
Abstract 
The recurring appearance of sequential patterns, 
when confined by the predefined gap requirements, 
often implies strong temporal correlations or trends 
among pattern elements. In this paper, we study the 
problem of mining a set of gap constrained sequen-
tial patterns across multiple sequences. Given a set 
of sequences S1, S2,., SK constituting a single hyper-
sequence S, we aim to find recurring patterns in S,
say P, which may cross multiple sequences with all 
their matching characters in S bounded by the user 
specified gap constraints. Because of the combina-
torial candidate explosion, traditional Apriori-
based algorithms are computationally infeasible. 
Our research proposes a new mechanism to ensure 
pattern growing and pruning. When combining the 
pruning technique with our Gap Constrained 
Search (GCS) and map-based support prediction 
approaches, our method achieves a speed about 40 
times faster than its other peers. 

1 Introduction 
Many real-world applications involve data characterized by 
continuous sequences and streams. Examples include data 
flows in medical ICU (Intensive Care Units), network traffic 
data, stock exchange rates, and DNA and protein sequences. 
Since real-world events rarely happen independently but 
rather associate with each other, to some degree, discover-
ing structures of interest in multiple sequences provides us 
an effective means to explore patterns trivial in a single data 
stream but significant when unifying all observed data into 
one view. For example, the information from multiple data 
streams in ICU (such as the oxygen saturation, chest volume 
and hear rate) may indicate or predicate the state of a pa-
tient’s situation, and an intelligent agent with the ability to 
discover knowledge from multiple sensors can automati-
cally acquire and update its environment models [Oats & 
Cohen 96]. In microbiology, it is now well known that the 
genomes of most plants and animals contain a large quantity 
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of repetitive DNA fragments. Examples include recurring 
short base pairs (BP) in protein coding DNA and repetitive 
DNA/RNA motifs in genomes, where recurring patterns of 
different lengths and types are commonly found, at both 
genomic and proteomic levels, to have significant biologi-
cal/medical values. For example, the 10-11 BP periodicities 
in complete genomes reflect protein structure and DNA 
folding [Herzel et al. 99] and some tandem repeats are now 
discovered to be influential to the bacterial virulence to hu-
man [Belkum et al. 97]. Studying correlations among multi-
ple gene sequences, their associations with environments 
and disease phenotypes, thus provides a means of predicting 
and preventing fatal diseases [Rigoutsos & Floratos 98].  

Although recurring patterns convey important and useful 
knowledge, in reality, they rarely just reproduce and repeat 
themselves, but rather appear with a slight shift in the pat-
tern letters. For example, the tandem repeats in DNA or 
protein sequences often involve a phase shift incurred by the 
insertion or deletion of a short sequence [Belkum et al. 97]. 
A practical solution is to allow the mining or search process 
to bear a certain degree of flexibility. Consider sequences in 
Fig. 1(a), where a pattern across three sequences repeats 
three times but with each appearance slightly different from 
the others. If we can allow that each time the pattern ap-
pears, any two of its successive pattern letters’ appearances 
are within a range, rather than a fixed value, we may then be 
able to find the pattern in Fig. 1(a). The introduction of a 
variable period (gap) thus provides a flexible way to capture 
interesting patterns hidden in sequences. 

Mining recurring patterns from sequences essentially re-
lies on a counting mechanism to check patterns’ occur-
rences. This, however, is inherently complicated by the se-
quential order of the underlying sequences. Considering 
sequence “AAAGGGTTTTCCCTTTTCCCTTTTCCCC”, 
to find the number of complete occurrences of pattern 
P=AGTC (we ignore gap constraints at this stage), there are 
3 × 3 combinations for “A” and “G”, and 4×10+4×7+4×4 
combinations for “T” and “C”. So in total, there are 9×84 
occurrences for AGTC. Although this number does not 
sound scary, considering complete occurrences, however, 
brings one of the most difficult challenges to our problem: 
the deterministic Apriori theory (the support of a pattern 
cannot exceed the support of any of its sub-patterns) does 
not hold. Considering S=“AGCTTT”, pattern P=AGCT 
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appears three times in S, but P’s subpattern AGC appears 
once only. Therefore, traditional Apriori-based algorithms 
are computationally infeasible to handle our problem.  

Motivated by the above observations, we propose MCPaS
to Mine Complex Patterns across Sequences with gap re-
quirements. We will review related work in the next section, 
and state our research problem in Section 3. In Section 4, 
we will study pattern frequencies and propose a determinis-
tic pruning technique for pattern mining. In Section 5, we 
discuss our unique Gap Constrained Search and Map-based 
Support Prediction processes to accelerate the pattern min-
ing process. Based on the proposed pruning and searching 
techniques, we elaborate, in Section 6, the mining algorithm 
details. Comparative studies are reported in Section 7, fol-
lowed by the concluding remarks in Section 8. 
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(b)
Figure 1. (a) Patterns across three sequences; (b) The hybrid se-

quence generalized from the sequences in (a) 

2 Related Work 

Existing research in mining patterns from data sequences 
can be distinguished into two categories. (1) Mining pat-
terns frequently appearing in a certain number of (relatively 
short) sequences with a Boolean count, i.e., whether a pat-
tern occurs in the sequence or not. Traditional pattern min-
ing in market baskets [Srikant & Agrawal 96, Pei et al. 01, 
Zaki 98] and Gene Motif search [Murray et al. 02] fall into 
this category. (2) Mining recurring patterns from long se-
quences such as episode mining [Yang et al. 00, Méger & 
Rigotti 04, Das et al. 98] and tandem repeats and base pair 
oscillation detection in DNA sequences [Herzel et al. 99].  

Any mining process will have to rely on a counting 
mechanism to check patterns’ frequency information, from 
which frequent patterns can be found. It is worth noting that 
the selected counting mechanism crucially impacts on the 
mining approach. For research efforts relying on a Boolean 
count, because a pattern’s appearances are counted for only 
once w.r.t. each sequence, the deterministic Apriori theory 
well holds, and is therefore commonly adopted in the min-
ing process. On the other hand, when one has to determine a 
pattern’s actual number of occurrences in the sequences, the 
situation becomes complicated, simply because the mining 
process won’t follow Apriori theory at all. Existing efforts 
in the field have therefore proposed confined occurrence 
counting, such as minimal occurrences [Mannila et al. 97], 
one-off occurrences [Chen et al. 05], and windowing occur-
rences [Mannila et al. 97]. The objective is to confine pat-
terns’ occurrences such that Apriori theory can apply.  

When considering complex patterns across multiple se-
quences, the work relevant to our problem here comes from 
Oates et al. [96] and Mannila et al. [97]. Both efforts tried 
to search frequent episodes across sequences, as well as the 
prediction rules in the form of x indicating y, where x and y
are the frequent episodes in the sequences. For example, 
after event A happens, exactly two time points later event B
happens, and then exactly three time points later event C
happens. Notice that this is a very restrictive constraint, and 
we are trying to find episodes like: after event A happens, 
within two time points event B happen, and within three 
time points later event C happens. This loose constraint 
leaves a great flexibility to explore useful patterns.  

The problem of complex pattern mining across multiple 
sequences is similar to multi-dimensional sequential pattern 
mining [Pino et al. 01], where a normal practice is to aggre-
gate values from all sequences to form a single sequence, as 
shown in Figure 1(b), so traditional sequential pattern min-
ing methods can apply.  

In the domain of DNA or protein sequences, BLAST 
[Altschul 90] is one of the most famous algorithms. Given a 
query sequence (pattern), it searches for a matching se-
quence from the databases, while what we are pursuing here 
is on mining the patterns. To find patterns, the TEIRESIAS 
algorithm [Rigoutsos & Floratos 98] is designed for pattern 
discovery from biological sequences with the number of 
wild-cards that can be present in the extracted patterns re-
stricted and fixed by the users. Similar approaches such as 
Pratt [Jonassen 97] is also proposed to mine restricted pat-
terns (in terms of the maximum numbers of characters and 
wild-cards in each pattern) from a single sequence. 

3 Problem Statement 
The sequences S1,.., Si, .., SK from which we extract patterns 
are called a hyper-sequence, denoted by S, with each single 
sequence Si called an element sequence. We use S[i] to rep-
resent the characters at the ith time point of S. Without losing 
the generality, we assume all element sequences share the 
same alphabet size, denoted by •, and |•| represents the size 
of •. For simplicity, we assume that all element sequences 
have the same lengths, denoted by L.

A wild-card (denoted by a single dot “.”) is a special 
symbol that matches any character in •. A gap g is a se-
quence of wild-cards, bounded by the maximal and minimal 
values. The size of the gap refers to the number of wild-

cards in it. We use M
Ng to represent a gap whose size is 

within the range [N, M]. We also call W=M-N+1, the gap 
flexibility. A pattern, P=p1g

1p2g
2,…,gl-1pl, is a set of charac-

ters from different element sequences and gaps that begin 
and end with characters, where pj is an element pattern 
which consists of letters from element sequences. An ele-
ment pattern should consist of at least one character. gj is the 
gap requirement between element patterns pj-1 and pj. Figure 
2 pictorially shows a pattern P with three element patterns. 
The number of element patterns in P, denoted by |P|, is 
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called the length of P, i.e., the wild-card symbols are not 
counted towards a pattern’s length.  

The problem of mining complex patterns across multiple 
sequences is to find patterns of the following form: 

l
M
Nl

M
N

M
N pgpgpgpP 121 ... −=    (1)

which means that gaps between any two successive element 

patterns are the same, i.e., g1=g2=…=g1= M
Ng . An occur-

rence of a pattern P in S is defined as a match between the 
characters of the element patterns and the element se-
quences, under the gap constraints. The occurrences are 
considered different, as long as the locations of one pair of 
the matched characters are different. For example, we con-

sider P=ATG appears 2 times in S=”ATTG”, w.r.t. 2
0g , i.e.,

S[1]S[2]S[4] and S[1]S[3]S[4]. The support of P in S (de-
noted by sup(P)) is the number of times P occurring in S.

Given a length-l pattern P and a length-L hybrid-sequence 
S, we first calculate the total number of possible occurrences 
of a length-l pattern in S, Ll, then we count the actual ap-
pearances of P, sup(P). We consider P a frequent pattern, iff 
sup(P)/Ll is larger than the user-specified threshold value .

P = 3
1
02

1
01 pgpgp   p1 =                      p2 =                  p3=

P =          

A    .    .    
.    e   g     
.    .    3    

A

.
 .  

 . 
 e   
 .   

 . 
 g  
 3 

Pattern letters corresponding to element sequence S1

…. 
Pattern letters corresponding to element sequence S3

p1 p21
0g

Figure 2. A pattern denotation 

4 Pattern Frequency & Deterministic Pruning 
4.1 Pattern Frequency  
Given pattern P=p1p2…pl and its support in a length-L hy-
per-sequence S (with L >> l), sup(P), to assess P’s fre-
quency, we need to find Ll, the possible number of occur-
rences of P in S. Considering pattern P with gap M

Ng , each 

time P appears in S, its actual spans in S vary from l+(l-1)N
to l+(l-1)M, which correspond to the cases that whenever P
appears in S, the gap between any two successive element 
patterns exactly equal to N and M respectively. Assuming 
the first element pattern p1 matches S at S[δ], then for ele-
ment pattern p2, its valid occurrences may possibly appear in 
the range from S[δ+N] to S[δ+M], i.e., with W=M-N+1 pos-
sibilities. The same situation holds for all other element pat-
terns p3,…pl. So in total, a length-l pattern P starting at S[δ]
may have Wl-1 possible occurrences in S. Assuming p1 has  
possible appearances in S, the total number of possible ap-
pearances of P in S is Ll= ·Wl-1. Because the average span 
between successive element patterns is (N+M)/2+1, the av-
erage span of P in S is (l-1)·((N+M)/2+1). Then, the possi-
ble number of occurrences of p1 equals to [L-(l-
1)·((N+M)/2+1)], where [♦] means the maximal integer no 
larger than ♦. So the value of Ll is defined by Eq. (2).  

1)]1
2

)(1([ −⋅++−−= l
l WNMlLL     (2) 

Eq (2) holds only if (l+(l-1) ·M) • L, i.e., the maximal span 
of the pattern is less than the length of the hyper-sequence.  

4.2 Deterministic Pruning 
In this subsection, we derive one theorem and two lemmas 
for the deterministic pruning of our mining process. 

THEOREM 1. Gien a length-l pattern P and its length l-3 
subpatterns Q, we have the supports of Q and P satisfy the 
inequality 2)()sup()sup( 23 WWQP +⋅≤
Proof: Because Q is a length l-3 subpattern of P, denoting 
Q by q1q2…ql-3, there are four possible relationships between 
them: (1) P=p1Qpl-1pl; (2) P=p1p2Qpl; (3) P=Qpl-2pl-1pl; and (4) 
P=p1p2p3Q. Let’s first prove that Theorem 1 is true for (1). 
The same proof applies to all other possibilities.  

Assuming N=0 and the gap flexibility is W, the first ele-
ment pattern of Q, q1, appears at time slot S[ ]. It is easy to 
know that p1 has W possibilities to appear between S[ -W]
and S[ -1]. So the maximal support of p1Q is sup(p1Q)=W·
sup(Q). Now assuming further that the last element pattern 
of Q, ql-3, appears at S[ + ], it is clear that pl-1 has W possi-
bilities to appear at the range between S[ + +1] and 
S[ + +W], as shown in Figure 3. If pl-1 indeed appears at 
S[ + +W], the element pattern p1 will have W possibilities 
to appear between S[ + +W+1] and S[ + +2W]. Denoting 
this region by ]2,1[1

1 WWl +++++⊂− βαβαϕ , if pl-1 appears at 

S[ + +W-1], we know that pl may possibly appear between 
S[ + +W] and S[ + +2W-1]. Notice that S[ + +W] has 
been reserved for the possible appearance of pl-1, so the 
number of possible appearances of pl (w.r.t. to pl-1 at 
S[ + +W-1]) is W-1, unless pl-1 and pl are the same, which 
is not a generic case in reality. Similarly, the number of pos-
sible appearances of pl (w.r.t. to pl-1 at S[ + +W-2]) is W-2. 
As a result, for all possible W appearances of pl-1 between 
S[ + +1] and S[ + +W], the sum of their possible match-
ing pl’s occurrences is 1−lϕ =W+W-1+W-2…+0=W(W+1)/2.

So the maximal support for length-l pattern P=p1Qpl-1pl is 
W·sup(Q)· 1−lϕ = 2)()sup( 23 WWQ +⋅ , that is, sup(P) • 

2)()sup( 23 WWQ +⋅ .

+1… + + +1  + +2… + +W   + +W+1 + +W+2 …  + +W+W …
 x    x    …  x        x             x        …  x           x              …    x                  x              …. 

W
Pattern Q

W
pl-1 pl

Figure 3. Pattern growing  

LEMMA 1. Given a threshold , we say that a length-l pat-
tern P is frequent iff sup(P)/Ll • . If P’s any length l-3 sub-
pattern Q’s frequency, Freq(Q), is less than 

ρ
ω
ω ⋅

+⋅−−
+⋅−−

)1()4(
)1()1(

lL
lL ,

where ω=(N+M)/2, then P cannot be a frequent pattern.  
Proof: 
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Because Freq(Q)=Sup(Q)/Ll-3, we know 

ρ
ω
ω ⋅

+⋅−−
+⋅−−≤

− )1()4(
)1()1()(

3 lL
lL

L
QSup

l

, since 4
3 ))1()4(( −

− ⋅+⋅−−= l
l WlLL ω ,

We have ρω ⋅⋅+⋅−−< −4))1()1(()( lWLLQSup
Because Q is a length l-3 subpattern of P, according to 
Theorem 1, we know that 2)()sup()( 23 WWQPSup +⋅≤
So 

ρω

ρω

⋅+⋅⋅+⋅−−=

+⋅⋅⋅+⋅−−<

−

−

W
WWLL

WWWLLPSup

l

l

2
1))1()1((

2)())1()1(()(

1

234

W
W

L
PSup

WLL
PSup

l
l 2

1)(
))1()1((

)(
1

+⋅<=
⋅+⋅−− − ρ

ω
     (3) 

Because the gap flexibility W •1, we know 12)1( ≤+ WW ,

i.e., ρ<lLPSup )( . Therefore, P is not frequent.                   

LEMMA 2: If the average span of the longest pattern in S is 
less than WLW 2)1( ⋅− , i.e., about a half of a length-L hyper-
sequence S, given a length-l pattern P, for any length l-3 
subpattern of P, Q, if Freq(Q) is less than

ρ
ω
ω ⋅

+⋅−−
+⋅−−

)1()4(
)1()1(

lL
lL ,

where ω=(N+M)/2, then patterns, with P as their subpat-
terns, are not frequent. 

Justification: 
According to Lemma 1, we know that given the conditions 
in Lemm2, a length-l pattern P will not be frequent. Now 
assume pattern P is a subpattern of a length-l+k pattern F.
According to Eq. (2), we know WWLPSup l 2)1()( +⋅⋅< ρ ,

for any length-l+k pattern F, with P as its subpattern, the 
maximal support of F is less than Wk times of Sup(P). 

So k
l

k WL
W

WPSupWFSup ⋅⋅+⋅<<
2

1)()( ρ . The frequency of F is 

k

kl

l

kl

W
L
L

W
W

L
FSupFFreq ⋅⋅+⋅<=

++ 2
1)()( ρ

))1()1((
))1()1((

2
1)(

+⋅−+−
+⋅−−⋅+⋅<
ω

ωρ
klL

lL
W

WFFreq
, where )1()1( +⋅−+ ωkl  is the 

average span of the length-l+k pattern. Given that the long-
est pattern is less than WLW 2)1( ⋅− , we have 

ρωρ

ωρ

<+⋅−−⋅
+

⋅+⋅=

−⋅−
+⋅−−⋅+⋅<

L
lL

W
W

W
W

WWLL
lL

W
WFFreq

)1()1(
1

2
2

1
)2)1((

))1()1((
2

1)(

So pattern F is not frequent. 
In reality, we may not know in apriori that whether the 

average span of the longest pattern in S is less than 
WLW 2)1( ⋅−  or not (since the longest patterns are yet to be 

found), so Lemma 2 does not seem to be useful in the min-
ing process. Nevertheless, because we are dealing with a 
long hyper-sequence S, it is almost certain that the average 
span (even the maximal span) of the longest pattern in S is 
less than a half of |S|. For the DNA sequences we are using 
(in Section 7), the average span of the longest pattern is less 
than 10 percent of the sampled length-1000 sequence S. So 
we can safely assume that this prerequisite always holds. 

5 Pattern Search with Gap Requirements 
Consider a length-l pattern P with a gap flexibility W, an 
exhaustive search will start from the first pattern letter p1 to 
find its first match in S. Denoting this matching location by 
x, the search process then starts from x to match p2 within 
the range [x+1, x+W]. Such a process iteratively repeats 
until all possible locations starting from x have been 
checked, then it moves one step forward (x+1). The time 
complexity is O(L•Wl-1), which is linear w.r.t. L, but expo-
nential w.r.t. W and l. In the case that S consists of K ele-
ment sequences, this complexity increases to O(K•L•Wl-1).

5.1 Gap Constrained Search (GCS) 
In this subsection, we propose a Dynamic Programming 
[Bellman 57] oriented search mechanism, which is able to 
achieve a linear time complexity in gap constrained pattern 
search. The algorithm consists of three steps. Given a 
length-l pattern P= p1p2 …pl, we first build a length L list for 
each of the element patterns pl, denoted by 

lPO . We initiate 

the value of 
lPO  to 0 before the search process (For easy 

understanding, we pictorially show a simple example in 

Figure 4 with P=AGTC and gap 2
0g ). 

1. GCS sequentially scans S from the left to right. For any 
current position x, if S[x] matches the first element pat-
tern p1, set the value of 

1PO  [x] to 1.  

2. At any location x, if S[x] matches any element pattern 
pj, j>l (i.e., excluding the first element pattern), we up-

date the value of 
jPO  to 

−

=
−=

−

),1max(

1
][

1

Wx

v pp vxOO
jj

.

As shown in Figure 4, when x=3, S[3] matches p2

(which is G), then the value of OG[3] is updated to the 
sum of OA[1] and OA[2]. The above process indicates 
that for any matches of the element pattern letter, pj j>1, 
at location x, we backtrack W steps to find the number 
of times pj’s last successive pattern letter pj-1 has ever 
appeared. If all element patterns (pj, j>1) were able to 
iteratively regulate and update their lists 

jPO in such a 

way, then the value in 
jPO [x] will indicate the number 

of times that pattern p1p2…pj ever ends at position x.
3. We iteratively repeat the above process, until we finish 

the whole sequence S. Then we sum up all elements 
in

lPO , which is the number of times P=p1p2…pl appears 

in S. In addition, the values in 
lPO [x] will indicate the 

number of times P ending at position x.
The time complexity of GCS consists of two parts: (1) scan-
ning the whole sequence L, and (2) at each location x, com-
paring S[x] with all element patterns, and backtracking W
steps if necessary. Because each backtracking can be 
achieved through a sum operation, so the total time com-
plexity is O(KL(l-1)), which is linear w.r.t. L, l, and K, and 
much more efficient than the exhaustive search O(KLWl-1).  
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  S    A   A   G   G   C   A   T   C   T   C   A   G    A   T    C   T   T   C 

  A    1    1    0    0    0   1    0    0   0    0    1    0    1   0    0    0   0   0 
  G    0    0    2    2    0   0    0    0   0    0    0    1    0   0    0    0   0    0 
  T    0    0    0    0    0   0    2    0   0    0    0    0    0    1    0   0    0   0  
  C    0    0    0    0    0   0    0    2   0    2    0    0    0    0    1   0    0   0  

1     2      3      4    5      6    7     8    9   10    11   12   13   14   15   16   17   18 

Figure 4. Gap constrained pattern search (gap constraint 
2
0g )

5.2 Map-based Support Prediction 
Notice that each time we grow a length-l pattern P to a 
length l+1 pattern F, we will have to check F’s frequency by 
searching its occurrences in S again. This reexamination 
mechanism costs a considerable amount of system runtime, 
as there are possibly millions of candidates. Nevertheless, if 
we can reuse P’s occurrence information, we may be able to 
speed up the search process dramatically. For this purpose, 
after we find pattern P’s occurrences, we generate a rear-
map (RM) for P which records the number of times P ap-
pears in S and all its ending positions (this RM is actually 
the 

lPO list in the above section). As shown in Figure 4, if P

ever ends at position x, the value of RM[x] will indicate the 
number of times P ends at x; otherwise, RM[x] equals to 0.  

With the RM of pattern P=plp2…pl, denoted by the 
][...1

xRM
lpp

, we may just search P’s RM, instead of scan-

ning the whole sequence S, to find the number of times F
appearing in S. This can be achieved by a simple production 
and sum procedure. More specifically, for pattern F=
plp2…plpl+1, if we can build a head-map (HP) which records 
locations and times of the length-2 pattern plpl+1’s starting 
information, where ][

1
xHP

ll pp +
 indicates the number of times 

plpl+1 starts at position x, then, the support of pattern F is 
determined by Eq. (4) 

=+ +
⋅= L

x ppppl xHPxRMpppSup
lll1 ..121 ][][)...(

11
   (4) 

As shown in Figure 5, when predicting the support of 
AGTC, we first find RMAGT and HMTC, the production and 
sum of the corresponding elements of these two lists will 
exactly equal to AGTC’s support.  

      S       A   A    A   G   C   G   T   C   T    C   A   G   G   T    C   T   T   C 
  RMAGT   0    0     0    0    0   0    4    0   1    0    0    0    0    2    0    1    0   0 

  HM TC   0    0     0    0    0   0    2    0   1    0    0    0    0    1     0    1    1   0 

 RMAGTC  0    0     0    0    0   0    0    4   0    5    0    0    0    0     2    0    0   1 

1     2      3      4    5      6    7     8    9     10    11   12   13   14   15   16   17   18 

Figure 5. Map-based support prediction (gap constraint 
2
0g )

6 Algorithm 
The system framework of MCPaS is shown in Figure 6. 
MCPaS first generates all length-2 patterns, denoted by C2.
After the first step, MCPaS begins pattern growing and 
pruning. Assuming now at a certain step, we have generated 
a set of length-l candidates from length-l-1 patterns (on line 
5 in Figure 6), then a length-l candidate’s support can be 
easily predicted by plugging its length-l-1 patterns’ RM and 
the corresponding length-2 patterns’ HM into Eq. (4), with-

out rescanning S. For all generated length-l candidates in Cl,
we calculate a value l′ =l+3 and a threshold,  

ρ
ω
ωρ ⋅

+⋅−′−
+⋅−′−=′

)1()4(
)1()1(

lL
lL      (5) 

All length-l candidates with their frequencies larger than ρ
are forwarded to a frequent set Fl. If any length-l candidate’s 
frequency is less than ρ′, we mark it as “suspicious”, which 
means that this pattern is unlikely to grow further, so we 
will keep an eye on it. Meanwhile, for any length-l candi-
date P in Cl, if any of P’s length-l-2 subpattern is suspicious,
we will remove P from the candidate set Cl (on lines 11 to 
12 in Figure 6). According to Lemmas 1 and 2, if a pattern 
Q is suspicious, then any length-l patterns with Q as their 
length l-3 patterns are not going to be frequent. Therefore, if 
P’s length-l-2 subpattern is suspicious, then any length l+1 
(and beyond) patterns containing such subpatterns are not 
going to be frequent. So there is no need to put them into the 
candidate set Cl for growing. As a result, we may safely 
remove P from the candidate set Cl.

After MCPaS prunes out candidates from Cl, it builds RM
for all remaining length-l patterns in Cl by rescanning S (on 
line 13 in Figure 6). MCPaS grows length-l+1 candidates by 
using all patterns in Cl (on line 5 in Figure 6). This can be 
achieved through the following two techniques: (1) trying 
all combinations by attaching any possible element pattern 
to the patterns in Cl, or (2) using the popular Apriori candi-
date generation procedure.  

Input: (1) Hyper-sequence S and gap M
Ng , (2) # of element 

sequences K; (3) alphabet •; and (4) frequency threshold 
Output: Frequent pattern set  

1. W M-N+1 
2. Build length-2 pattern set C2, build BM and HM maps 

for all patterns in C2.
3. l  3 
4. While (Cl-1 • φ )
5. Cl PatternGen(Cl-1);  
6. Predict support values for all candidates in Cl

(Eq. (4)) 
7. l′=l+3 AND calculate threshold ρ′
8. For any pattern y in Cl

9. If Freq(y) •     Then   Fl Fl ∪ y
10. If Freq(y) < ρ′   Then   y suspicious
11. If  any length l-2 subset of y is suspicious
12.                    Then  Cl Cl \ y
13. Rescan S and build RM for all patterns in Cl

14. l l +1;  
15. Return (F3 ∪ F4…∪Fl-1)

Figure 6. MCPaS Algorithm 

7 Experimental Results 
The data used in our experiments are nucleotide DNA se-
quences downloaded from the National Center for Biotech-
nology Information website [NCBI], we choose four DNA 
sequences as our test bed (AX829168, AX829170, 
AX829174, and AX829178). When using multiple se-
quences to form a hyper-sequence, we truncate sequences 
into equal length ones. Because we use DNA sequences, the 
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alphabet for all element sequences is Σ={A, C, T, G}. For 
comparisons, we implement the MPPm method in [Zhang et 
al. 05] in finding frequent patterns with gap constraints. 
This MPPm is the most relevant (and most recent as well) 
method we can find from all other peers.  

Table 1 Candidate numbers scanned by different methods  

Pattern Enumerate All MPPm MCPaSPruning MCPaS 
C3 64 64 64 64 
C4 256 256 256 256 
C5 1024 1024 1024 1018 
C6 4096 4096 4088 3997 
C7 16384 16381 15535 11461 
C8 65536 54072 39728 7138 
C9 262144 19675 16108 1581 
C10 1048576 3459 2653 273 
C11 4194304 414 350 41 
C12 16777216 42 38 13 
C13 413 3 3 2 

7.1 Pruning Efficiency Comparison 
We provide in this subsection a pruning efficiency compari-
son with MPPm by using a single DNA sequence AX829174 
(by randomly sampling a L=1000 subsequence). 

In Table 1, we report the experimental results (by the av-
erage results of 10 executions), where the first column 
means the candidate pattern set with different lengths. The 
second column indicates the number of candidates one has 
to evaluate, if enumerating all combinations. The third col-
umn means the number of candidates evaluated by MPPm.
Because MCPaS uses two approaches, map-based support 
prediction and Lemma 2, for pruning, we’d like to assess 
their efficiency separately. We first discard the map-based 
support prediction in the algorithm by replacing line 6 with 
line 13 in Figure 6. The results are denoted by MCPaSPrunning.
After that, we use both map-based support prediction and 
Lemma 2 for pruning, with results denoted by MCPaS.

When comparing MCPaSPrunning and MPPm, we find that 
MCPaSPrunning has about 20% or fewer candidates than MPPm.
A further study on MCPaSPrunning and MMPm reveals that they 
have opposite pruning mechanisms. In MCPaSPrunning, pat-
terns are growing and pruned orderly, which means that we 
generate length-l candidates, prune out unlikely ones, grow 
candidates and repeat the algorithm until the candidate set is 
empty. On the other hand, MPPm uses reverse pruning 
mechanisms. It first determines the maximal length of the 
frequent pattern n, and based on this value, works out the 
minimal support values for different lengths of patterns. Not 
only the value n might be determined inaccurately (an inac-
curate n will therefore reduce the pruning efficiency), even 
if n is perfectly determined, it will leave the selected thresh-
old (for length n-1, n-2, …, 3) to be relatively small, be-
cause it has to consider the worst scenarios.  

When combined with the map-based frequent prediction 
mechanism, MCPaS makes dramatic improvement in reduc-
ing the number of candidates in Cl. For example, the number 
of patterns needs to be scanned in C8 is 7138, which is about 
86.8% less than the number of patterns scanned by MMPm.

7.2 Pattern Search Efficiency Comparison 
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Figure 7. Pattern search efficiency (W=4, L=1000, AX829174) 
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Figure 8. Pattern mining performance from single sequence 

To assess the performances of the proposed GCS mecha-
nism in comparison with exhaustive search, we sample a 
length L=1000 subsequence from AX829174, then use two 
search mechanisms and record their average search time (in 
seconds) for every 1000 patterns, and report the results in 
Figure 7 (the average results of 10 executions). In Figure 7, 
the x-axis denotes the length of the patterns, the dash line 
indicates the results of exhaustive search (corresponding to 
the y-axis on the left side of the figure), and the solid line 
with crosses represents the results from GCS (corresponding 
to the y-axis on the right side of the figure).  

Comparing to exhaustive search, GCS is normally 5 to 10 
times faster in searching (depending on the actual length of 
the patterns). Because exhaustive search’s time complexity 
exponentially increases along with the pattern length and the 
gap flexibility, GCS can possibly achieve more improve-
ments for longer patterns or larger gap constraints.  

7.3 Pattern Mining Performance Comparison 
To assess overall pattern mining performances, we first use 
a single sequence AX829174 with a fixed value W=4. We 
randomly sample a length L=1000 subsequence from 
AX829174, then use MPPm and MCPaS to mine the results 
by specifying different threshold values ρ. We report the 
average runtime (from 10 executions) in Figure 8, where the 
x-axis means the value of ρ, the dash line indicates the re-
sults from MPPm and the solid line with crosses denotes the 
results from MCPaS (corresponding to the y-axis on the left 
and right side of Fig. 8 respectively).  

Both MPPm and MCPaS nonlinearly respond to the 
threshold ρ with pretty similar shapes. This is because the 
value of ρ nonlinearly determines the number of candidates 
of the system. On average, MCPaS is about 40 times faster 
than MPPm, with its improvement mainly comes from three 
aspects: (1) an ordinal pruning from Lemma 2; (2) map-
based support prediction; and (3) GCS based search. GCS
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alone can enhance the search speed for about 8 times (com-
paring to exhaustive search), and the other two aspects will 
generally contribute a speed improvement of about 5 times.  

In Figure 9, we report the results from the hyper-sequence 
consisting of one to up to four sequences (due to the inten-
sive time consumption, we were only able to run the pro-
grams for only one time for 3 or 4 sequences). The x-axis in 
Figure 9 represents the number of element sequences, and 
the y-axis denotes the average runtime of MCPaS. Because 
MPPm and MCPaS have huge runtime differences, we report 
MPPm’s runtime in a small table in Figure 9. Meanwhile, 
for a hyper-sequence with K=4 element sequences, MPPm’s 
runtime is too big, so we omit the value at this point.  
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Figure 9. Pattern mining performance from multiple sequences 

The results in Figure 9 show that MCPaS’s runtime expo-
nentially increases by the number of element sequences K.
Although this sounds disappointing, to understand the chal-
lenge of our problem, let’s assume that S merely consists of 
two DNA element sequences, then each element pattern pi

has (|Σ|+1)2-1=(4+1)2-1=24 possibilities (excluding the one 
consisting of wildcards only). So the number of length-5 
candidate patterns is 245=7962624, if no pruning techniques 
are involved. Although we can transform element sequences 
to form a hybrid sequence and apply MPPm to solve the 
problem, because of the large alphabet size and the less ef-
fective reverse pruning technique, most of the length-5 can-
didates are going to be treated as frequent and used to grow 
next level candidates. MCPaS on the other hand, will start to 
prune candidates from length-4 candidates, and for length-5 
patterns it will reduce about 80% of candidates (if S consists 
of 2 element sequences). The above observations make us 
believe that although MCPaS is nonlinear w.r.t. the number 
of element sequences K, when mining complex patterns 
from hyper-sequences, it is much more practical in reality.  

8 Conclusions  

We have studied in this paper the problem of mining com-
plex patterns across multiple sequences with gap require-
ments, where patterns repetitively appear in multiple se-
quences and their matching appearances are flexibly con-
fined by users’ gap requirements. Because of the exponen-
tial candidate explosion, traditional Apriori-based solutions 
are technically infeasible to solve the problem. We have 
proposed MCPas with three unique features to fulfill the 
task: (1) an Apriori-like mining framework which allows 
pattern generation and growing to be conducted step by 

step; (2) map-based support predication to predict candi-
dates’ frequency without rescanning; and (3) a gap con-
strained linear-time pattern search. Experimental compari-
sons have shown that each of the above techniques has 
made a contribution, and the overall performances of 
MCPas have been about 40 times faster than its other peers. 
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MPPm Runtime 

K 1 2 3 
Runtime (s) 570 13751 387754 
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