
Coalition Structure Generation in Multi-Agent Systems
With Positive and Negative Externalities

Talal Rahwan1, Tomasz Michalak2, Nicholas R. Jennings1, Michael Wooldridge2, Peter McBurney2

1School of Electronics and Computer Science, University of Southampton, UK
2Department of Computer Science, University of Liverpool, UK

Abstract

Coalition structure generation has received consid-
erable attention in recent research. Several algo-
rithms have been proposed to solve this problem
in Characteristic Function Games (CFGs), where
every coalition is assumed to perform equally well
in any coalition structure containing it. In con-
trast, very little attention has been given to the more
general Partition Function Games (PFGs), where
a coalition’s effectiveness may change from one
coalition structure to another. In this paper, we deal
with PFGs with positive and negative externalities.
In this context, we identify the minimum search
that is required in order to establish a bound on the
quality of the best coalition structure found. We
then develop an anytime algorithm that improves
this bound with further search, and show that it out-
performs the existing state-of-the-art algorithms by
orders of magnitude.

1 Introduction

One of the important issues in multi-agent system research
is to generate a coalition structure , i.e. an exhaustive and
disjoint division of the set of agents, such that the outcome
of the entire system is maximised. Usually, this coalition
structure generation (CSG) problem is dealt with in Charac-
teristic Function Games (CFGs), where the value of a coali-
tion is not affected by the way non-members are partitioned
(see, e.g., [Shehory and Kraus, 1998; Sandholm et al., 1999;
Dang and Jennings, 2004; Rahwan and Jennings, 2008; Rah-
wan et al., 2009]). However, even under this strict assump-
tion, the CSG problem has been shown to be NP-complete
[Sandholm et al., 1999]. Given this, a number of approaches
have been proposed to help circumvent this complexity, in-
cluding the use of anytime algorithms. Specifically, such an
algorithm generates an initial solution that is guaranteed to
be within a certain bound from the optimum, and then im-
proves the quality of its solution as it searches more of the
search space, and establishes progressively better bounds un-
til an optimal solution is found. Although these algorithms
might, in the worst case, end up searching the entire space
(i.e. they run in O(nn)), the anytime property has a number of
advantages. First, an outcome is delivered relatively quickly

and, second, the algorithm is more robust against failure due
to premature termination. All anytime CSG algorithms take
advantage of the property of CFGs that the value of a partic-
ular coalition is always the same in every possible coalition
structure. Although this assumption is valid in many envi-
ronments, there exist a number of cases in which the perfor-
mance of one coalition may be directly influenced by the co-
operative arrangements of the other agents in the system. For
instance, in resource allocation problems, a coalition that in-
creases resource consumption in one part of the system can
be detrimental to the agents’ effectiveness in another part. In
such cases, CFGs are not appropriate and much more gen-
eral Partition Function Games (PFGs) have to be applied.
In PFGs a coalition’s value may depend on the formation
of another coalition in a system. More formally, given two
coalition structures: CS and CS′ such that C1, C2, C3 ∈ CS
and C1, (C2 ∪ C3) ∈ CS′, the value of C1 may be differ-
ent in CS than in CS′ due to the merge of C2 with C3.
Such an effect is usually referred to as an externality induced
upon C1 by the merge of C2 and C3 and the formation of
coalition C2 ∪ C3. In this context, only one CSG algorithm
has been proposed [Michalak et al., 2008], which deals with
two classes of PFGs, denoted PF+

sub and PF−sup. Specifi-
cally, in PF+

sub a merger of any two coalitions decreases their
joint value (or keeps it constant), and increases the values of
other coalitions in the structure (or keeps them constant). In
other words, the coalition values are weakly sub-additivite1

and the externalities are positive (or equal to zero). Con-
versely, PF−sup is the class in which the values are weakly
super-additive, and the externalities are negative (or equal to
zero).

Both PF+
sub and PF−sup are very popular in economics

and other social sciences where interdependencies between
coalitions constitute, in many cases, the core of the analysed
problem. Examples include Research & Development coali-
tions among pharmaceutical companies or various forms of
international (macroeconomic/environmental) policy coordi-
nation. When two companies decide to jointly develop a new
drug, their market share is likely to increase, whereas the mar-

1Recall that weak sub-additivity refers to the case where,
given any two coalitions C1, C2, and given any coalition structure
CS ⊇ {C1, C2}, we have: V (CS) ≤ V (CS′), where CS′ =
(CS\{C1, C2})∪{C1 ∪C2}. On the other hand, weak super-additivity
refers to the case where V (CS) ≥ V (CS′).

257

ket position of other companies is likely to decrease. Con-
versely, countries which decide to join international agree-
ments and limit their emissions may hamper their economic
growth (sub-additivity property) but, at the same time, they
may have a positive influence on the rest of the world.
Clearly, modeling the above phenomena with CFGs would
be inappropriate and PFGs should be applied instead. Ex-
amples of systems with externalities can also be found in
multi-agent system contexts. As more commercial activity
moves to the Internet, we can expect online economies and
societies to become increasingly sophisticated, as is happen-
ing, for instance, with real time electronic purchase of whole-
sale telecommunications bandwidth or computer processor
resources. In such contexts, ad hoc coalition formation will
need to allow for coalition externalities in as broad a sense as
possible. In fact, even PF+

sub and PF−sup classes are too strict
to model a number of environments. For instance, a merger
of a coalition in a multi-agent system may be profitable when
coalitions are relatively small. However, if the size and ex-
tent of a created group results in communication problem, the
cost of cooperation may exceed profits.2 In other words, such
systems are likely to meet neither super- nor sub-additivity
properties.

Against this background, in this paper, we deal with two
significantly broader classes of PFGs created from PF+

sub
and PF−sup by removing the assumption of super- and sub-
additivity. For these two classes, denoted PF+ and PF−,
we develop a number of techniques to solve the CSG prob-
lem in an anytime fashion. In particular:

• The first challenge related to PF+ and PF− is caused
by the fact that, in the presence of externalities, a coali-
tion’s value may differ from one structure to another.
However, we show how to compute upper and lower
bounds on the values of all feasible coalitions in the sys-
tem (Section 3);

• We identify the minimum set of coalition structures that
needs to be searched in order to establish a worst-case
guarantee on solution quality (Section 4);

• We develop a novel algorithm for improving the worst-
case guarantee with further search (Section 5);

• We develop a preprocessing algorithm that prunes parts
of the search space (Section 6.1); and

• We propose a revised version of the state-of-the-art
anytime CSG algorithm [Rahwan et al., 2009], called
IP+/−, that can be applied in our PF+/PF− setting
(Section 6.2).

Since there are no previous algorithms that improve worst-
case guarantees in PF+/PF−, we benchmark our algorithm
against the state-of-the-art CFG algorithms that were devel-
oped for this purpose. Note that CFGs are a special case of
PF+/PF− and, therefore, the bounds provided by our algo-
rithm hold even in a CFG setting. Surprisingly, we find that
our algorithm outperforms the other algorithms by orders of
magnitude. This is despite the fact that the other algorithms

2Such a situation occurs, for instance, when the number of users of
a local network increases over its optimal capacity.

take advantage of the special properties of CFGs, while ours
does not. Moreover, unlike Michalak et al. [2008] who could
not test their algorithm for more than 10 agents (because of
the inefficient way by which they generate random instances
of their problem), we develop an efficient function for gen-
erating random instances of PF+/PF−, which enables us to
test our IP+/− algorithm for up to 20 agents (Section 7.2).

2 Basic Definitions

Given a coalition C and a coalition structure CS, we de-
note by v(C, CS) ≥ 0 the value of C in CS, and denote
by V (CS) =

∑
C∈CS v(C, CS) the value of CS. Moreover,

given the set of n agents, A = {a1, a2, ..., an}, and a coali-
tion C, we denote by C the agents in A that do not belong to
C (i.e. C = A\C).

We define a partition of C as a set containing disjoint coali-
tions of which the union equals C. The value of a partition
is defined as the sum of the values of all the coalitions in that
partition. We denote by V (P,CS) the value of partition P in
CS (i.e. V (P,CS) =

∑
p∈P V (p, CS)), and denote by PC

the set of all the possible partitions of C.3
We denote by Is : s ∈ N the set of possible integer parti-

tions of s,4 and denote by SI : I ∈ In the sub-space contain-
ing all the coalition structures within which the coalition sizes
match the parts of the integer partition (e.g. given 4 agents,
S[1,1,2] contains every coalition structure in which two coali-
tions are of size 1, and one coalition is of size 2). Moreover,
we denote by G(Is) the integer partition graph5 of s. Finally,
given a set (or a multiset) Π, we denote by |Π| the cardinality
of Π.

3 Computing Upper and Lower Bounds

In this section, we show how to compute upper and lower
bounds on the value of any partition or coalition. This is im-
portant since these bounds are going to be used in every step
of the CSG process.

Theorem 1 Consider a PF− (PF+) setting. Given a coali-
tion C ⊆ A, a partition P ∈ PC , and a coalition structure
CS ⊇ P , the following holds, where C = {a1, ..., a|C|}:

V (P, {C}∪P}) ≤ (≥) V (P, CS) ≤ (≥) V (P, {{a1}, ..., {a|C|}}∪P)

Proof. To simplify notation, let CS′ = {C} ∪ P and let
CS′′ = {{a1}, ..., {a|C|}} ∪ P . Also, without loss of gener-
ality, assume that CS �= CS′ and CS �= CS′′. Then, given a
PF− (PF+) setting, we first need to prove that:

V (P,CS′) ≤ (≥) V (P,CS) (1)

Beginning with CS, one could reach CS′ by performing mul-
tiple steps, each involving the merging of two coalitions into
one. After each step, the coalitions in P remain unchanged

3Note that if C = A, then any partition of C would be a coalition
structure, and PA would be the set of all possible coalition structures.

4Recall that an integer partition of s is a multiset of positive integers
(called parts) that add up to exactly s. For presentation clarity, we use
square brackets throughout this paper (instead of curly ones) to represent
integer partitions.

5For more details on this graph, see [Rahwan and Jennings, 2008].

258

and, due to negative (positive) externalities, their values can
only decrease (increase). As a result, the inequality in (1)
holds. Similarly, beginning with CS′′, it can be proved that
the following holds: V (P,CS) ≤ (≥) V (P,CS′′).

�
As opposed to Michalak et al. [2008] who bound the value

of any given coalition C, Theorem 1 bounds the value of
any given partition of C. Specifically, for every partition
P ∈ PC , the upper and lower bounds can be computed in a
PF− (PF+) setting as follows, where C = {a1, ..., a|C|}:

LBP (UBP) =
∑

p∈P

v(p, P ∪ {C})

UBP (LBP) =
∑

p∈P

v(p, P ∪ {{a1}, ..., {a|C|}})
Note that, by assuming that P = {C}, it is possible, using
the above equations, to compute an upper bound UBC and a
lower bound LBC on the value of any coalition C. Moreover,
given an integer partition I ∈ Is : s ≤ n, if we denote by SI

the set of partitions within which the coalition sizes match
the parts in I , then we can compute upper and lower bounds
(denoted UBI and LBI respectively) on the values of the
partitions in SI :6

∀I ∈ Is, UBI = max
P∈SI

UBP , and LBI = min
P∈SI

LBP

4 Establishing a Worst-Case Bound β

Having computed upper and lower bounds for coalition val-
ues, we now show how these can be used to identify the min-
imum search required to establish a worst-case ratio bound β
from the optimum. In order to do so, we will use the following
theorem:

Theorem 2 Let X be a set of elements, and let Ys be a set
containing subsets of X such that: ∀y ∈ Ys, |y| ≤ s. More-
over, for all x ∈ X, y ∈ Ys, let us define v(x, y) ≥ 0 as the
value of x in y, and let us define V (y) =

∑
x∈y v(x, y) as the

value of y. Then, for any Y ′s ⊆ Ys, if:

∀x ∈ X,∃y′ ∈ Y ′s : x ∈ y′ and v(x, y′) = max
y∈Ys

v(x, y) (2)

then the following holds:

max
y∈Ys

V (y) ≤ s × max
y∈Y ′

s

V (y)

In other words, if every element in x appears with its max-
imum value in one, or more, of the subsets in Y ′s , then the
best subset in Y ′s is within a ratio bound β = s from the best
subset in Ys.

Proof. Let y∗, y∗∗ be the best subset in Ys, Y
′
s respectively,

i.e. y∗ = arg maxy∈Ys
V (y) and y∗∗ = arg maxy∈Y ′

s
V (y).

Then, assuming that (2) holds, we need to prove the follow-
ing:

V (y∗) ≤ s × V (y∗∗)

6Note that SI : I ∈ In refers to the set of coalition structures that
match I, while SI : I ∈ Is : s ≤ n refers to the set of partitions that
match I.

To this end, let x∗ be defined as: x∗ = arg maxx∈y∗ v(x, y∗).
Since y∗ contains at most s elements, then the following
holds:

V (y∗) ≤ s × v(x∗, y∗) ≤ s × max
y∈Ys

v(x∗, y) (3)

Moreover, from (2), we know that there exist y′ ∈ Y ′s such
that x∗ ∈ y′ and:

v(x∗, y′) = max
y∈Ys

v(x∗, y) (4)

Since the value of y′ is the sum of the values of the coalitions
in y′, and since x∗ ∈ y′, then:

v(x∗, y′) ≤ V (y′) (5)

Finally, from the definition of y∗∗, we know that:

V (y′) ≤ V (y∗∗) (6)

From (3), (4), (5) and (6), we find that:

V (y∗) ≤ s × max
y∈Ys

v(x∗, y) ≤ s × V (y′) ≤ s × V (y∗∗)

�
Having proved Theorem 2, we now show how it can be used
while proving the main theorem for establishing a ratio bound
β:

Theorem 3 To establish a bound β on the value of a coalition
structure given a PF+ setting, every sub-space SI : I ∈ In :
|I| ≤ 2 must be searched. With this search, the number of
coalition structures searched is 2n−1, and the bound β = n.
On the other hand, given a PF− setting, every sub-space SI :
I ∈ {[n], [n − 1, 1], [n − 2, 1, 1], · · · , [1, 1, · · · , 1]} must be
searched. With this search, the number of coalition structures
searched is 2n − n + 1, and β =

⌈
n
2

⌉

Proof. To establish a bound, the maximum possible value
of each coalition C has to be observed (in some coalition
structure). Given a PF+ setting, the only coalition struc-
ture in which C is guaranteed to have its maximum value is
{C, A\C}. Based on this, the sub-spaces SI : I ∈ In :
|I| ≤ 2 must be searched, and these contain 2n−1 coalition
structures.

To prove that β = n, we use Theorem 2, and that is by
considering X to be the set of coalitions, Yn to be the set of
coalition structures7, and Y ′n to be the union of the sub-spaces
SI : I ∈ In : |I| ≤ 2. In more detail, since every element
in X appears with its maximum value in one, or more, of the
coalition structures in Y ′s , then the best coalition structure in
Y ′s is within a ratio bound β = n from the best coalition
structure in Yn (see Theorem 2).

On the other hand, given a PF− setting, the only coali-
tion structure in which C is guaranteed to have its max-
imum value is: {C, {a1}, ..., {a|C|}}, where {a1} ∪ ... ∪
{a|C|} = C. Based on this, SI :∈ {[n], [n − 1, 1], [n −
2, 1, 1], ..., [1, 1, ..., 1]} must be searched. With this search,
the number of searched coalition structures would be 2n −

7This is possible since every coalition structure is a subset of X con-
taining at most n of the elements (i.e. coalitions) in X.

259

n+1 since every possible coalition appears in a unique coali-
tion structure, except for the singleton ones (which all appear
in a single coalition structure).

As in the PF+ case, we use Theorem 2 to prove that β =⌈
n
2

⌉
. Here, however:

• We consider X to contain all the possible coalitions,
as well as the possible partitions that contain single-
tons. For example, given 3 agents, X contains all the
possible coalitions of size 3, as well as {{a1}, {a2}},
{{a1}, {a3}}, {{a2}, {a3}} and {{a1}, {a2}, {a3}}.
Note that the maximum possible value of each one of
these partitions has been observed in S[1,··· ,1] (see The-
orem 1).

• We consider the singletons in every coali-
tion structure to be grouped together (e.g.
{{a1}, {a2}, {a3, a4}, {a5, a6}} becomes
{{{a1}, {a2}}, {a3, a4}, {a5, a6}}). Based on this, we
can consider Y�n/2� to be the set of coalition structures
(because any coalition structure now contains at most
�n/2� elements from X).

• We consider: Y ′�n/2� = S[n] ∪ S[n−1,1] ∪ · · · ∪ S[1,··· ,1].

The above three points imply that the best coalition structure
in Y ′�n/2� is within a ratio bound β = �n/2� from the best
coalition structure in Y�n/2�, and that is because every possi-
ble element in X appears with its maximum value in Y ′�n/2�.

�
Note that, in CFGs, it is sufficient to search levels 1 and 2
of the coalition structure graph in order to bound β [Sand-
holm et al., 1999]. However, it is also possible to bound β
by searching any other set of coalition structures as long as
every coalition appears at least once in this set. On the other
hand, given a PF− setting, it is necessary to search SI : I ∈
{[n], [n − 1, 1], [n − 2, 1, 1], · · · , [1, 1, · · · , 1]} and, given a
PF+ setting, it is necessary to search SI : I ∈ In : |I| ≤ 2
(see Theorem 3).

5 Improving the Worst-Case Bound β

In this section, we present a novel anytime algorithm that re-
duces the ratio bound β with further search. This algorithm
is based on the following observation (which is a direct result
of Theorem 2): If we consider X to be the set of all possi-
ble coalitions, and Yn to be the set of all possible coalition
structures, and if Y ′n ⊆ Yn is a set of coalition structures in
which the maximum value of every element in X appears at
least once, then by searching through Y ′n, we end up with a
solution that is within a ratio bound β = n from the optimal
coalition structure.

Based on the above observation, the ratio bound β can be
reduced by using the following two main steps:

1. Add certain partitions to X and, in every coalition struc-
ture, group the coalitions that match any of those par-
titions. This is done such that the maximum num-
ber of elements from X that can appear in a single
coalition structure drops to m < n. Given 3 agents,
for example, the possible structures are: {{a1, a2, a3}},

{{a1}, {a2, a3}}, {{a2}, {a1, a3}}, {{a3}, {a1, a2}} and
{{a1}, {a2}, {a3}}. Now, suppose that X contains ev-
ery possible coalition. Then, if we add the partition
{{a1}, {a2}} to X , and we group the coalitions that
match this partition (i.e. {{a1}, {a2}, {a3}} becomes
{{{a1}, {a2}}, {a3}}), then the maximum number of
elements from X that can appear in a single coalition
structure drops from 3 to 2.

2. For every partition P that was added to X , examine the
coalition structure in which P appears with its maximum
value. More specifically, given a PF− setting, examine
the coalition structure CS = {{a1}, · · · , {a|C|}} ∪ P

and, given a PF+ setting, examine CS = {C} ∪ P
(see Theorem 1). In so doing, we would have searched
through a set of coalition structures in which the maxi-
mum value of every element in X appears at least once.
This, in turn, reduces the ratio bound to m (see Theorem
2).

6 Searching the Sub-Spaces

We now present two algorithms for searching the sub-spaces.
The first is a preprocessing algorithm that prunes some of the
sub-spaces by comparing their upper and lower bounds (Sec-
tion 6.1), while the second is a revised version of Rahwan
et al.’s [2009] IP algorithm, which we call IP+/−, that uses
the preprocessing algorithm, and solves the CSG problem in
PF+/PF− settings (Section 6.2).

6.1 Preprocessing

Before detailing the preprocessing algorithm, we first discuss
its underlying theoretical background. In particular, the main
theoretical results upon which we build are as follows:

Lemma 1 Given the integer partition graph of s (i.e. G(Is)),
let G(Is)s′

denote the part of G(Is) in which every node
(i.e. integer partition) contains at least s′ integers that are
equal to 1 (where s′ < s). Then, if we remove those s′ parts
from every node in G(Is)s′

, then G(Is)s′
becomes identical

to G(Is−s′).

An example is shown in Figure 1. What is interesting is
that, by removing [1, 1] from every node in G(I6)2 for exam-
ple, then we will not only get all the integer partitions in I4,
but these integer partitions will also be ordered and connected
in exactly the same way as they are in G(I4). This particular
observation will be used in our preprocessing algorithm as we
will see later in this section. Now, we give the main theorem:

Theorem 4 Consider a PF− (PF+) setting. Then, given
a coalition C ⊆ A and a partition P ∈ PC , any coalition
structure containing P can be pruned from the search space
if there exists another partition P ′ ∈ PC such that:

∀p′ ∈ P ′,∃p ∈ P : p′ ⊆ (⊇) p and UBP ≤ LBP ′

Proof. Given a PF− (PF+) setting, and given two partitions
P, P ′ ∈ PC such that: ∀p′ ∈ P ′,∃p ∈ P : p′ ⊆ (⊇) p and
UBP ≤ LBP ′ , we will prove that, for any coalition structure
CS ⊇ P , there exists another coalition structure CS′ such
that V (CS) ≤ V (CS′).

260

Figure 1: The figure shows how the integer partitions of 4 and
5 appear in the integer partition of 6.

Since P is a partition of C, then CS\P must be a
partition of C. In particular, let P = CS\P , then of course,
CS = P ∪ P . Now, by replacing P with P ′, we end up
with a different coalition structure, denoted CS′, such that:
CS′ = P ′ ∪ P . In this case, we have:

V (CS) = V (P, CS)+V (P , CS) and V (CS′) = V (P ′, CS′)+V (P , CS′)
(7)

Since we have: ∀p′ ∈ P ′,∃p ∈ P : p′ ⊆ (⊇) p, then every
coalition in P ′ (P) is a subset of some coalition in P (P ′).
Based on this, as well as the fact that P and P ′ are partitions
of the same coalition, we find that P (P ′) can be reached
from P ′ (P) by performing multiple steps, each involving the
merging of two coalitions from P ′ (P). This, in turn, implies
that CS (CS′) can be reached from CS′ (CS) by performing
merging steps that do not involve any of the coalitions in P .
As a result, and due to negative (positive) externalities, we
have:

V (P , CS) ≤ V (P , CS′) (8)
On the other hand, since UBP ≤ LBP ′ , then we have:

V (P,CS) ≤ V (P ′, CS) (9)

From (7), (8) and (9), we find that V (CS) ≤ V (CS′). This,
in turn, implies that CS can be pruned from the search space.

�
From Theorem 4, we can see that the following lemma holds:
Lemma 2 Consider a PF− (PF+) setting. Then, given an
integer partition I ∈ Is : s ≤ n, any sub-space represented
by an integer partition G ∈ In : I ⊆ G can be pruned
from the search space if there exists another integer partition
I ′ ∈ Is such that:

∀i ∈ I (I ′),∃J ⊆ I ′(I) :
∑

j∈J

= i and UBI ≤ LBI′

The condition ∀i ∈ I (I ′),∃J ⊆ I ′(I) :
∑

j∈J = i in
Lemma 2 implies that the number of parts in I is smaller
(greater) than the number of parts in I ′, and that I and I ′
are connected in the integer partition graph of s via a series

of nodes belonging to consequent levels of the graph. In this
case, we use the notation: I → I ′ (I ′ → I). In Figure 1, for
example, we have: [1, 5] → [1, 1, 1, 1, 2].

We can now show how both Lemma 1 and Lemma 2 are
used in our preprocessing algorithm to prune sub-spaces (see
Algorithm 1). In short, the algorithm tries to find the integer
partitions in I2 that can be pruned using Lemma 2, and then
moves to I3, and then I4, and so on until it reaches In. The
way it moves from Is−1 to Is is done using the observation
from Lemma 1. More specifically, the algorithm adds [1] to
every integer partition in Is−1, and then combines the result-
ing integer partitions with those in Is that do not contain any
1. To generate the integer partitions of s that do not contain
any 1, we use getIntParts(s, 2). This function is imple-
mented using the parta algorithm [Riha and James, 1974],
which is the state-of-the-art for generating doubly-restricted8

integer partitions.

1: bI ← {[1]} {Initialization}
2: for s = 2 to n do
3: for I ∈ bI {Add [1] to every element in bI} do

4: I ← I ∪ [1]
5: end for

6: bI ← bI ∪ getIntParts(s,2)
7: for I ∈ bI do

8: if (PF− and ∃I′ ∈ bI : I → I′, UBI ≤ LBI′)
or (PF+ and ∃I′ ∈ bI : I′ → I, UBI ≤ LBI′) then

9: bI ← bI\I {remove I from bI}
10: end if
11: end for
12: end for

13: return bI
Algorithm 1: Prunes sub-spaces based on Lemma 2.

6.2 The IP+/− algorithm

In this section, we briefly describe the original IP algorithm,
and then show how it can be revised for the PF+/PF− case.

IP: Let Maxs and Avgs be the maximum and average value
of the coalitions of size s respectively. Then, for all I ∈
In, the IP algorithm computes upper and lower bounds on
the value of the best coalition structure in SI as follows:
UBI =

∑
s∈I Maxs, LBI =

∑
s∈I Avgs.9 These bounds

are then used to identify any sub-spaces that have no po-
tential of containing a solution better than the current best
one (in which case they are pruned from the search space).
As for the remaining sub-spaces, IP searches them one at a
time, unless a value is found that is higher than the upper
bound of another sub-space, in which case, that sub-space
no longer needs to be searched. The order in which the al-
gorithm searches through these sub-spaces is based on their
upper bounds (i.e. it starts with the one with the highest upper
bound, and then the second-highest and so on). Searching a

8Unlike restricted integer partitions, where the parts are only
bounded by a maximum value, doubly-restricted integer partitions
consist of parts that are also bounded by a minimum value.
getIntParts(s, 2) sets the minimum value to 2 so that the resulting
integer partitions do not contain any 1.

9Interestingly enough, Rahwan et al. [2009] proved that this lower
bound is actually the average value of all the solutions in SI .

261

sub-space SI : I = [i1, i2, ..., i|I|] is carried out using depth-
first search combined with branch-and-bound. Basically, for
every coalition of size i1, denoted C1, the algorithm finds the
coalitions of size i2 that do not overlap with C1, and for ev-
ery such coalition, denoted C2, the algorithm finds the coali-
tions of size i3 that do not overlap with C1 and C2, and so
on. This is repeated until we reach the coalitions of size i|I|
that do not overlap with C1, C2, ..., C|I|−1. For every such
coalition, denoted C|I|, we would have a coalition structure
CS = {C1, ..., C|I|} ∈ SI . This process is repeated in such
a way that is guaranteed to go through every coalition struc-
ture in SI exactly once. To speed up the search, IP applies
a branch-and-bound technique as follows. If we denote by
CS∗∗ the best coalition structure bound so far, then, before
the algorithm goes through the coalitions of size ix that do
not overlap with C1, ..., Cx−1, it checks whether the follow-
ing holds:10

v(C1)+ ...+v(Cx−1)+Maxix + ...+Maxi|I| < V (CS∗∗)

If the above holds, then there is no need to go through
any of the coalitions of size ix that do not overlap with
C1, ..., Cx−1. This is because any coalition structure contain-
ing C1, ..., Cx−1 cannot possibly be better than CS∗∗. This
simple branch-and-bound technique has proved to be very
effective in CFGs (see [Rahwan et al., 2009]).

IP+/−: The main difference in our PF−/PF+ setting
(compared to a CFG setting) is that, instead of having
one value for every coalition C, we now have a maximum
value UBC and a minimum value LBC (see Section 3 for
more details). Based on this, IP+/− differs from IP in the
following ways:

• It uses the preprocessing algorithm from Section 6.1.

• It computes Maxs and Avgs as follows:
∀s ≤ n, Maxs = maxC⊆A:|C|=s UBC and Avgs =
avgC⊆A:|C|=sLBC .

• The order in which it searches through sub-spaces is
based on our anytime algorithm for reducing the ratio
bound β (i.e., it always searches the sub-spaces that are
necessary to drop the current ratio bound).

• While searching a sub-space SI : I = [i1, i2, ..., i|I|],
and before going through the coalitions of size ix that
do not overlap with C1, ..., Cx−1, the algorithm checks
whether the following holds, where UB{C1,...,Cx−1} is
computed as in Section 3:

UB{C1,...,Cx−1} + Maxix
+ ... + Maxi|I| < V (CS∗∗)

7 Performance Evaluation

In this section, we evaluate our anytime algorithm for improv-
ing the ratio bound, as well as our IP+/− algorithm.

10Here, v(C) is used (instead of v(C, CS)) to refer to the value of C
in CS. This is because IP deals with CFGs where every coalition has
one value, regardless of the coalition structure to which it belongs.

7.1 Evaluating the Anytime Ratio Bound
Algorithm

Figure 2 shows on a log scale the ratio bound β as a func-
tion of the number of searched coalition structures, and that
is for 24 agents. As can be seen, given a PF+ setting, our
algorithm is significantly faster than the existing CFG algo-
rithms. For example, the number of coalition structures re-
quired by our algorithm to establish a ratio bound β = 3 is
only 0.00003% of that required by Sandholm et al. [1999],
and only 0.9% of that required by Dang and Jennings [2004].
On the other hand, given a PF− setting, the algorithm re-
quires searching more coalition structures (compared to other
algorithms) in order to establish its first ratio bound (see The-
orem 3). However, once it establishes its first bound, which
requires searching less than 4×10−11 of the space, it becomes
significantly faster than the other algorithms. For example,
the number of coalition structures to establish a ratio bound
β = 3 is only 0.00002% and 0.5% compared to Sandholm et
al.’s and Dang and Jennings’s, respectively.

Figure 2: The ratio bound β as a function of the number of
searched coalition structures (given 24 agents).

7.2 Evaluating IP+/−

In order to evaluate our IP+/− algorithm, we need to be
able to efficiently generate random instances of PF+/PF−.
To this end, let us assume, without loss of generality,
that the agents in every coalition are ordered ascendingly,
and that the coalitions in any partition are also ordered
ascendingly based on the smallest11 agent in each coali-
tion. Now, let l(ai, C) denote the location of agent ai

in C (e.g., l(a6, {a2, a5, a6, a9}) = 3), and let l(ai, P)
denote the location of the coalition in P that contains ai

(e.g., l(a6, {{a1, a7}, {a3, a5, a6}, {a4, a9}}) = 2). With
these definitions in place, we now show how to gener-
ate the coalition values such that the PF− (PF+) condi-
tion is met. At first, for every coalition C, we generate
the following non-negative random values: vC and eC and

11For any two agents ai, aj ∈ A, we say that ai is smaller than aj if
i < j.

262

eC,1, eC,2, · · · , eC,|C| such that
∑|C|

j=1 eC,j = eC . After that,
for any coalition structure CS � C, we set the value of C as
follows:

v(C, CS) = vC −(+)
X

ai∈C

eC,l(ai,C) ∗(1− l(ai, CS\{C}) − 1

|C|) (10)

In more detail, vC represents the value of coalition C in the
absence of any externalities, while the remainder of the left
hand side of (10) represents the externality induced upon C
in CS. Note that this externality is always smaller than, or
equal to, eC . This comes from the fact that: ∀ai ∈ C :
l(ai, CS\{C}) ≥ 1, which implies that:
P

ai∈C

eC,l(ai,C)∗(1− l(ai,CS\{C})−1

|C|) ≤ P

ai∈C

eC,l(ai,C)∗(1− 1−1

|C|)

≤ P

ai∈C

eC,l(ai,C)

≤ ec

Theorem 5 By setting the value of each coalition as per
equation (10), we end up with a PF− (PF+) setting.12

Next, we analyze the memory required to store the input. As
opposed to [Michalak et al., 2008], where a value must be
stored for every pair (C, CS) : C ∈ CS, using equation (10)
only requires storing vc and eC,1, eC,2, · · · , eC,|C| for every
coalition C. Thus, given n agents, the total number of values
to be stored is computed as follows, where n! is the factorial
of n:

2n +
n∑

s=1

n!
(s−1)!×(n−s)!

This is significantly smaller, compared to the number of val-
ues stored by Michalak et al. (e.g. 0.000000007% given 25
agents).

In our experiments, vC is generated using a normal distri-
bution, while eC is generated using a uniform distribution as
follows: e ∼ U(a, b), where a = 0 and b = vC .

Given 20 agents, Figure 3 shows on a log scale how the
quality of our solution improves over the running time.13 As
can be seen, the solution quality grows very rapidly (e.g. it
reaches 94% within only one second). Moreover, an optimal
solution is reached within only 5% of the total running time,
while the rest of the time is spent trying to verify that the
found solution is indeed optimal.

8 Conclusions

The coalition structure generation problem is usually stud-
ied in the context of characteristic function games where no
externalities are allowed. However, in many cases external-
ities do exist and need to be accounted for. In this paper,
we presented a number of important results for such partition
function games: we showed how to bound coalition values
in games with positive or negative externalities, identified the
minimum amount of search required to establish a worst-case
bound from the optimal solution, developed a novel algorithm

12The proof of Theorem 5 is omitted from the paper due to space
limitations.

13The PC on which we ran our experiments had 4 processors (each is
an Intel(R) Xeon(R) CPU @ 2.66 GHz), with 3GB of RAM.

Figure 3: Solution quality over running time (given 20
agents).

for improving that bound with further search, and showed that
it outperforms existing approaches by orders of magnitude.
By so doing, we have laid the foundation for further work on
this important setting. In particular, we are keen to develop
an efficient approach to systems that posses mixed character-
istics and cannot be neatly categorized to only one class.

References

[Dang and Jennings, 2004] V. D. Dang and N. R. Jennings.
Generating coalition structures with finite bound from the
optimal guarantees. In Proceedings of the Third Interna-
tional Conference on Autonomous Agents and Multi Agent
Systems (AAMAS-04), pages 564–571, 2004.

[Michalak et al., 2008] T. Michalak, A. Dowell, P. McBur-
ney, and M. Wooldridge. Optimal coalition structure gen-
eration in partition function games. In Proceedings of
the 18th European Conference on Artificial Intelligence
(ECAI-08), pages 388–392, 2008.

[Rahwan and Jennings, 2008] T. Rahwan and N. R. Jen-
nings. Coalition structure generation: Dynamic program-
ming meets anytime optimisation. In Proceedings of
the 23rd Conference on Artificial Intelligence (AAAI-08),
pages 156–161, 2008.

[Rahwan et al., 2009] T. Rahwan, S. D. Ramchurn, A. Gio-
vannucci, and N. R. Jennings. An anytime algorithm for
optimal coalition structure generation. Journal of Artificial
Intelligence Research (JAIR), 34:521–567, 2009.

[Riha and James, 1974] W. Riha and K. R. James. Algorithm
29 efficient algorithms for doubly and multiply restricted
partitions. Journal of Computing, 16:163–168, 1974.

[Sandholm et al., 1999] T. W. Sandholm, K. Larson, M. An-
dersson, O. Shehory, and F. Tohme. Coalition structure
generation with worst case guarantees. Artificial Intelli-
gence (AIJ), 111(1–2):209–238, 1999.

[Shehory and Kraus, 1998] O. Shehory and S. Kraus. Meth-
ods for task allocation via agent coalition formation. Arti-
ficial Intelligence (AIJ), 101(1–2):165–200, 1998.

263

