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Abstract

In this paper, we introduce an on-line, decentralised
coordination algorithm for monitoring and predict-
ing the state of spatial phenomena by a team of
mobile sensors. These sensors have their applica-
tion domain in disaster response, where strict time
constraints prohibit path planning in advance. The
algorithm enables sensors to coordinate their move-
ments with their direct neighbours to maximise the
collective information gain, while predicting mea-
surements at unobserved locations using a Gaus-
sian process. It builds upon the max-sum mes-
sage passing algorithm for decentralised coordina-
tion, for which we present two new generic pruning
techniques that result in speed-up of up to 92% for
5 sensors. We empirically evaluate our algorithm
against several on-line adaptive coordination mech-
anisms, and report a reduction in root mean squared
error up to 50% compared to a greedy strategy.

1 Introduction

In disaster response, and many other applications besides, the
availability of timely and accurate information is of vital im-
portance. Thus, the use of multiple mobile sensors for in-
formation gathering in crisis situations has generated consid-
erable interest.1 These mobile sensors could be autonomous
ground robots or unmanned aerial vehicles. In either case,
while patrolling through the disaster area, these sensors need
to keep track of the continuously changing state of spatial
phenomena, such as temperature or the concentration of po-
tentially toxic chemicals. The key challenges in so doing are
twofold. First, the sensors cannot cover the entire environ-
ment at all times, so the spatial and temporal dynamics of
the monitored phenomena need to be identified in order to
predict environmental conditions in parts of the environment
that can not be sensed directly. Second, the sensors need to
coordinate their movements to collect the most informative
measurements needed to predict these environmental condi-
tions as accurately as possible.

1For example, one of the missions of both the Aladdin project
(http://www.aladdinproject.org) and the Centre for
Robot Assisted Search & Rescue (http://crasar.csee.
usf.edu) is to use autonomous robots for information gathering
in disaster response scenarios.

Recent work has addressed similar challenges by mod-
elling the spatial and temporal dynamics of the phenomena
using Gaussian processes (GPs) [Rasmussen and Williams,
2006]. GPs are a powerful Bayesian approach for inference
about functions, and have been shown to be an effective tool
for capturing the dynamics of spatial phenomena [Cressie,
1993]. This principled approach to modelling the environ-
ment has been used to compute informative deployments of
fixed sensors [Guestrin et al., 2005], and informative paths
for single [Meliou et al., 2007] and multiple mobile sensors
[Singh et al., 2007].

However, the algorithms used to compute these informa-
tive deployments and paths are not suitable in our domain,
since they are geared towards solving a one-shot optimisation
problem in an off-line phase. Moreover, these algorithms are
centralised. In hostile environments, this is undesirable, be-
cause it creates a single point of failure, thereby increasing
the vulnerability of the information stream. Other work has
employed on-line decentralised path planning using artificial
potential fields to keep sensors in specific favourable forma-
tions [Fiorelli et al., 2006], or through multi-agent negotiation
techniques to partition the environment and allocate the sen-
sors to these partitions [Ahmadi and Stone, 2006]. However,
in general, this work has used representations of the environ-
ment, that are less sophisticated than Gaussian processes, and
are thus, less applicable for modelling complex spatial and
temporal correlations.

To address this shortcoming, Low et al. [2008] combine
these approaches and use Gaussian processes to represent the
environment, and use Markov decision processes to compute
non-myopic paths for multiple mobile sensors in an on-line
fashion. Whilst such a non-myopic approach avoids the prob-
lem of local minima, it incurs significant computational cost
(it is only empirically evaluated for systems containing just
two sensors), and is again a centralised solution.

Thus, against this background, in this paper, we present a
new on-line, decentralised coordination algorithm for teams
of mobile sensors. This algorithm computes coordinated
paths with an adjustable look-ahead, thus allowing the trade
off between computation and solution quality, and uses GPs
to represent generic temporal and spatial correlations of the
phenomena. To this end, we represent each sensor as an au-
tonomous agent. These agents are capable of taking measure-
ments, coordinating their actions with their immediate neigh-
bours, and predicting the state of the spatial phenomenon at
unobserved locations. We then use the max-sum algorithm
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for decentralised coordination [Farinelli et al., 2008] to have
the agents negotiate a joint plan by exchanging messages with
their immediate neighbours. By applying max-sum in this
manner, every agent controls its own movements using infor-
mation it possesses locally, and the coordination mechanism
is decentralised. We choose max-sum because it has been
shown to generate good solutions to decentralised coordina-
tion problems, while limiting computation and communica-
tion. However, a standard application of max-sum is still too
computationally costly within our particular domain. Thus,
we introduce two novel and generic pruning techniques that
speed up the max-sum algorithm, and hence, make decen-
tralised coordination tractable in our application.

In more detail, in this paper we contribute to the state of
the art in the following ways:
• We cast the multi-sensor monitoring problem as a decen-

tralised constraint optimisation problem (DCOP), and
present a new decentralised on-line coordination mech-
anism based on the max-sum algorithm to solve it.

• We present two novel, generic pruning techniques
specifically geared towards reducing the number of
function evaluations that is performed by max-sum.
Thus alleviating a major bottleneck of this algorithm.

• We empirically show that a specific instantiation of our
approach prunes 92% of joint moves for 5 sensors, and
outperforms a greedy single step look-ahead algorithm
by up to 50% in terms of root mean squared error.

The remainder of this paper is structured as follows. In
section 2 we give a formal problem description. Section 3
describes how spatial phenomena are modelled. In section 4,
we present our distributed algorithm, which we empirically
evaluate in section 5, before concluding in section 6.

2 Problem Description

The problem formulation described in this section was in-
spired by [Meliou et al., 2007], and has been extended to deal
with multiple sensors and limited local knowledge. Consider
an environment in which M sensors monitor spatial phenom-
ena that are modeled by a scalar field F : R

3 → R, de-
fined on one temporal and two spatial dimensions, at a finite
set of locations V = {v1, v2 . . . } ⊂ R

2, and an indetermi-
nate2 number of of discrete time steps T = {t1, t2, ...}. To
the measurement at location v ∈ V , and time t we associate
a continuous random variable, Xv,t. The set of all random
variables is denoted by X . The layout of the physical envi-
ronment is given by a graph G = (V, E), where E encodes
the possible movements between locations V . The locations
accessible from v are denoted by adjG(v). Since it is gener-
ally not possible to visit all locations V during a single time
step, each sensor selects an adjacent location at which to take
a measurement at time step t + 1. Values at locations V are
subsequently predicted with a statistical model using all mea-
surements that the sensors have gathered so far. In order to do
this, we model the scalar field F with a GP (see next section)
that encodes both its spatial and temporal correlations.

Now, in order to select their movements, sensors need to
be able to predict the informativeness of the samples that are

2In uncertain and dynamic scenarios, the mission time is often
not known beforehand.

collected along their paths with respect to the missing ones.
Here, the informativeness of a set of samples O is quantified
by a function f(O), that, depending on the context, can take
on different forms [Meliou et al., 2007]. Our choice for this
function f will be derived in the next section.

Given this formalisation, we define the multi-sensor mon-
itoring problem as follows. For every time step t, maximise
f(Ot), where Ot = ∪M

i=1O
i
t is the set of samples collected

by all M sensors up to time step t at which the prediction is
made. Moreover, while doing so, sensors can only communi-
cate with and be aware of their immediate neighbours, such
that no single point of control exists.

This problem is very challenging even for a single sensor.
We therefore propose a distributed algorithm that computes
paths with an adjustable look-ahead in Section 4, but first we
discuss the way in which the spatial phenomena are modelled
and derive function f .

3 Modeling the Spatial Phenomena

In order to predict measurements at unobserved locations, we
model the scalar fieldF with a GP. Using a GP,F can be esti-
mated at any location and at any point in time based on a set of
samples collected by the sensors [Rasmussen and Williams,
2006]. In more detail, a single sample o of the scalar field
F is a tuple 〈x, y〉, where x = (v, t) denotes the location
and time at which the sample was taken, and y the measured
value. Now, if we collect the training inputs x in a matrix
X, and the outputs y in a vector y, the predictive distribu-
tion of the measurement at spatio-temporal coordinates x∗,
conditioned on previously collected samples Ot = 〈X,y〉 is
Gaussian with mean μ and variance σ2 given by:

μ = K(x∗,X)K(X,X)−1y (1)

σ2 = K(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗) (2)
where K(X,X′) denotes the matrix of covariances for all
pairs of rows in X and X′. These covariances are obtained
by evaluating a function k(x,x′), called a covariance func-
tion, which encodes the spatial and temporal correlations of
the pair (x,x′). Generally, covariance is a non-increasing
function of the distance in space and time. For example, a
prototypical choice is the squared exponential function where
the covariance decreases exponentially with this distance:

k(x,x′) = σ2
f exp

(
− 1

2 |x− x′|2/l2
)

(3)

where σf and l are called hyperparameters that model the sig-
nal variance and the length-scale of the phenomenon respec-
tively. The latter determines how quickly the phenomenon
varies over time and space3. If these hyperparameters are un-
known before deployment of the sensors, they can be effi-
ciently learnt on-line from collected samples using Bayesian
Monte Carlo [Osborne et al., 2008].

One of the features of the GP is that the posterior variance
in Equation 2 is independent of actual measurements y. This
allows the sensors to determine the variance reduction that re-
sults from collecting samples along a certain path without the
need of actually collecting them. Using this feature, we de-
fine the value f(O) to be the reduction in entropy that results

3A slightly modified version of Equation 3 allows for different
length-scales for the spatial and temporal dimensions of the process.
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Figure 1: Joint plan of length 5 for sensors on a lattice graph.

at the coordinates of O after taking these samples4. This func-
tion exhibits the property of locality [Guestrin et al., 2005],
that is exploited by our algorithm. This means that the corre-
lation between two samples decreases rapidly (exponentially
in the case of Equation 3) with increasing distance, such that
samples that are far apart can be considered uncorrelated, and
thus, mobile sensors that are far apart need not explicitly co-
ordinate.

4 Decentralised Coordination

Since, in general, it is too expensive to perform on-line non-
myopic path planning, especially because the number of time
steps in T (the mission time) is unknown beforehand, we
present an algorithm that computes joint moves with a finite,
adjustable look-ahead. An example of such a joint move for
three sensors, consisting of a path of length 5 for each of
them, is shown in Figure 1. The sensors run the algorithm
every n time steps5 to plan joint paths of length l ≥ n. The
algorithm is flexible, in that it allows paths of various lengths,
and additional constraints, to be considered. For instance, the
sensors can coordinate over all possible paths of length l, or
only those moves that keep them within their own partition of
the environment.

Given any particular potential joint move, our algorithm
must calculate the reduction in entropy, f(∪M

i=1O
i
t), that will

result. In order to do so, we apply the chain-rule of entropies6

to convert f(∪M
i=1O

i
t) to

∑M
i=1 f(Oi

t). This modified prob-
lem can then be cast as a decentralised constraint optimisa-
tion problem (DCOP), which lends itself to an agent-based
solution paradigm. In this paradigm, sensors are modelled as
agents that jointly plan their paths in order to maximise the
value of the collected samples.

More formally, we denote the decision variable of agent
i as pi, which takes values in the set Ai = {a1

i , . . . , a
qi

i },
representing all qi moves that agent i is currently considering.
The value of the samples that agent i collects along its path,
given the movement of other sensors, is denoted by Ui(pi),
where pi is the vector of decision variables on which agent
i’s utility depends (thus, pi ∈ pi will always hold). By the
property of locality of f , this dependency relation is usually
limited to a small set of nearby agents. Now, the agents will

4Note that Guestrin et al. [2005] show that mutual information
can also be used to define this value. However, the gain in doing so
is small, and it is much more computationally expensive to evaluate.

5For simplicity, and w.l.o.g. we assume that the speed of the
sensors is 1 unit per time step.

6This rule states that H(Xo1 , . . . ,Xon) =
H(Xo1 |Xo2 , . . . ,Xon) + H(Xo2 |Xo3 , . . . ,Xon) + · · ·+ H(Xon).

Figure 2: Factor graph with three agents.

collectively attempt to find joint move p∗ = [p∗1, . . . , p
∗
M ],

such that:

p∗ = arg max
p

M∑

i=1

Ui(pi) (4)

or, in other words, the joint move that maximises the total
value obtained by the agents.

4.1 The Max-Sum Message-Passing Algorithm

The coordination problem encoded by Equation 4 is a DCOP,
which can be solved by a wide range of algorithms. Unfor-
tunately, many of these algorithms either compute the opti-
mal solution at exponential cost, either in terms of the num-
ber or size of messages that are exchanged between agents
(e.g. DPOP [Petcu and Faltings, 2005]), or require little local
computation and communication, but produce approximate
solutions (e.g. the Distributed Stochastic Algorithm [Fitz-
patrick and Meertens, 2003]). However, there exists a class
of algorithms usually referred to under the framework of the
Generalised Distributive Law [Aji and McEliece, 2000], that
can be used to obtain good approximate solutions. The max-
sum message passing algorithm is one member of this class
that is of particular interest here. This algorithm has been
shown to compute better quality solutions than the approxi-
mate class with acceptable computation compared to repre-
sentative complete algorithms [Farinelli et al., 2008].

In more detail, the max-sum algorithm operates on a factor
graph: an undirected bipartite graph in which vertices rep-
resent variables pi and functions Uj . In such factor graphs,
an edge exists between a variable pi and a function Uj iff
pi ∈ pj , (i.e., pi is a parameter of Uj). Using the max-
sum algorithm we exploit the fact that an agent’s utility de-
pends only on a subset of other agents’ decision variables (lo-
cality), and that the global utility function is a sum of each
agent’s utility. Figure 2 shows an example factor graph that
encodes Equation 4 for the coordination problem of Figure
1. In this example, the utility of agent 1 depends on its own
action, and that of agent 2, so p1 = {p1, p2}. Similarly,
p2 = {p1, p2, p3}, and p3 = {p2, p3}.
In yet more detail, using max-sum, each agent computes:

Ũi(pi) = max
p−i

M∑

i=1

Ui(pi) (5)

in a distributed way (i.e. based on local information and com-
munication with direct neighbours). Agent i’s optimal move
p∗i is then obtained as follows:

p∗i = arg max
pi

Ũi(pi) (6)
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Algorithm 1 Algorithm for computing pruning message from
function Um to variable pn

1: compute Um(pn) ≤ min
p−n

Um(pn,p−n)

2: compute Um(pn) ≥ max
p−n

Um(pn,p−n)

3: send 〈Um(pn), Um(pn)〉 to pn

In order to do this, messages are passed between the functions
Ui, and the variables in pi as described below7:
• From variable to function:

Qpn→Um(pn) = αnm +
X

Um′∈adj(pn)
Um′ �=Um

RUm′→pn(pn) (7)

where αnm is a normalising constant that is chosen such
that

∑
pn

Qn→m(pn) = 0, to prevent the messages from
growing arbitrarily large.

• From function to variable:

RUm→pn(pn) =

max
p−n

"
Um(pm) +

X
pn′∈adj(Um)

pn′ �=pn

Qpn′→Um(pn′)

#
(8)

Finally, Ũi(pi) is obtained by summing the most recent mes-
sages RUm′→pi

(pi) received by pi. This computation is guar-
anteed to be exact when the factor graph is acyclic. However,
since dependencies are usually mutual (i.e. agent i’s action
influences agent j’s utility and vice versa), the factor graph
will normally contain cycles. In this case, max-sum computes
approximate solutions (i.e Ũi(pi) ≈ maxp−i

∑M
i=1 Ui(pi)).

Despite this, however, there exists strong empirical evidence
that max-sum produces good results even in cyclic factor
graphs [Farinelli et al., 2008].

4.2 Speeding up Message Computation

The straightforward application of max-sum to solve Equa-
tion 4 is not practical, because the computation of the mes-
sages from function to variable (Equation 8) is a major bottle-
neck. A naïve way of computing these messages for a given
variable pn is to enumerate all joint moves (i.e. the domain
of pm), and evaluate Um for each of these moves. Since the
size of this joint action space grows exponentially with both
the number of agents, and the number of available moves for
each agent, the amount of computation quickly becomes pro-
hibitive. This is especially true when evaluating Um is costly,
as is the case in the mobile sensors domain8. Therefore, we
introduce two pruning algorithms to reduce the size of the
joint action space that needs to be considered. These algo-
rithms are then applied to our mobile sensor domain, but they
can just as easily be applied within other settings.

7In what follows, we use adj(Um) to denote adjacent vertices
of function Um in the factor graph, i.e., the set of variables in the
domain pm of Um. Similarly, adj(pn) denotes the set of functions
in which pn occurs in the domain.

8Specifically, determining the value of a sample involves the in-
version of a potentially very large matrix K(X,X) (Equation 2).

Algorithm 2 Algorithm for computing pruning messages
from variable pn to all functions Um ∈ adj(pn)
1: if a new message has been received from all Um ∈ adj(pn)

then
2: compute ⊥(pn) =

P
Um∈adj(pn) Um(pn)

3: compute �(pn) =
P

Um∈adj(pn) Um(pn)

4: while ∃a ∈ An : �(a) < max⊥(pn) do
5: An ← An \ {a}
6: end while
7: send updated domain An to each Um ∈ adj(pn)
8: end if

The Action Pruning Algorithm
The first algorithm attempts to reduce the number of moves
each agent needs to consider before running the max-sum al-
gorithm. This algorithm prunes the dominated states that can
never maximise Equation 4, regardless of the actions of other
agents. More formally, a move a′ ∈ An is dominated if there
exists a move a∗ such that:

∀a−n

X
Um∈adj(pn)

Um(a′,a−n) ≤
X

Um∈adj(pn)

Um(a∗,a−n) (9)

Just as with the max-sum algorithm itself, this algorithm is
implemented by message passing, and operates directly on
the variable and function nodes of the factor graph, making it
fully decentralised:
• From function to variable: Function Um sends a mes-

sage to pn, containing the minimum and maximum val-
ues of Um with respect to pn = an, for all an ∈ An.
(see Algorithm 1).

• From variable to function: Variable pn sums the min-
imum and maximum values from each of its adjacent
functions, and prunes dominated states. It then informs
neighbouring functions of its updated domain (see Al-
gorithm 2).

Using this distributed algorithm, functions continually refine
the bounds on the utility for a given state of a variable, which
potentially causes more states to be pruned. Therefore, it is
possible that action pruning starts with a single move, and
subsequently propagates through the entire factor graph.

Now, given the highly non-linear relations expressed in
Equation 2, on which the agents’ utility functions Um are
based, it is very difficult to calculate these bounds exactly,
without exhaustively searching the domain of xm for util-
ity function Um. Needless to say, this would defeat the pur-
pose of this pruning technique. Nonetheless, experimentation
showed that by computing these bounds in a greedy fashion, a
very good approximation is obtained. Thus, the lower bound
Um(an) on a move an is obtained by selecting the neighbour-
ing agents one at a time, and finding the move that reduces the
utility of agent m’s move the most. In a similar vein, the up-
per bound Um(an) is obtained selecting those moves of other
sensors that reduce the utility the least.

The Joint Action Pruning Algorithm

Whereas the first algorithm runs as a preprocessing phase to
max-sum, the second algorithm is geared towards speeding
up the computation of the messages from function to variable
(Equation 8), while max-sum is running. A naïve way of com-
puting this message to a single variable pi is to determine the
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Figure 3: Search-tree for computing RUm→x3(a
1
3) showing

lower and upper bounds on the maximum value in the subtree.

maximum utility for each of agent i’s actions by exhaustively
enumerating the joint domain of the variables in pm\{pi}
(i.e. the Cartesian product of the domains of these variables),
and evaluating the expression between brackets in Equation
8, which we denote by R̃Um→pn

(pm). This expression is the
sum of the utility function Um and the sum of messages Q.

However, instead of just considering joint moves, we now
allow some actions to be undetermined, and thus, consider
partial joint moves, denoted by â. By doing so, we can create
a search tree on which we can employ branch and bound to
significantly reduce the size of the domain that needs to be
searched. In more detail, to compute RUm→pn

(ai
n) (a single

element of the message from Um to variable pn) for a single
state ai

n ∈ Ai in the domain of pn, we create a search tree
T (ai

n) as follows:

• The root of T (ai
n) is a partial joint move âr =〈

∅, . . . , ∅, ai
n, ∅, . . . , ∅

〉
, which indicates that ai

n is as-
signed to pn, and the remaining variables are unassigned
(denoted by ∅).

• The children of a vertex
〈
a
(1)
1 , . . . , a

(k)
k , ∅, . . . ∅,

ai
n, ∅, . . . , ∅

〉
are obtained by setting the first unas-

signed variable pk+1 to each of its |Ak+1| moves.
• The leafs of the tree represent a (fully determined) joint

move am (i.e. ∀i : pi �= ∅). In the tree, only leafs are
assigned a value, which is equal to R̃Um→pn

(am).

The maximum value found in T (ai
n) is the desired value.

Now, in order to use branch and bound to find this value, we
need to put bounds on the maximum value found in a sub-
tree of T (ai

n). These bounds depend on Um and the received
messages Q. Now, in many cases we can put bounds on the
maximum of the former, that is obtained by further complet-
ing a partial joint move â′ in a subtree of T (ai

n). The bounds
on Um, combined with the minimum and maximum values of
Q for â′ (again, by further completing the partial joint move),
gives us the desired bounds.

Figure 3 shows an example of a partially expanded search
tree for computing a single element RUm→x3(a

1
3) of a mes-

sage from function Um to variable p3. Given the lower and
upper bounds on the maximum, subtree

〈
a1
1, ∅, a1

3

〉
can be

pruned immediately after expanding the root. Similarly, sub-
tree

〈
a3
1, ∅, a1

3

〉
is pruned after expanding leaf

〈
a2
1, a

2
2, a

1
3

〉
,

which has the desired maximum value.
To compute these bounds on the maximum of Ui(â) in the

mobile sensor domain, note that partial joint move â repre-
sents a situation in which only a subset of the agents have de-
termined their move. Using this interpretation, we can obtain

bounds as follows. The upper bound on this value is obtained
by disregarding the agents that have not determined their ac-
tion (i.e. agents i for which pi = ∅). Since the act of collect-
ing a sample always reduces the value of other samples, dis-
regarding the samples of these ‘undecided’ agents will give
an upper bound on the maximum. To obtain a lower bound
on the maximum, we use the locality property of f , which
tells us that the interdependency between values of samples
weakens as their distance increases. So, in order to calculate
the lower bound, we move the undecided agents away from
agent i’s destination.

4.3 Ensuring Network Connectivity

In many situations, it is also important that the sensors main-
tain network connectivity in order to transmit their measure-
ments to a base station. More importantly in the context of
our algorithm, agents need to be able to communicate in or-
der to negotiate over their actions. Not surprisingly, we can
use the algorithm to accomplish this, by penalising discon-
nection from the network in the utility function Ui. To this
end, we assume that every agent maintains a routing table that
specifies which agents can be reached through each immedi-
ate neighbour. Thus, a move is only allowed if all agents will
still be reachable through the remaining links. Otherwise, the
agent risks disconnection from the network, in which case a
large penalty is added to its utility function Ui.

5 Empirical Evaluation

To empirically evaluate our approach, we simulated five sen-
sors on a lattice graph measuring 26 by 26 vertices. The data
was generated by a GP with a squared exponential covari-
ance function (see Equation 3) with a spatial length-scale of
10 and a temporal length-scale of 150. This means that the
spatial phenomenon has a strong correlation along the tem-
poral dimension, and therefore changes slowly over time. At
every m time steps, the sensors plan their motion for the next
l time steps (l ≥ m). In what follows, this strategy is re-
ferred to as MSm-l. Now, instead of considering all possi-
ble paths of length l from an agent’s current position, which
would result in a very high computational overhead, the ac-
tion space is limited to the locations in G that can be reached
in l time steps in 8 different directions, corresponding to the
major directions on the compass rose. In the first experiment,
we benchmarked MS1-1 and MS1-5 against four strategies:
• Random: Randomly moving sensors.
• Greedy: Sensors that greedily maximise the value of

the sample collected in the next move without coordina-
tion.

• J(umping) Greedy: The same as Greedy, except that
these sensors can instantaneously jump to any location.

• Fixed: Fixed sensors that are placed using the algorithm
proposed in [Guestrin et al., 2005].

The averaged root mean squared error (RMSE) for 100 time
steps is plotted in Figure 4(a). From this figure, it is clear
that both MS strategies outperform the Greedy, Random, and
Fixed strategies. Furthermore, the prediction accuracy of
MS1-5 is comparable to that of JGreedy, whose movement
is not restricted by graph G. Moreover, it shows that increas-
ing the length of the considered paths from 1 to 5, reduces the
RMSE by approximately 30%.
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Figure 4: The Experimental Results. Errorbars indicate the standard error in the mean.

In the second set of experiments, we analysed the speed-up
achieved by applying the two pruning techniques described
in Section 4.2. Figure 4(b) shows the percentage of joint
actions pruned plotted against the number of neighbouring
agents. With 5 neighbours, the two pruning techniques com-
bined prune around 92% of the joint moves. With such a
number of neighbouring agents, the agents are strongly clus-
tered, which occurs rarely in a large environment. However,
should this happen, the utility function needs to be evaluated
for only 8% of roughly 85 joint actions, thus greatly improv-
ing the algorithm’s efficiency.

In the third experiment, we performed a cost/benefit anal-
ysis of various MSm-l strategies. More specifically, we ex-
amined the effect of varying m and l on both the number of
utility function evaluations, and the resulting RMSE. Figure
4(c) shows the results. The results of MS1-1, MS2-2, MS4-4,
MS5-5, and MS8-8 show an interesting pattern. Up to and in-
cluding m = l = 4, both the number of function evaluations
and the average RMSE decrease. This is due to the fact that
planning longer paths is more expensive, but results in lower
RMSE. However, for m, l > 4, the action space becomes
too coarse (since only 8 directions are considered) to main-
tain a low RMSE. At the same time, the number of times the
agents coordinate reduces significantly, resulting in a lower
number of function evaluations. Finally, MS1-5 and MS4-8
provide a compromise; they compute longer paths, but coor-
dinate more frequently. This leads to more computation com-
pared to MS5-5 and MS8-8, but results in significantly lower
RMSE, because agents are able to ‘reconsider’ their paths.

A video demonstrating the mobile sensors with the tech-
niques from Section 4 can be found at www.youtube.
com/ijcai09.

6 Conclusions

In this paper, we presented an on-line decentralised coordi-
nation algorithms for multiple sensors. We showed how the
max-sum message passing algorithm can be applied to this
domain in order to coordinate the motion paths of the sensors
along which the most informative samples are gathered. We
also presented two general pruning to speed up the max-sum
algorithm. The first attempts to prune actions of the sensors
that are not part of the optimal joint move. The second uses
branch and bound to reduce the fraction of the joint action
space that needs to be searched in order to compute the mes-
sages from functions to variables, which is the main bottle-
neck of the max-sum algorithm. We empirically showed that

for 5 sensors, these techniques prune 92% of joint moves, thus
significantly reducing the number of utility function evalua-
tions, which are particularly expensive in the mobile sensor
domain. Moreover, we showed that root mean squared error
with which the spatial phenomenon is predicted by the MS1-
5 strategy is approximately 50% lower compared to a greedy
single step look-ahead algorithm. Our future work in this area
is to extend the proposed approach by adopting techniques
from sequential decision making to do non-myopic path plan-
ning, while keeping computational costs in check.
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