, the overlap between the small cell and 
squamous sample clusters corresponds to mixed small 
cell-squamous cases, which are mentioned in the litera-
ture.

Figure 4. The sample clusters (matrix A – normalized columns) 
The gene clusters S recovered genes with well known 

involvement in the lung cancer subtypes under study. For 
example, the squamous cluster contained numerous kera-
tin genes (keratins 6A, 5, 17, 14, 13, 16, 19), typical for 
squamous differentiation, the keratinocyte-specific pro-
tein stratifin, the p53 tumor suppressor analog TP73L, 
etc. More details on the gene clusters and a larger version 
of Figure 4 can be found in the supplementary material at 
http://www.ai.ici.ro/ijcai07/. (Note that genes with large 
Scg tend to be differentially expressed between the 
classes, although the class information was never pro-
vided to the algorithm.) 

The Table below shows the relative reconstruction er-
rors ε = ||X−A⋅S||F / ||X||F for k-means, fuzzy k-means,6

NMF and PTF (we display the mean, STD and min errors 
for 20 clustering runs of each algorithm and clustering 
dimensions 5, 10, 14 and 20). PTF meta-clustering exhib-
its slightly smaller relative errors than the best runs of 
k-means, fuzzy k-means and NMF, and the improvement 
also increases slightly with the number of clusters. 

nc
k-means

mean(STD)
k-means
best run

fcm
mean(STD)

fcm
best
run

NMF
mean(STD)

NMF
best
run

PTF

5 0.4460
(0.0010) 0.4445 0.4459

(0.0007) 0.4451 0.4408
(0.0004) 0.44060.4406

10 0.4247
(0.0030) 0.4196 0.4219

(0.0017) 0.4184 0.4062
(0.0005) 0.40560.4052

14 0.4151
(0.0035) 0.4104 0.4111

(0.0025) 0.4068 0.3866
(0.0009) 0.38550.3849

20 0.4002
(0.0045) 0.3936 0.3978

(0.0039) 0.3895 0.3642
(0.0006) 0.3634 0.362

Fuzzy k-means clustering required a very delicate fine-
tuning of the fuzzy exponent for obtaining non-trivial 
clusters: we used a fuzzy exponent of 1.1, whereas a 
slightly higher value of 1.15 produced only trivial, non-
informative clusters. However, such a small fuzzy expo-
nent leads to very categorical membership degrees even 
for very small differences in distance between gene pro-
files, so the results are similar to those of hard clustering 
(plain k-means). This is probably due to the different 
interpretations of cluster overlap in fuzzy k-means and 
NMF respectively: whereas fuzzy k-means views over-
laps in terms of membership degrees, NMF and PTF in-
terpret overlaps as mixtures (as in the case of the adeno-
squamous samples – see also assumptions (1) and (2) 
above).

However, much more important than a small improve-
ment in error is the stability of the resulting clusters. All 
studied methods recovered the non-adeno sample clusters 
satisfactorily (with differences in the adeno clusters that 
cannot be judged based on current histological evidence). 
To study the variability of the gene clusters S in different 
runs of each algorithm, we computed the average relative 
differences ||Si−Sj||/||Si|| between pairs of gene cluster 
matrices Si obtained in 20 different runs (of each algo-
rithm) for nc=10 clusters, as well as the corresponding 
mismatches between gene clusters matrices. We display 
the cluster mismatches for progressively larger cutoff 
thresholds7 to show that the differences between clusters 
obtained in different runs involve not just the small, but 
also the large coefficients of S.

6 For both plain and fuzzy k-means, A is constructed from the clus-
ter membership function, while S is given by the cluster centers. 
7 Cluster membership degrees Scg were considered significant if 
they exceeded the thresholds

gg n/10 =θ , 2θ0g and 3θ0g respec-

tively. Note that the rows of S are normalized to unit norm. 
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16 
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k-means
mean(STD)

Fcm
mean(STD)

NMF
mean(STD)

best NMF 
mean(STD)

PTF
mean(STD)

relative
differ-
ence

0.1755
(0.0238)

0.0803
(0.0265)

0.3117
(0.0599)

0.1591
(0.0939)

0.0354
(0.0167)

 mis-
match
S>θ0g

0.1730
(0.0204)

0.0748
(0.0225)

0.1457
(0.0296)

0.0747
(0.0433)

0.0165
(0.0080)

 mis-
match
S>2θ0g

0.3345
(0.0973)

0.1354
(0.0987)

0.2720
(0.0579)

0.1397
(0.0836)

0.0269
(0.0130)

 mis-
match
S>3θ0g

0.7121
(0.1658)

0.3215
(0.1863)

0.3059
(0.0885)

0.1228
(0.0738)

0.0283
(0.0130)

As the inter-run variability of S is quite large for all 
clustering methods tried8, except PTF (e.g. 31% for NMF 
with nc=10), using such clustering algorithms for deter-
mining gene clusters is highly unreliable. On the other 
hand, PTF is preferable to the other methods due to its 
increased stability (only about 3% variability of S).

Moreover, PTF is preferable to fuzzy k-means in clus-
tering gene expression data since it is able to reconstruct 
gene profiles of samples that represent mixtures of fre-
quently occurring profiles. For example, the Meyerson 
dataset studied here contains numerous samples with ex-
pression profiles similar to a squamous profile SQ, as 
well as other samples with a different, adeno profile AD 
(by a gene expression profile we mean a set of gene ex-
pression values for all genes represented on the microar-
ray chip). These two different sample groups will lead to 
two distinct columns of A representing the SQ and AD 
profiles. However, the Meyerson dataset also contains 
adeno-squamous samples with a mixed AD + SQ profile, 
which can be easily represented by NMF and PTF fac-
torizations, but not by fuzzy or plain k-means. 

A detailed review of the clustering methods applicable to 
gene expression data is out of the scope of this paper, due 
to space constraints. Briefly, our approach is significantly 
different from other biclustering approaches, such as 
Cheng and Church’s [Cheng and Church, 2000], which is 
based on a simpler additive model that is not scale in-
variant (and thus problematic in the case of gene expres-
sion data). On the other hand, approaches based on singu-
lar value decompositions, or the Iterative Signature Algo-
rithm [Bergmann et al., 2003], tend to produce holistic 
decompositions as opposed to the more parts-based ones 
obtained here (holistic decompositions being typically 
hard to interpret in this domain). Closest to our approach 
are [Kim and Tidor, 2003] and [Brunet et al., 2004]. Kim 
and Tidor [2003] used NMF decompositions for analyz-
ing a yeast gene expression compendium, but their ap-
proach still suffers from the instability of NMF. On the 
other hand, Brunet et al. [2004] used NMF for non-

8 It also increases with the number of clusters (results not shown). 

overlapping iterative clustering of samples, rather than 
biclustering as we do.

In this paper we show that nonnegative decompositions 
such as NMF and PTF can be combined in a non-trivial 
way to obtain an improved meta-clustering algorithm for 
gene expression data. The approach deals with overlap-
ping clusters and alleviates the annoying instability of 
currently used algorithms by using an advanced two-way 
meta-clustering technique based on tensor (rather than 
matrix) factorizations.

It is encouraging that PTF recovers the main known 
lung cancer subtypes, including subtle classifications of 
certain samples in overlapping classes (adeno-squamous), 
in a large dataset in which 70% of the samples represent 
the poorly characterized adenocarcinoma.

And although the improvements in error obtained by 
PTF are only marginal, it leads to increased stability of 
the gene clusters (which are extremely important for de-
termining the genes causing the disease). Moreover, PTF 
proves more adequate in this domain than other methods 
like fuzzy k-means, due to its interpretation of cluster 
overlaps as mixtures, fuzzy k-means being extremely 
sensitive to minute changes in the fuzzy exponent. 
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