Constructing Career Histories: A Case Study in Disentangling the Threads

Paul R. Cohen
USC Information Sciences Institute
Marina del Rey, California

Abstract

We present an algorithm for organizing partially-
ordered observations into multiple “threads,” some
of which may be concurrent., The algorithm is ap-
plied to the problem of constructing career histories
for individual scientists from the abstracts of pub-
lished papers. Because abstracts generally do not
provide rich information about the contents of pa-
pers, we developed a novel relational method for
judging the similarity of papers. We report four
experiments that demonstrate the advantage of this
method over the traditional Dice and Tanimoto co-
efficients, and that evaluate the quality of induced
multi-thread career histories.

1 Introduction

Like most researchers, I work on several problems at once, so
my publications represent several research “threads.” Some
threads produce several papers, others lie dormant for months
or years, and some produce infrequent, irregular publications.
Some papers clearly represent new lines of research (for me)
while others are continuations. Although my research has
changed over the years it is difficult to identify when these
changes occurred. Yet, in retrospect, it is usually clear to me
that one paper is a direct descendent of another, while a third
is unrelated to the other two.

How should we model the processes that produce research
and publications? A single researcher can be viewed as a bun-
dle of non-independent processes, each of which produces
one kind of research. For example, some of my papers are
about modeling cognitive development on robots and some
are about finding structure in time series, and although these
threads are distinct, they are not independent. Occasionally
two or more threads go through one paper, or, to say it dif-
ferently, one paper can descend from two or more parents.
Within a thread, papers may be ordered roughly by their pub-
lication dates, although some appear months or years after
they were written. Threads sometimes appear with no appar-
ent connection to previous work.

My publications can be arranged in a graph like the one
in Figure 1. Later publications are represented as children
of earlier ones or, when they are unrelated to earlier publica-
tions, as children of the root (e.g., the node labeled d begins

a new thread). To avoid false advertising, I must say immedi-
ately that the algorithm I present in this paper produces trees
in which every publication has only one parent (e.g., it can-
not produce nodes like the one labeled a, b). An algorithm for
generating graphs like the one in Figure 1 is under develop-
ment.

Figure 1: A publication tree. Each node represents a publi-

cation. Threads are identified by letters. The depth of a node
represents its publication date.

Trees or graphs of publications are not models of the pro-
cesses that generate publications, but nor are they entirely
descriptive. Inference is required to generate them, in par-
ticular, research threads and parent-child relationships must
be inferred. The inference problem is as follows: Given an
ordered or partially-ordered sequence of observations, iden-
tify the processes that generated each observation, and assign
each observation to at least one process. Some processes may
not be active at the beginning of the sequence. I call this the
problem of disentangling the threads.

2 The PUBTREE Algorithm

The PUBTREE algorithm greedily adds papers to a growing
tree of papers:

1. Arrange the papers in chronological order, p1, p2, ...Dn,
least to most recent.

2. Create a root node r. Make p; a child of r.

I[JCAI-07
2713

3. For each remaining paper p;, find the most similar paper
in the tree and make p; its child. If p; is not similar
enough to any paper in the tree, make it the child of r.

The last step is managed with the help of a threshold. For
two papers, A and B, if S(A, B) > Tinread, treat them as
similar enough for B to be A’s child, otherwise make B the
child of r.

2.1 Relational Similarity

Clearly, the PUBTREE algorithm relies on a good similarity
metric. This section describes a novel approach to judging
the similarity of the abstracts of papers. Two abstracts, A and
B, contain sets of words W4 and W, of sizes N = [|[Wa]|
and Np = ||Wp|| respectively. For example, we might have
Wa = (tree search optimize constraint restart) and Wp =
(graph search vertex constraint). Note that the abstracts have
two common or shared words, search and constraint, and five
words that are not common, or unshared. Shared and un-
shared words each contribute a component to our measure of
similarity of abstracts.

A prevalent way to compare abstracts is to count the num-
ber of shared words and divide by the total number of words
in both abstracts:

2 [WanWgl||)

Na+ Np
This is called the Dice coefficient. Its value will be one when
W a4 = Wy and zero when the abstracts share no words. Sev-
eral other coefficients have been proposed (e.g., Jaccard, Co-
sine, see [Grossman and Frieder, 1998]). The differences
between them were slight in the experiments that follow.

For unshared words, we define a simple relational measure
of similarity. Let occ(w;,w;) be the number of abstracts in
the corpus in which words w; and w; co-occur. Two words
are said to be related if they co-occur in a super-threshold
number of abstracts:

D(A,B) =

)1 oce(wi, wy) > Toee
rel(w;, w;) = { 0 Otherwise @

For two abstracts, A and B, with words W 4 and Wp, a relat-
edness coefficient is

ZwiEWA Z’wj EWp,wj#w; Tel(wi’ wj)
(NaNp) — [Wa UWg]||

R is the average value of rel for all pairs of unshared
words. Its value will be one when every pair of unshared
words is related, that is, occurs in a super-threshold number of
abstracts. Note that R does not require two abstracts to share
any words. That is, the measure works even if W4 N Wg is
empty.

Putting D and R together we get:

R(A, B) = 3)

S(A,B)=aD(A,B)+ (1 —a)R(A, B) @

This measure, a weighted sum of similarity measures on
shared and unshared words, also will range from zero to one.
If & = 1 then S(A, B) is the Dice coefficient and depends

entirely on shared words. If « = 0 then S(A, B) is the re-
lational similarity measure, R, and depends entirely on un-
shared words.

To illustrate the value of the relational similarity measure,
R, consider two abstracts of papers about the same piece of
research, a system for automating exploratory data analysis.
After non-content words are removed, the first abstract is rep-
resented by: automate, capture, complexities, contribute, ex-
ploratory, EDA, IGOR, knowledge-based, manage, Phoenix,
relies and script-based. The second abstract, by the same au-
thors, represents another paper about a different aspect of the
system, with these words: Aide, assistant, ARPAROME, be-
gins, captured, contracts, data-driven, descriptive, extracted,
examined, enormous, explored, EDA, exploratory, informal,
presentation, plays, prelude, researcher, subtle, understand-
ing, word. The Dice coefficient for these abstracts is just
D = 0.11 because, although the abstracts are from very sim-
ilar papers, they share only the words. exploratory and EDA.
The relational coefficient is R = 0.49, a much more satisfac-
tory representation of the similarity of these papers.

3 Related work

PUBTREE is neither a clustering algorithm nor a sequence
analysis algorithm but has some attributes of both. Like clus-
tering, PUBTREE forms groups of objects, that is, it groups pa-
pers together into threads. Yet clusters are generally unstruc-
tured, or hierarchically structured, while PUBTREE’s threads
are organized sequentially by publication dates. Another dif-
ference is that, generally, an item may be added to a cluster if
it is similar to all items in the cluster (usually via comparison
to the cluster centroid) whereas an item may be added to a
thread if it is similar to the last item on the thread.

Sometimes, adding an item to a thread causes the thread to
split into two or more threads (i.e., threads are organized into
trees). A thread A, B, C... splits under node B when a paper
D is considered more similar to B than to C. Recall, a thread
is supposed to represent a process that produces research pa-
pers, and a researcher is thought of as a bundle of such pro-
cesses, so splitting a thread is analogous to changepoint anal-
ysis (e.g., [Lai, 1995]), or finding a point in a sequence where
a process changes. One can imagine a kind of PUBTREE al-
gorithm that repeatedly samples sequences from the author’s
list of papers, builds Markov chain models of some kind, and
identifies threads as sequences that do not feature change-
points. The challenge, of course, is to model the production
of papers as a stochastic process. We do not know of any
way to do this, which is why we built the similarity-based
PUBTREE algorithm. It would be nice to model the author as
a Hidden Markov Model (HMM), where the hidden state is
the thread identifier, but, again, we do not have a stochastic
framework for the production of research papers. Nor do we
know a priori how many threads (i.e., hidden states) an author
will produce, as fitting HMMs requires.

Genter and her colleagues introduced the term relational
similarity to emphasize that situations may be similar by
merit of the relationships that hold among their elements,
even though the elements themselves are different [Gentner
and Forbus, 1995; Gentner and Markman, 1997; Goldstone et

I[JCAI-07
2714

al., 1997]. This notion of similarity requires situations to be
structured; there are no relationships between elements in a
bag. However, as this paper shows, elements w; and w; from
unstructured bags of words W4 and W, respectively, can
be related by their appearances in other bags Weo, Wp,
Clearly, this is a weak kind of relational similarity, but the
term seems apt, nonetheless.

Our kind of relational similarity is a bit like query expan-
sion in information retrieval. The idea of query expansion is
that words in queries are rarely sufficient to find the right doc-
uments, so the query is “expanded” or augmented with addi-
tional words. Local query expansion [Xu and Croft, 1996]
uses the query to retrieve some documents and the words
in those documents to expand the query. So, in query ex-
pansion, w; € Wy causes We, Wp, ... to be retrieved, and
w; € Weg,w, € Wp,... expand the query, which might
cause Wp to be retrieved. Whereas, in our technique W4
and Wp are judged to be similar if w; € W4 and w; € Wp
and w;,w; € Wesw;,w; € Wp,.... Clearly these aren’t
identical inferences, but they are related.

4 Experiments

The experiments reported here were performed on a corpus
of 11672 papers from the Citeseer database. The papers were
selected by starting with my own Citeseer entries, adding all
those of my coauthors, and all those of their coauthors. Each
paper’s abstract was processed to remove common and dupli-
cate words so each paper was represented by a set of words.
(Unlike in most information retrieval applications, no spe-
cial effort was taken to identify discriminating words, such
as ranking words by their tf/idf scores.) The mean, median
and standard deviations of the number of words in an abstract
were 21.25,21, and 10.6, respectively.

4.1 Experiment 1: Same/different author

Our first experiment tested the relative contributions of the
D and R coefficients to performance on a classification task.
The task was to decide whether two papers were written by
the same author given their abstracts. The procedure is: Se-
lect abstract A at random from the corpus; with probability p
select another abstract, B, from the papers of the same author
as abstract A, and with probability 1 — p select B at ran-
dom from the corpus; record whether A and B have the same
author; record D(A, B) and R(A, B). (For this experiment,
Toce = 5.) Now, for a given value of o, compute the simi-
larity score S(A, B) and compare it to a threshold, T’s, and
if S(A, B) > Ts decide that A and B have the same author.
Because we recorded whether the papers were truly written
by one author or two, we know whether a “single-author” de-
cision is a correct (a hit) or a incorrect (a false positive). Re-
peating this process for many pairs of papers (1000 in these
experiments) yields a hit rate and a false positive rate for each
value of T’s, and by varying T's we get a ROC curve.

The ROC curve represents how good a classifier is. Ideally,
the curve should have a vertical line going from the origin to
the top-left corner. Such a curve would indicate that the false-
positive rate is zero for all levels of hit rate up to 1.0. More
commonly, as T's decreases, one gets more hits but also more

false positives. Figure 2 shows curves for three levels of «,
that is, for three degrees of mixing of the Dice and relational
similarity measurements. The curve labeled R is for rela-
tional similarity alone (o = 0) and the curve labeled D is for
the Dice coefficient alone (o« = 1). Between them lies a curve
for o = .5.

R
l_
Sim
0.75
et D
o]
0.5
=
0.25-
O_
T I | I I
0 .25 .5 .75 1

False Positive Rate

Figure 2: ROC curve for classifying whether two papers are
written by one author or two, based on the decision criterion
S(A, B) > Ts. Points are for different values of Ts.

The relational similarity measure R has a slightly better
ROC curve than the others because it is a more nuanced met-
ric than the Dice coefficient, D. In fact, D has a fairly high
accuracy; for example, if one says two abstracts are written
by different authors when D = 0 and by the same author
when D > 0, then one’s overall accuracy (true negatives plus
true positives) is 79%. However, roughly 25% of the pairs of
abstracts that are written by one author have D = 0, and it is
here that the R coefficient provides additional resolution.

A followup experiment compared not individual papers but
the entire oeuvres of authors. The protocol was as follows:
Select two authors A and B at random from the corpus. Select
random pairs a, b in which a and b are papers of A’s and B’s,
respectively. Calculate S(a,b) for each such pair and add
the mean of these scores (i.e., the mean pairwise similarity of
papers by authors A and B) to the distribution of between-
author scores. Select random pairs of papers a;, a; and b;, b;,
calculate their similarity scores and add the mean similarity
scores to the distribution of within-author scores. Finally, re-
peatedly select a mean score from either the within-author or
between-author distribution and, if the score exceeds a thresh-
old T assert that it is a within-author mean score (as these are
expected to be higher than between-author scores). Calcu-
late the classification accuracy of these assertions for differ-
ent values of 7" to get an ROC curve. The result is that the
area under the ROC curve is 0.955, which is nearly perfect
classification. In other words, the mean similarity scores for
pairs of papers by the same author are very much higher, in
general, than the mean similarity scores of pairs of papers by
different authors.

I[JCAI-07
2715

4.2 Experiment 2: Author trees and intrusions

The second experiment tests how the similarity measure in
Equation 4 performs in the PUBTREE algorithm. It is difficult
to get a gold standard for performance for PUBTREE. The al-
gorithm is intended to organize the work of a research into
“threads,” but we lack an objective way to assess the threads
that characterize researchers’ work (see the following section
for a subjective assessment). However, if we build a graph
from two researchers’ abstracts, then we would hope the PUB-
TREE algorithm would not mix up the abstracts. Each thread
it discovers should belong to one author and should include
no abstracts by the other. This is our proxy for PUBTREE’s
ability to disentangle research threads, and it can be evalu-
ated objectively.

The procedure for Experiment 2 is: Select ten abstracts at
random from the work of a random author. Select another ten
abstracts from a second author. Run PUBTREE to produce a
tree for the first author. Now, have the algorithm add the pa-
pers of the second author to this tree. To score performance,
recall that every abstract can be added as the child of one al-
ready in the tree, extending a thread; or it can be added as a
child of the root, starting a new thread. Good performance
has two aspects: there should be no “intrusions” of the sec-
ond author into threads of the first author, and the number of
new threads should be small. If the number of new threads
is large, then PUBTREE is saying, essentially, “every abstract
looks different to me, I can’t find any threads.” Thus, each
replicate of the experiment returns two numbers: The propor-
tion of all the abstracts, from both authors, that join extant
threads; and the proportion of the second author’s abstracts
that intrude on the threads of the first author. Fifty replicates
were run at each of ten levels of the threshold T3j,,¢qq, Which
is the threshold for allowing an abstract to extend a thread.
The entire experiment was repeated three times for different
mixing proportions of D and R, namely, o = [1.0,0.5, 0]

The results of this experiment are shown in Figure 3. The
axes are the levels of the two dependent measures described
in the previous paragraph. On the horizontal axis is the pro-
portion of all abstracts that join extant threads, and on the ver-
tical axis is the proportion of abstracts of the second author
that intrude into threads of the first author. Each point on the
graph represents the mean of fifty replicates associated with
one level of o and one level of T}p,cqq. In general, higher
values of T}p.¢qq cause new threads to be formed because if
an abstract is not similar enough to an abstract in an extant
thread to exceed T}j,,cqd, then it starts a new thread. If an ab-
stract begins a new thread then it cannot intrude in an extant
one, so there is a positive relationship between the tendency
to join an extant thread and the number of intrusions.

Although the relationship between these variables is not
linear, we can interpret the slopes of the lines in Figure 3
very roughly as the error rate, in terms of intrusions, of join-
ing extant threads. This error rate is highest for the relational
similarity measure, R, and appears to be lowest for the Dice
coefficient D. In fact, almost all of the data for o« = 1 —
which is equivalent to the Dice coefficient — is grouped near
the origin because D = 0 so often, as we noted in the pre-
vious section. Said differently, when the similarity metric is
D, intrusions are avoided by starting a lot of new threads. In

contrast, when the similarity metric is R, the relational simi-
larity coefficient, the error rate associated with joining extant
threads is highest. An intermediate error rate is evident for
a=.5.

0.2

0.15

0.1

0.05

Actual / Potential Intrusions

0-

1l 2 3 4 5 6 7 8 9 1
Proportion of Author 2 abstracts that join
extant threads

Figure 3: The relationship between the number of threads and
the proportion of opportunities to include intrusions that were
taken, for three levels of « and ten levels of Tp,cqd

Experiment 2 shows that the PUBTREE algorithm does a
good job in most conditions of keeping the abstracts of one
author from intruding on the threads of another. This result
provides some evidence that PUBTREE can separate abstracts
into threads and keep the threads relatively “pure.” Of course,
this experiment actually tested whether PUBTREE would con-
fuse the abstracts of two different authors, it did not test
whether PUBTREE correctly finds the threads in the papers
of one author.

S5 Experiment 3: One author with coauthor
indicator

The third experiment uses coauthor information as a gold
standard for the performance of PUBTREE. The idea is
that papers within a thread often have the same coauthors,
whereas papers in different threads are less likely to. We
would have reason to doubt whether PUBTREE finds real
threads if the degree of overlap between coauthors within
a thread is no different than the overlap between coauthors
across threads.

The procedure for Experiment 3 is replicated many times,
once for each author of ten or more abstracts. For each such
author, build a publication tree with PUBTREE. Then for ev-
ery pair of abstracts in the tree, calculate the overlap between
coauthor lists with our old friend, the Dice coefficient (Eq. 1),
substituting lists of authors for W4 and Wp. Next, the over-
lap between papers within each thread is calculated in the
same way. Thus we generate two lists of overlap scores, one
for all pairs of papers, the other for papers in threads. Finally,
a two-sample t test is run on these lists and the ¢ statistic is
reported. (Note we are not using the t test for any inferential
purpose, merely using the t statistic as a descriptive measure
of the difference between two samples.)

I[JCAI-07
2716

L L LA DL L e L
2 4 6 8101214161820

Figure 4: The distribution of t statistics for 165 authors of at
least 10 papers. A publication tree is built for each author and
the degree of overlap between coauthors of pairs of papers
within and between threads is calculated. The between-thread
and within-thread samples are compared with a two-sample t
test and this is the distribution of t statistics.

Virtually all the authors showed the same pattern: Coau-
thors of papers on a thread overlapped more than coauthors
of papers on different threads. The distribution of t statistics
is shown in Figure 4. Values greater than zero indicate more
within-thread coauthor overlap, values less than zero indicate
more between-thread overlap. Values greater than 2 would be
significant at the .01 level if we were testing the hypothesis
that within-thread overlap is no different than between-thread
overlap. Roughly 2% of the authors had values less than zero
and 81% had values greater than 2.0. On average, the overlap
coefficients for papers within and between threads were .73
and .48, respectively. Said differently, papers within threads
had 64% more overlap among coauthors (calculated per pri-
mary author and then averaged) than papers between threads.
We may safely conclude that PUBTREE'’s threads, which it
constructs with no knowledge of coauthors, satisfy one intu-
itive feature of threads, namely, that papers on threads often
share coauthors.

6 Experiment 4: Subjective judgments

The first three experiments report proxies for the subjective
notion of a research thread. Experiment 1 showed that the
similarity measure S(A,B) does pretty well as a classifier of
whether abstracts A and B are written by the same author.
Experiment 2 showed that PUBTREE tends to segregate pa-
pers written by different authors into different threads of a
publication tree. Experiment 3 used exogenous information
about coauthors to show that abstracts in PUBTREE’s threads
tend to share coauthors. None of these is a direct test of
whether PUBTREE builds trees that represent threads in au-
thors’ research. Research threads are subjective entities and
the accuracy with which they are recovered by PUBTREE can-
not be assessed objectively with the information available in
Citeseer. The best we can do is ask authors to assess subjec-
tively the publication trees constructed for them by PUBTREE.
Three authors volunteered for this arduous job. Each was in-
structed to examine every thread of his or her publication tree

and count the number of inappropriate parent/child relation-
ships. For example, consider a thread of three papers, A, B
and C. Two papers, B and C' might be misplaced: B might
not be a child of A and C' might not be a child of B. The latter
question is settled independently of the former, so even if B is
not appropriately placed under A, C' might be appropriately
placed under B. One ought to ask whether C'is appropriately
placed under A, but this question made the task of scoring
publication trees considerably harder for the volunteers and
was not asked.

The trees for the three authors contained 44, 71, and 74 pa-
pers, respectively. The authors all have written considerably
more papers, so PUBTREE was working with incomplete data.
The first author reported that 32 of her papers, or 73% were
placed correctly. Of the remaining 12 papers, three should
have started entirely new threads (i.e., should have been chil-
dren of the root node), and two had incorrect Citeseer dates
and might have been placed wrongly for this reason. The sec-
ond author reports a slightly higher proportion of misplaced
papers (24, or 34%) but notes that for more than half of these,
the publication date was unknown and so was not used by the
algorithm. The third author reported that 14 of the 74 papers
had corrupted titles and were duplicates of others in the set.
Of the remaining 60 papers, 10, or 17% were placed wrongly.
Three started new threads but should have been added to ex-
tant threads, four had valid dates and were placed under the
wrong parents, and three had no dates and were placed under
the wrong parents.

These results are not dramatically good, but nor are they
dramatically bad, especially when one considers that every
paper might have been placed below any of two dozen (for
the first author) or three dozen (for the second and third au-
thor) papers, on average. One of the authors said, “[The] tree
did surprisingly well, given the subtle differences between
papers. ...The tree made most but not all of the right con-
nections. I noticed that some papers could be thought of as
having more than one parent in reality, which would compli-
cate threads, but of course that can’t be addressed in a single
tree.”

7 Discussion and Future Work

As the author noted correctly in the previous section, PUB-
TREE builds trees, not graphs, and so it cannot give a paper
more than one parent. This is unfortunate because some pa-
pers truly are the children of two or more research threads.
A version of the algorithm that produces graphs is under de-
velopment. Another likely way to improve the algorithm is to
include additional information about papers, such as coauthor
lists.

PUBTREE and its successors might be applied to several
current problems. One is to track the development of ideas
in the Blogosphere. Blogs are like abstracts of research pa-
pers in many ways and it will be interesting to look for blog
threads in the writings of individual authors, and perhaps even
more enlightening to find threads in amalgamations of several
authors’ blogs. Email threading is a related problem.

The relational similarity measure that underlies PUBTREE
also has numerous applications, notably to problems that re-

I[JCAI-07
2717

quire some degree of semantic matching between documents
that do not necessarily share terms. One example is a kind of
entity resolution for authors. The Citeseer corpus we worked
with contains abstracts for Paul R. Cohen and a nearly disjoint
set of abstracts for Paul Cohen. We might wonder whether
these authors are the same person. One approach is to calcu-
late the average between-author similarity for these authors
and compare it to a null hypothesis distribution of between-
author similarities for pairs of authors who are known to be
different. The between-author similarity for the two authors
is 0.257, a number which is expected by chance fewer than
six times in a thousand, so it is very likely that the two are the
same person.

In conclusion, the contributions of this paper are three:
We identified a class of problems that we call “disentangling
the threads,” in which several processes generate a single or-
dered or partially-ordered sequence of observations and the
challenge is to assign each observation to its generating pro-
cess. We developed a simple, greedy algorithm for solving
the problem. And we introduced a new relational similarity
metric that seems to work better than the Dice coefficient and
other common metrics that rely on overlapping sets of items.
We presented four experiments that suggest the metric and
the PUBTREE algorithm do a credible job of disentangling the
threads in the publication records of researchers. Many im-
provements to the algorithm are possible, and yet, even the
simple version presented here performs very well.

8 Acknowledgments

Thanks to Wesley Kerr for help with the Citeseer corpus and
to Wesley Kerr, Sinjini Mitra and Aram Galstyan for pre-
liminary work on the problem of constructing career histo-
ries. Thanks to Padhraic Smyth for providing access to his
topic model software. Special thanks to the three authors
who painstakingly analyzed their own publication trees: Prof.
Adele Howe, Prof. Tim Oates and Prof. Robert St. Amant.
This work was supported by contract #2003*S518700*00
from IBM.

References

[Gentner and Forbus, 1995] Dedre Gentner and Kenneth D.
Forbus. Mac/fac: A model of similarity-based retrieval,
1995.

[Gentner and Markman, 1997] D. Gentner and A. M. Mark-
man. Structure mapping in analogy and similarity. Ameri-
can Psychologist, 52(45-56), 1997.

[Goldstone et al., 1997] R. Goldstone, D. Medin, and J. Hal-
berstadt. Similarity in context, 1997.

[Grossman and Frieder, 1998] David A. Grossman and
Ophir Frieder. Information Retrieval: Algorithms and
Heuristics. Kluwer, 1998.

[Lai, 1995] Tze Leung Lai. Sequential changepoint detec-
tion in quality control and dynamical systems. Al Journal
of the Royal Statistical Society. Series B (Methodological),
57(5):613-658, 1995.

[Xu and Croft, 1996] Jinxi Xu and W. Bruce Croft. Query
expansion using local and global document analysis. In
Proceedings of the Nineteenth Annual International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 4—11, 1996.

I[JCAI-07
2718

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

