
Abstract
The recurring appearance of sequential patterns,
when confined by the predefined gap requirements,
often implies strong temporal correlations or trends
among pattern elements. In this paper, we study the
problem of mining a set of gap constrained sequen-
tial patterns across multiple sequences. Given a set
of sequences S1, S2,., SK constituting a single hyper-
sequence S, we aim to find recurring patterns in S,
say P, which may cross multiple sequences with all
their matching characters in S bounded by the user
specified gap constraints. Because of the combina-
torial candidate explosion, traditional Apriori-
based algorithms are computationally infeasible.
Our research proposes a new mechanism to ensure
pattern growing and pruning. When combining the
pruning technique with our Gap Constrained
Search (GCS) and map-based support prediction
approaches, our method achieves a speed about 40
times faster than its other peers.

1 Introduction
Many real-world applications involve data characterized by
continuous sequences and streams. Examples include data
flows in medical ICU (Intensive Care Units), network traffic
data, stock exchange rates, and DNA and protein sequences.
Since real-world events rarely happen independently but
rather associate with each other, to some degree, discover-
ing structures of interest in multiple sequences provides us
an effective means to explore patterns trivial in a single data
stream but significant when unifying all observed data into
one view. For example, the information from multiple data
streams in ICU (such as the oxygen saturation, chest volume
and hear rate) may indicate or predicate the state of a pa-
tient’s situation, and an intelligent agent with the ability to
discover knowledge from multiple sensors can automati-
cally acquire and update its environment models [Oats &
Cohen 96]. In microbiology, it is now well known that the
genomes of most plants and animals contain a large quantity

∗ This material is based upon work supported by the US Na-

tional Science Foundation under Grant No. 0514819. The support
of NSF of China under Grant No. 60674109 is also acknowledged.

of repetitive DNA fragments. Examples include recurring
short base pairs (BP) in protein coding DNA and repetitive
DNA/RNA motifs in genomes, where recurring patterns of
different lengths and types are commonly found, at both
genomic and proteomic levels, to have significant biologi-
cal/medical values. For example, the 10-11 BP periodicities
in complete genomes reflect protein structure and DNA
folding [Herzel et al. 99] and some tandem repeats are now
discovered to be influential to the bacterial virulence to hu-
man [Belkum et al. 97]. Studying correlations among multi-
ple gene sequences, their associations with environments
and disease phenotypes, thus provides a means of predicting
and preventing fatal diseases [Rigoutsos & Floratos 98].

Although recurring patterns convey important and useful
knowledge, in reality, they rarely just reproduce and repeat
themselves, but rather appear with a slight shift in the pat-
tern letters. For example, the tandem repeats in DNA or
protein sequences often involve a phase shift incurred by the
insertion or deletion of a short sequence [Belkum et al. 97].
A practical solution is to allow the mining or search process
to bear a certain degree of flexibility. Consider sequences in
Fig. 1(a), where a pattern across three sequences repeats
three times but with each appearance slightly different from
the others. If we can allow that each time the pattern ap-
pears, any two of its successive pattern letters’ appearances
are within a range, rather than a fixed value, we may then be
able to find the pattern in Fig. 1(a). The introduction of a
variable period (gap) thus provides a flexible way to capture
interesting patterns hidden in sequences.

Mining recurring patterns from sequences essentially re-
lies on a counting mechanism to check patterns’ occur-
rences. This, however, is inherently complicated by the se-
quential order of the underlying sequences. Considering
sequence “AAAGGGTTTTCCCTTTTCCCTTTTCCCC”,
to find the number of complete occurrences of pattern
P=AGTC (we ignore gap constraints at this stage), there are
3 × 3 combinations for “A” and “G”, and 4×10+4×7+4×4
combinations for “T” and “C”. So in total, there are 9×84
occurrences for AGTC. Although this number does not
sound scary, considering complete occurrences, however,
brings one of the most difficult challenges to our problem:
the deterministic Apriori theory (the support of a pattern
cannot exceed the support of any of its sub-patterns) does
not hold. Considering S=“AGCTTT”, pattern P=AGCT

Mining Complex Patterns across Sequences with Gap Requirements∗

Xingquan Zhu1, 3 and Xindong Wu2

1Dept. of Computer Science & Eng., Florida Atlantic University, Boca Raton, FL 33431, USA
2Dept. of Computer Science, University of Vermont, Burlington, VT 05405, USA

3Graduate University, Chinese Academy of Sciences, Beijing 100080, China
xqzhu@cse.fau.edu; xwu@cs.uvm.edu

IJCAI-07
2934

appears three times in S, but P’s subpattern AGC appears
once only. Therefore, traditional Apriori-based algorithms
are computationally infeasible to handle our problem.

Motivated by the above observations, we propose MCPaS
to Mine Complex Patterns across Sequences with gap re-
quirements. We will review related work in the next section,
and state our research problem in Section 3. In Section 4,
we will study pattern frequencies and propose a determinis-
tic pruning technique for pattern mining. In Section 5, we
discuss our unique Gap Constrained Search and Map-based
Support Prediction processes to accelerate the pattern min-
ing process. Based on the proposed pruning and searching
techniques, we elaborate, in Section 6, the mining algorithm
details. Comparative studies are reported in Section 7, fol-
lowed by the concluding remarks in Section 8.

S1

 S2

 S3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A . . . A A
 . e g e g . . e . g
 . . 3 3 3

(a)

 Shyb

 1 2 3 4 5 6 . . .

(A . .) (. e .) (. g 3) (. . .) (A . .) (. . .) . .

(b)
Figure 1. (a) Patterns across three sequences; (b) The hybrid se-

quence generalized from the sequences in (a)

2 Related Work

Existing research in mining patterns from data sequences
can be distinguished into two categories. (1) Mining pat-
terns frequently appearing in a certain number of (relatively
short) sequences with a Boolean count, i.e., whether a pat-
tern occurs in the sequence or not. Traditional pattern min-
ing in market baskets [Srikant & Agrawal 96, Pei et al. 01,
Zaki 98] and Gene Motif search [Murray et al. 02] fall into
this category. (2) Mining recurring patterns from long se-
quences such as episode mining [Yang et al. 00, Méger &
Rigotti 04, Das et al. 98] and tandem repeats and base pair
oscillation detection in DNA sequences [Herzel et al. 99].

Any mining process will have to rely on a counting
mechanism to check patterns’ frequency information, from
which frequent patterns can be found. It is worth noting that
the selected counting mechanism crucially impacts on the
mining approach. For research efforts relying on a Boolean
count, because a pattern’s appearances are counted for only
once w.r.t. each sequence, the deterministic Apriori theory
well holds, and is therefore commonly adopted in the min-
ing process. On the other hand, when one has to determine a
pattern’s actual number of occurrences in the sequences, the
situation becomes complicated, simply because the mining
process won’t follow Apriori theory at all. Existing efforts
in the field have therefore proposed confined occurrence
counting, such as minimal occurrences [Mannila et al. 97],
one-off occurrences [Chen et al. 05], and windowing occur-
rences [Mannila et al. 97]. The objective is to confine pat-
terns’ occurrences such that Apriori theory can apply.

When considering complex patterns across multiple se-
quences, the work relevant to our problem here comes from
Oates et al. [96] and Mannila et al. [97]. Both efforts tried
to search frequent episodes across sequences, as well as the
prediction rules in the form of x indicating y, where x and y
are the frequent episodes in the sequences. For example,
after event A happens, exactly two time points later event B
happens, and then exactly three time points later event C
happens. Notice that this is a very restrictive constraint, and
we are trying to find episodes like: after event A happens,
within two time points event B happen, and within three
time points later event C happens. This loose constraint
leaves a great flexibility to explore useful patterns.

The problem of complex pattern mining across multiple
sequences is similar to multi-dimensional sequential pattern
mining [Pino et al. 01], where a normal practice is to aggre-
gate values from all sequences to form a single sequence, as
shown in Figure 1(b), so traditional sequential pattern min-
ing methods can apply.

In the domain of DNA or protein sequences, BLAST
[Altschul 90] is one of the most famous algorithms. Given a
query sequence (pattern), it searches for a matching se-
quence from the databases, while what we are pursuing here
is on mining the patterns. To find patterns, the TEIRESIAS
algorithm [Rigoutsos & Floratos 98] is designed for pattern
discovery from biological sequences with the number of
wild-cards that can be present in the extracted patterns re-
stricted and fixed by the users. Similar approaches such as
Pratt [Jonassen 97] is also proposed to mine restricted pat-
terns (in terms of the maximum numbers of characters and
wild-cards in each pattern) from a single sequence.

3 Problem Statement
The sequences S1,.., Si, .., SK from which we extract patterns
are called a hyper-sequence, denoted by S, with each single
sequence Si called an element sequence. We use S[i] to rep-
resent the characters at the ith time point of S. Without losing
the generality, we assume all element sequences share the
same alphabet size, denoted by •, and |•| represents the size
of •. For simplicity, we assume that all element sequences
have the same lengths, denoted by L.

A wild-card (denoted by a single dot “.”) is a special
symbol that matches any character in •. A gap g is a se-
quence of wild-cards, bounded by the maximal and minimal
values. The size of the gap refers to the number of wild-

cards in it. We use M
Ng to represent a gap whose size is

within the range [N, M]. We also call W=M-N+1, the gap
flexibility. A pattern, P=p1g

1p2g
2,…,gl-1pl, is a set of charac-

ters from different element sequences and gaps that begin
and end with characters, where pj is an element pattern
which consists of letters from element sequences. An ele-
ment pattern should consist of at least one character. gj is the
gap requirement between element patterns pj-1 and pj. Figure
2 pictorially shows a pattern P with three element patterns.
The number of element patterns in P, denoted by |P|, is

IJCAI-07
2935

called the length of P, i.e., the wild-card symbols are not
counted towards a pattern’s length.

The problem of mining complex patterns across multiple
sequences is to find patterns of the following form:

l
M
Nl

M
N

M
N pgpgpgpP 121 ... −= (1)

which means that gaps between any two successive element

patterns are the same, i.e., g1=g2=…=g1= M
Ng . An occur-

rence of a pattern P in S is defined as a match between the
characters of the element patterns and the element se-
quences, under the gap constraints. The occurrences are
considered different, as long as the locations of one pair of
the matched characters are different. For example, we con-

sider P=ATG appears 2 times in S=”ATTG”, w.r.t. 2
0g , i.e.,

S[1]S[2]S[4] and S[1]S[3]S[4]. The support of P in S (de-
noted by sup(P)) is the number of times P occurring in S.

Given a length-l pattern P and a length-L hybrid-sequence
S, we first calculate the total number of possible occurrences
of a length-l pattern in S, Ll, then we count the actual ap-
pearances of P, sup(P). We consider P a frequent pattern, iff
sup(P)/Ll is larger than the user-specified threshold value .

P = 3
1
02

1
01 pgpgp p1 = p2 = p3=

P =

A . .
. e g
. . 3

A

.
 .

 .
 e
 .

 .
 g
 3

Pattern letters corresponding to element sequence S1

….
Pattern letters corresponding to element sequence S3

p1 p21
0g

Figure 2. A pattern denotation

4 Pattern Frequency & Deterministic Pruning
4.1 Pattern Frequency
Given pattern P=p1p2…pl and its support in a length-L hy-
per-sequence S (with L >> l), sup(P), to assess P’s fre-
quency, we need to find Ll, the possible number of occur-
rences of P in S. Considering pattern P with gap M

Ng , each

time P appears in S, its actual spans in S vary from l+(l-1)N
to l+(l-1)M, which correspond to the cases that whenever P
appears in S, the gap between any two successive element
patterns exactly equal to N and M respectively. Assuming
the first element pattern p1 matches S at S[δ], then for ele-
ment pattern p2, its valid occurrences may possibly appear in
the range from S[δ+N] to S[δ+M], i.e., with W=M-N+1 pos-
sibilities. The same situation holds for all other element pat-
terns p3,…pl. So in total, a length-l pattern P starting at S[δ]
may have Wl-1 possible occurrences in S. Assuming p1 has
possible appearances in S, the total number of possible ap-
pearances of P in S is Ll= ·Wl-1. Because the average span
between successive element patterns is (N+M)/2+1, the av-
erage span of P in S is (l-1)·((N+M)/2+1). Then, the possi-
ble number of occurrences of p1 equals to [L-(l-
1)·((N+M)/2+1)], where [♦] means the maximal integer no
larger than ♦. So the value of Ll is defined by Eq. (2).

1)]1
2

)(1([−⋅++−−= l
l WNMlLL (2)

Eq (2) holds only if (l+(l-1) ·M) • L, i.e., the maximal span
of the pattern is less than the length of the hyper-sequence.

4.2 Deterministic Pruning
In this subsection, we derive one theorem and two lemmas
for the deterministic pruning of our mining process.

THEOREM 1. Gien a length-l pattern P and its length l-3
subpatterns Q, we have the supports of Q and P satisfy the
inequality 2)()sup()sup(23 WWQP +⋅≤
Proof: Because Q is a length l-3 subpattern of P, denoting
Q by q1q2…ql-3, there are four possible relationships between
them: (1) P=p1Qpl-1pl; (2) P=p1p2Qpl; (3) P=Qpl-2pl-1pl; and (4)
P=p1p2p3Q. Let’s first prove that Theorem 1 is true for (1).
The same proof applies to all other possibilities.

Assuming N=0 and the gap flexibility is W, the first ele-
ment pattern of Q, q1, appears at time slot S[]. It is easy to
know that p1 has W possibilities to appear between S[-W]
and S[-1]. So the maximal support of p1Q is sup(p1Q)=W·
sup(Q). Now assuming further that the last element pattern
of Q, ql-3, appears at S[+], it is clear that pl-1 has W possi-
bilities to appear at the range between S[+ +1] and
S[+ +W], as shown in Figure 3. If pl-1 indeed appears at
S[+ +W], the element pattern p1 will have W possibilities
to appear between S[+ +W+1] and S[+ +2W]. Denoting
this region by]2,1[1

1 WWl +++++⊂− βαβαϕ , if pl-1 appears at

S[+ +W-1], we know that pl may possibly appear between
S[+ +W] and S[+ +2W-1]. Notice that S[+ +W] has
been reserved for the possible appearance of pl-1, so the
number of possible appearances of pl (w.r.t. to pl-1 at
S[+ +W-1]) is W-1, unless pl-1 and pl are the same, which
is not a generic case in reality. Similarly, the number of pos-
sible appearances of pl (w.r.t. to pl-1 at S[+ +W-2]) is W-2.
As a result, for all possible W appearances of pl-1 between
S[+ +1] and S[+ +W], the sum of their possible match-
ing pl’s occurrences is 1−lϕ =W+W-1+W-2…+0=W(W+1)/2.

So the maximal support for length-l pattern P=p1Qpl-1pl is
W·sup(Q)· 1−lϕ = 2)()sup(23 WWQ +⋅ , that is, sup(P) •

2)()sup(23 WWQ +⋅ .

+1… + + +1 + +2… + +W + +W+1 + +W+2 … + +W+W …
 x x … x x x … x x … x x ….

W
Pattern Q

W
pl-1 pl

Figure 3. Pattern growing

LEMMA 1. Given a threshold , we say that a length-l pat-
tern P is frequent iff sup(P)/Ll • . If P’s any length l-3 sub-
pattern Q’s frequency, Freq(Q), is less than

ρ
ω
ω ⋅

+⋅−−
+⋅−−

)1()4(
)1()1(

lL
lL ,

where ω=(N+M)/2, then P cannot be a frequent pattern.
Proof:

IJCAI-07
2936

Because Freq(Q)=Sup(Q)/Ll-3, we know

ρ
ω
ω ⋅

+⋅−−
+⋅−−≤

−)1()4(
)1()1()(

3 lL
lL

L
QSup

l

, since 4
3))1()4((−

− ⋅+⋅−−= l
l WlLL ω ,

We have ρω ⋅⋅+⋅−−< −4))1()1(()(lWLLQSup
Because Q is a length l-3 subpattern of P, according to
Theorem 1, we know that 2)()sup()(23 WWQPSup +⋅≤
So

ρω

ρω

⋅+⋅⋅+⋅−−=

+⋅⋅⋅+⋅−−<

−

−

W
WWLL

WWWLLPSup

l

l

2
1))1()1((

2)())1()1(()(

1

234

W
W

L
PSup

WLL
PSup

l
l 2

1)(
))1()1((

)(
1

+⋅<=
⋅+⋅−− − ρ

ω
 (3)

Because the gap flexibility W •1, we know 12)1(≤+ WW ,

i.e., ρ<lLPSup)(. Therefore, P is not frequent.

LEMMA 2: If the average span of the longest pattern in S is
less than WLW 2)1(⋅− , i.e., about a half of a length-L hyper-
sequence S, given a length-l pattern P, for any length l-3
subpattern of P, Q, if Freq(Q) is less than

ρ
ω
ω ⋅

+⋅−−
+⋅−−

)1()4(
)1()1(

lL
lL ,

where ω=(N+M)/2, then patterns, with P as their subpat-
terns, are not frequent.

Justification:
According to Lemma 1, we know that given the conditions
in Lemm2, a length-l pattern P will not be frequent. Now
assume pattern P is a subpattern of a length-l+k pattern F.
According to Eq. (2), we know WWLPSup l 2)1()(+⋅⋅< ρ ,

for any length-l+k pattern F, with P as its subpattern, the
maximal support of F is less than Wk times of Sup(P).

So k
l

k WL
W

WPSupWFSup ⋅⋅+⋅<<
2

1)()(ρ . The frequency of F is

k

kl

l

kl

W
L
L

W
W

L
FSupFFreq ⋅⋅+⋅<=

++ 2
1)()(ρ

))1()1((
))1()1((

2
1)(

+⋅−+−
+⋅−−⋅+⋅<
ω

ωρ
klL

lL
W

WFFreq
, where)1()1(+⋅−+ ωkl is the

average span of the length-l+k pattern. Given that the long-
est pattern is less than WLW 2)1(⋅− , we have

ρωρ

ωρ

<+⋅−−⋅
+

⋅+⋅=

−⋅−
+⋅−−⋅+⋅<

L
lL

W
W

W
W

WWLL
lL

W
WFFreq

)1()1(
1

2
2

1
)2)1((

))1()1((
2

1)(

So pattern F is not frequent.
In reality, we may not know in apriori that whether the

average span of the longest pattern in S is less than
WLW 2)1(⋅− or not (since the longest patterns are yet to be

found), so Lemma 2 does not seem to be useful in the min-
ing process. Nevertheless, because we are dealing with a
long hyper-sequence S, it is almost certain that the average
span (even the maximal span) of the longest pattern in S is
less than a half of |S|. For the DNA sequences we are using
(in Section 7), the average span of the longest pattern is less
than 10 percent of the sampled length-1000 sequence S. So
we can safely assume that this prerequisite always holds.

5 Pattern Search with Gap Requirements
Consider a length-l pattern P with a gap flexibility W, an
exhaustive search will start from the first pattern letter p1 to
find its first match in S. Denoting this matching location by
x, the search process then starts from x to match p2 within
the range [x+1, x+W]. Such a process iteratively repeats
until all possible locations starting from x have been
checked, then it moves one step forward (x+1). The time
complexity is O(L•Wl-1), which is linear w.r.t. L, but expo-
nential w.r.t. W and l. In the case that S consists of K ele-
ment sequences, this complexity increases to O(K•L•Wl-1).

5.1 Gap Constrained Search (GCS)
In this subsection, we propose a Dynamic Programming
[Bellman 57] oriented search mechanism, which is able to
achieve a linear time complexity in gap constrained pattern
search. The algorithm consists of three steps. Given a
length-l pattern P= p1p2 …pl, we first build a length L list for
each of the element patterns pl, denoted by

lPO . We initiate

the value of
lPO to 0 before the search process (For easy

understanding, we pictorially show a simple example in

Figure 4 with P=AGTC and gap 2
0g).

1. GCS sequentially scans S from the left to right. For any
current position x, if S[x] matches the first element pat-
tern p1, set the value of

1PO [x] to 1.

2. At any location x, if S[x] matches any element pattern
pj, j>l (i.e., excluding the first element pattern), we up-

date the value of
jPO to

−

=
−=

−

),1max(

1
][

1

Wx

v pp vxOO
jj

.

As shown in Figure 4, when x=3, S[3] matches p2

(which is G), then the value of OG[3] is updated to the
sum of OA[1] and OA[2]. The above process indicates
that for any matches of the element pattern letter, pj j>1,
at location x, we backtrack W steps to find the number
of times pj’s last successive pattern letter pj-1 has ever
appeared. If all element patterns (pj, j>1) were able to
iteratively regulate and update their lists

jPO in such a

way, then the value in
jPO [x] will indicate the number

of times that pattern p1p2…pj ever ends at position x.
3. We iteratively repeat the above process, until we finish

the whole sequence S. Then we sum up all elements
in

lPO , which is the number of times P=p1p2…pl appears

in S. In addition, the values in
lPO [x] will indicate the

number of times P ending at position x.
The time complexity of GCS consists of two parts: (1) scan-
ning the whole sequence L, and (2) at each location x, com-
paring S[x] with all element patterns, and backtracking W
steps if necessary. Because each backtracking can be
achieved through a sum operation, so the total time com-
plexity is O(KL(l-1)), which is linear w.r.t. L, l, and K, and
much more efficient than the exhaustive search O(KLWl-1).

IJCAI-07
2937

 S A A G G C A T C T C A G A T C T T C

 A 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
 G 0 0 2 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 T 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0
 C 0 0 0 0 0 0 0 2 0 2 0 0 0 0 1 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 4. Gap constrained pattern search (gap constraint
2
0g)

5.2 Map-based Support Prediction
Notice that each time we grow a length-l pattern P to a
length l+1 pattern F, we will have to check F’s frequency by
searching its occurrences in S again. This reexamination
mechanism costs a considerable amount of system runtime,
as there are possibly millions of candidates. Nevertheless, if
we can reuse P’s occurrence information, we may be able to
speed up the search process dramatically. For this purpose,
after we find pattern P’s occurrences, we generate a rear-
map (RM) for P which records the number of times P ap-
pears in S and all its ending positions (this RM is actually
the

lPO list in the above section). As shown in Figure 4, if P

ever ends at position x, the value of RM[x] will indicate the
number of times P ends at x; otherwise, RM[x] equals to 0.

With the RM of pattern P=plp2…pl, denoted by the
][...1

xRM
lpp

, we may just search P’s RM, instead of scan-

ning the whole sequence S, to find the number of times F
appearing in S. This can be achieved by a simple production
and sum procedure. More specifically, for pattern F=
plp2…plpl+1, if we can build a head-map (HP) which records
locations and times of the length-2 pattern plpl+1’s starting
information, where][

1
xHP

ll pp +
 indicates the number of times

plpl+1 starts at position x, then, the support of pattern F is
determined by Eq. (4)

=+ +
⋅= L

x ppppl xHPxRMpppSup
lll1 ..121][][)...(

11
 (4)

As shown in Figure 5, when predicting the support of
AGTC, we first find RMAGT and HMTC, the production and
sum of the corresponding elements of these two lists will
exactly equal to AGTC’s support.

 S A A A G C G T C T C A G G T C T T C
 RMAGT 0 0 0 0 0 0 4 0 1 0 0 0 0 2 0 1 0 0

 HM TC 0 0 0 0 0 0 2 0 1 0 0 0 0 1 0 1 1 0

 RMAGTC 0 0 0 0 0 0 0 4 0 5 0 0 0 0 2 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 5. Map-based support prediction (gap constraint
2
0g)

6 Algorithm
The system framework of MCPaS is shown in Figure 6.
MCPaS first generates all length-2 patterns, denoted by C2.
After the first step, MCPaS begins pattern growing and
pruning. Assuming now at a certain step, we have generated
a set of length-l candidates from length-l-1 patterns (on line
5 in Figure 6), then a length-l candidate’s support can be
easily predicted by plugging its length-l-1 patterns’ RM and
the corresponding length-2 patterns’ HM into Eq. (4), with-

out rescanning S. For all generated length-l candidates in Cl,
we calculate a value l′ =l+3 and a threshold,

ρ
ω
ωρ ⋅

+⋅−′−
+⋅−′−=′

)1()4(
)1()1(

lL
lL (5)

All length-l candidates with their frequencies larger than ρ
are forwarded to a frequent set Fl. If any length-l candidate’s
frequency is less than ρ′, we mark it as “suspicious”, which
means that this pattern is unlikely to grow further, so we
will keep an eye on it. Meanwhile, for any length-l candi-
date P in Cl, if any of P’s length-l-2 subpattern is suspicious,
we will remove P from the candidate set Cl (on lines 11 to
12 in Figure 6). According to Lemmas 1 and 2, if a pattern
Q is suspicious, then any length-l patterns with Q as their
length l-3 patterns are not going to be frequent. Therefore, if
P’s length-l-2 subpattern is suspicious, then any length l+1
(and beyond) patterns containing such subpatterns are not
going to be frequent. So there is no need to put them into the
candidate set Cl for growing. As a result, we may safely
remove P from the candidate set Cl.

After MCPaS prunes out candidates from Cl, it builds RM
for all remaining length-l patterns in Cl by rescanning S (on
line 13 in Figure 6). MCPaS grows length-l+1 candidates by
using all patterns in Cl (on line 5 in Figure 6). This can be
achieved through the following two techniques: (1) trying
all combinations by attaching any possible element pattern
to the patterns in Cl, or (2) using the popular Apriori candi-
date generation procedure.

Input: (1) Hyper-sequence S and gap M
Ng , (2) # of element

sequences K; (3) alphabet •; and (4) frequency threshold
Output: Frequent pattern set

1. W M-N+1
2. Build length-2 pattern set C2, build BM and HM maps

for all patterns in C2.
3. l 3
4. While (Cl-1 • φ)
5. Cl PatternGen(Cl-1);
6. Predict support values for all candidates in Cl

(Eq. (4))
7. l′=l+3 AND calculate threshold ρ′
8. For any pattern y in Cl

9. If Freq(y) • Then Fl Fl ∪ y
10. If Freq(y) < ρ′ Then y suspicious
11. If any length l-2 subset of y is suspicious
12. Then Cl Cl \ y
13. Rescan S and build RM for all patterns in Cl

14. l l +1;
15. Return (F3 ∪ F4…∪Fl-1)

Figure 6. MCPaS Algorithm

7 Experimental Results
The data used in our experiments are nucleotide DNA se-
quences downloaded from the National Center for Biotech-
nology Information website [NCBI], we choose four DNA
sequences as our test bed (AX829168, AX829170,
AX829174, and AX829178). When using multiple se-
quences to form a hyper-sequence, we truncate sequences
into equal length ones. Because we use DNA sequences, the

IJCAI-07
2938

alphabet for all element sequences is Σ={A, C, T, G}. For
comparisons, we implement the MPPm method in [Zhang et
al. 05] in finding frequent patterns with gap constraints.
This MPPm is the most relevant (and most recent as well)
method we can find from all other peers.

Table 1 Candidate numbers scanned by different methods

Pattern Enumerate All MPPm MCPaSPruning MCPaS
C3 64 64 64 64
C4 256 256 256 256
C5 1024 1024 1024 1018
C6 4096 4096 4088 3997
C7 16384 16381 15535 11461
C8 65536 54072 39728 7138
C9 262144 19675 16108 1581
C10 1048576 3459 2653 273
C11 4194304 414 350 41
C12 16777216 42 38 13
C13 413 3 3 2

7.1 Pruning Efficiency Comparison
We provide in this subsection a pruning efficiency compari-
son with MPPm by using a single DNA sequence AX829174
(by randomly sampling a L=1000 subsequence).

In Table 1, we report the experimental results (by the av-
erage results of 10 executions), where the first column
means the candidate pattern set with different lengths. The
second column indicates the number of candidates one has
to evaluate, if enumerating all combinations. The third col-
umn means the number of candidates evaluated by MPPm.
Because MCPaS uses two approaches, map-based support
prediction and Lemma 2, for pruning, we’d like to assess
their efficiency separately. We first discard the map-based
support prediction in the algorithm by replacing line 6 with
line 13 in Figure 6. The results are denoted by MCPaSPrunning.
After that, we use both map-based support prediction and
Lemma 2 for pruning, with results denoted by MCPaS.

When comparing MCPaSPrunning and MPPm, we find that
MCPaSPrunning has about 20% or fewer candidates than MPPm.
A further study on MCPaSPrunning and MMPm reveals that they
have opposite pruning mechanisms. In MCPaSPrunning, pat-
terns are growing and pruned orderly, which means that we
generate length-l candidates, prune out unlikely ones, grow
candidates and repeat the algorithm until the candidate set is
empty. On the other hand, MPPm uses reverse pruning
mechanisms. It first determines the maximal length of the
frequent pattern n, and based on this value, works out the
minimal support values for different lengths of patterns. Not
only the value n might be determined inaccurately (an inac-
curate n will therefore reduce the pruning efficiency), even
if n is perfectly determined, it will leave the selected thresh-
old (for length n-1, n-2, …, 3) to be relatively small, be-
cause it has to consider the worst scenarios.

When combined with the map-based frequent prediction
mechanism, MCPaS makes dramatic improvement in reduc-
ing the number of candidates in Cl. For example, the number
of patterns needs to be scanned in C8 is 7138, which is about
86.8% less than the number of patterns scanned by MMPm.

7.2 Pattern Search Efficiency Comparison

3 4 5 6 7 8 9 10 11
0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
xh

au
st

iv
e

se
ar

ch
 ti

m
e

(s
ec

o
nd

s/
10

00
 p

a
tte

rn
s)

3 4 5 6 7 8 9 10 11
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pattern length

G
C

S
 s

ea
rc

h
ti
m

e
 (
se

co
nd

s/
1
00

0
pa

tt
er

n
s)

Figure 7. Pattern search efficiency (W=4, L=1000, AX829174)

1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

500

1000

1500

M
M

P
m

 r
un

 t
im

e
(s

ec
on

ds
)

1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

10

20

30

frequency threshold (%)

M
C
P

as
 r

un
 t
im

e
(s

ec
on

ds
)

Figure 8. Pattern mining performance from single sequence

To assess the performances of the proposed GCS mecha-
nism in comparison with exhaustive search, we sample a
length L=1000 subsequence from AX829174, then use two
search mechanisms and record their average search time (in
seconds) for every 1000 patterns, and report the results in
Figure 7 (the average results of 10 executions). In Figure 7,
the x-axis denotes the length of the patterns, the dash line
indicates the results of exhaustive search (corresponding to
the y-axis on the left side of the figure), and the solid line
with crosses represents the results from GCS (corresponding
to the y-axis on the right side of the figure).

Comparing to exhaustive search, GCS is normally 5 to 10
times faster in searching (depending on the actual length of
the patterns). Because exhaustive search’s time complexity
exponentially increases along with the pattern length and the
gap flexibility, GCS can possibly achieve more improve-
ments for longer patterns or larger gap constraints.

7.3 Pattern Mining Performance Comparison
To assess overall pattern mining performances, we first use
a single sequence AX829174 with a fixed value W=4. We
randomly sample a length L=1000 subsequence from
AX829174, then use MPPm and MCPaS to mine the results
by specifying different threshold values ρ. We report the
average runtime (from 10 executions) in Figure 8, where the
x-axis means the value of ρ, the dash line indicates the re-
sults from MPPm and the solid line with crosses denotes the
results from MCPaS (corresponding to the y-axis on the left
and right side of Fig. 8 respectively).

Both MPPm and MCPaS nonlinearly respond to the
threshold ρ with pretty similar shapes. This is because the
value of ρ nonlinearly determines the number of candidates
of the system. On average, MCPaS is about 40 times faster
than MPPm, with its improvement mainly comes from three
aspects: (1) an ordinal pruning from Lemma 2; (2) map-
based support prediction; and (3) GCS based search. GCS

IJCAI-07
2939

alone can enhance the search speed for about 8 times (com-
paring to exhaustive search), and the other two aspects will
generally contribute a speed improvement of about 5 times.

In Figure 9, we report the results from the hyper-sequence
consisting of one to up to four sequences (due to the inten-
sive time consumption, we were only able to run the pro-
grams for only one time for 3 or 4 sequences). The x-axis in
Figure 9 represents the number of element sequences, and
the y-axis denotes the average runtime of MCPaS. Because
MPPm and MCPaS have huge runtime differences, we report
MPPm’s runtime in a small table in Figure 9. Meanwhile,
for a hyper-sequence with K=4 element sequences, MPPm’s
runtime is too big, so we omit the value at this point.

1 2 3 4
0

2

4

6

8

10

12
x 10

4

Number of element sequences K

M
C
P

as
 r

u
nt

im
e
 (
se

co
nd

s)

13 236
4956

113988

Figure 9. Pattern mining performance from multiple sequences

The results in Figure 9 show that MCPaS’s runtime expo-
nentially increases by the number of element sequences K.
Although this sounds disappointing, to understand the chal-
lenge of our problem, let’s assume that S merely consists of
two DNA element sequences, then each element pattern pi

has (|Σ|+1)2-1=(4+1)2-1=24 possibilities (excluding the one
consisting of wildcards only). So the number of length-5
candidate patterns is 245=7962624, if no pruning techniques
are involved. Although we can transform element sequences
to form a hybrid sequence and apply MPPm to solve the
problem, because of the large alphabet size and the less ef-
fective reverse pruning technique, most of the length-5 can-
didates are going to be treated as frequent and used to grow
next level candidates. MCPaS on the other hand, will start to
prune candidates from length-4 candidates, and for length-5
patterns it will reduce about 80% of candidates (if S consists
of 2 element sequences). The above observations make us
believe that although MCPaS is nonlinear w.r.t. the number
of element sequences K, when mining complex patterns
from hyper-sequences, it is much more practical in reality.

8 Conclusions

We have studied in this paper the problem of mining com-
plex patterns across multiple sequences with gap require-
ments, where patterns repetitively appear in multiple se-
quences and their matching appearances are flexibly con-
fined by users’ gap requirements. Because of the exponen-
tial candidate explosion, traditional Apriori-based solutions
are technically infeasible to solve the problem. We have
proposed MCPas with three unique features to fulfill the
task: (1) an Apriori-like mining framework which allows
pattern generation and growing to be conducted step by

step; (2) map-based support predication to predict candi-
dates’ frequency without rescanning; and (3) a gap con-
strained linear-time pattern search. Experimental compari-
sons have shown that each of the above techniques has
made a contribution, and the overall performances of
MCPas have been about 40 times faster than its other peers.

References
[Altschul 90] S. Altschul, W. Gish, W. Miller, E. Myers, & D.
Lipman, Basic local alignment search tool. Journal of Molecular
Biology, 215:403-410, 1990.
[Bellman 57] R. E. Bellman. Dynamic Programming, Princeton
University Press, 1957.
[Belkum et al. 97] A. van Belkum, S. Scherer amd W. van Leeu-
wen, D. Willemse, L. van Alphen, & H. Verbrugh. Variable num-
ber of tandem repeats in clinical strains of haemophilus influenzae.
Infection and Immunity, 65(12):5017-5027, 1997.
[Chen et al. 05] G. Chen, X. Wu, & X. Zhu, Sequential pattern
mining in multiple data streams, Proc. of ICDM, TX, 2005.
[Das et al. 98] G. Das, K. Lin, H. Mannila, G. Renganathan, & P.
Smyth, Rule discovery from time series, Proc. of KDD, 1998.
[Herzel et al. 99] H. Herzel, O. Weiss, & E. Trifonov, 10-11 BP
periodicities in complete genomes reflect protein structure and
DNA folding, Bioinformatics, 15(3):187-193, 1999.
[Jonassen 97] I. Jonassen, Efficient discovery of conserved pat-
terns using a pattern graph, Computer Applications in the Biosci-
ences, 13:509-522, 1997.
[Mannila et al. 97] H. Mannila, H. Toivonen, and A.I. Verkamo.
Discovery of frequent episodes in event sequences. Data Mining &
Knowledge Discovery, 1(3), 1997.
[Méger & Rigotti 04] N. Méger, C. Rigotti: Constraint-based min-
ing of episode rules and optimal window. Proc. of PKDD, 2004.
[Murray et al. 02] K. Murray, D. Gorse, & J. Thornton, Wavelet
transforms for the characterization and detection of repeating mo-
tifs, Journal of Molecular Biology, 316:341-363, 2002.
[NCBI] NCBI: http://www.ncbi.nlm.nih.gov
[Oats & Cohen 96] T. Oates & P. Cohen, Searching for structure in
multiple streams of data, Proc. of ICML, 1996.
[Pei et al. 01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, & M. Hsu. PrefixSpan: Mining Sequential Patterns Effi-
ciently by Prefix-Projected Pattern Growth, Proc. of ICDE, 2001.
[Pino et al. 01] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, & U.
Dayal, Multi-dimensional sequential pattern mining, Proc. of
CIKM, 2001.
[Rigoutsos & Floratos 98] I. Rigoutsos & A. Floratos. Combinato-
rial pattern discovery in biological sequences: the teiresias algo-
rithm. Bioinformatics, 14(1), 1998.
[Srikant & Agrawal 96] R. Srikant & R. Agrawal, Mining Sequen-
tial Patterns: Generalizations and Performance Improvements,
Proc. of the International Conf. on Extending DB Tech., 1996.
[Yang et al. 00] J. Yang, W. Wang, & P. Yu, Mining asynchronous
periodic patterns in time series data, Proc. of KDD, MA, 2000.
[Zaki 98] M. Zaki, Efficient enumeration of frequent sequences,
Proc. of CIKM, November 2-7, 1998, Bethesda, Maryland.
[Zhang et al. 05] M. Zhang, B. Kao, D. Cheung, & K. Yip, Mining
periodic patterns with gap requirement from sequences, Proc. of
ACM SIGMOD, Baltimore Maryland, 2005.

MPPm Runtime

K 1 2 3
Runtime (s) 570 13751 387754

IJCAI-07
2940

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

