
Predicting Learnt Clauses Quality in Modern SAT Solvers∗

Gilles Audemard

Univ. Lille-Nord de France
CRIL/CNRS UMR8188

Lens, F-62307
audemard@cril.fr

Laurent Simon

Univ. Paris-Sud
LRI/CNRS UMR 8623 / INRIA Saclay

Orsay, F-91405
simon@lri.fr

Abstract

Beside impressive progresses made by SAT solvers
over the last ten years, only few works tried to un-
derstand why Conflict Directed Clause Learning
algorithms (CDCL) are so strong and efficient on
most industrial applications. We report in this work
a key observation of CDCL solvers behavior on this
family of benchmarks and explain it by an unsus-
pected side effect of their particular Clause Learn-
ing scheme. This new paradigm allows us to solve
an important, still open, question: How to design-
ing a fast, static, accurate, and predictive measure
of new learnt clauses pertinence. Our paper is fol-
lowed by empirical evidences that show how our
new learning scheme improves state-of-the art re-
sults by an order of magnitude on both SAT and
UNSAT industrial problems.

1 Introduction

Only fifteen years ago, the SAT problem was mainly consid-
ered as theoretical, and polynomial reduction to it was a tool
to show the intractability of any new problem. Nowadays,
with the introduction of lazy data-structures, efficient learn-
ing mechanisms and activity-based heuristics [Moskewicz et
al., 2001; Eén and Sörensson, 2003], the picture is quite
different. In many combinatorial fields, the state-of-the-art
schema is often to use an adequate polynomial reduction to
this canonical NP-Complete problem, and then to solve it effi-
ciently with a SAT solver. This is especially true with the help
of Conflict Directed Clause Learning algorithms (CDCL), an
efficient SAT algorithmic framework, where our work takes
place. With the help of those algorithms, valuable problems
[Prasad et al., 2005] are efficiently solved every day.

However, the global picture is not so perfect. For instance,
since the introduction of ZCHAFF [Moskewicz et al., 2001]
and MINISAT [Eén and Biere, 2005], the global architecture
of solvers is stalling, despite important efforts of the whole
community [Le Berre et al., 2007]. Of course, improvements
have been made, but they are sometimes reduced to data-
structures tricks. It may be thus argued that most solvers are
often described as a compact re-encoding of ideas of Chaff, a

∗supported by ANR UNLOC project n◦ BLAN08-1 328904

height-years old solver, with small improvements only (phase
caching [Pipatsrisawat and Darwiche, 2007], luby restarts
[Huang, 2007], ...).

Since the breakthrough of Chaff, most effort in the design
of efficient SAT solvers has always been focused on efficient
Boolean Constraint Propagation (BCP), the heart of all mod-
ern SAT solvers. The global idea is to reach conflicts as soon
as possible, but with no guarantees on the new learnt clause
usefulness. Following the successful idea of the Variable
State Independent Decaying Sum (VSIDS) heuristics, which
favours variables that were often – and recently – used in con-
flict analysis, future learnt clause usefulness was supposed to
be related to its activity in recent conflicts analyses.

In this context, detecting what is a good learnt clause in
advance is still considered as a challenge, and from first im-
portance: deleting useful clauses can be dramatic in practice.
To prevent this, solvers have to let the maximum number of
learnt clauses grow exponentially. On very hard benchmarks,
CDCL solvers hangs-up for memory problems and, even if
they don’t, their greedy learning scheme deteriorates their
heart: BCP performances.

We report, in section 2, experimental evidences showing
an unsuspected phenomenon of CDCL solvers on industrial
problems. Based on these observations, we present, in section
3, our static measure of learnt clause usefulness and, in sec-
tion 4, we discuss the introduction of our measure in CDCL
solvers. In section 5, we compare our solver with state-of-
the-art ones, showing order of magnitude improvements.

2 Decision levels regularly decrease

Writing an experimental study in the first section of a paper
is not usual. Paradoxically, CDCL solvers lack for strong
empirical studies: most papers contain experimental sections,
but focus is often given to achievement illustrations only.

In this section, we emphasize an observation – decision
level is decreasing – made on most CDCL solvers on most
industrial benchmarks. This behavior may shed a new light
on the underlying reasons of the good performances of the
CDCL paradigm. The relationship between performances
and decreasing is the basis of our work in the following sec-
tions.

For lack of space, we suppose the reader familiar with Sat-
isfiability notions (variables xi, literal xi or ¬xi, clause, unit
clause and so on). We just recall the global schema of CDCL

399

Series #Benchs % Decr. −n/m(> 0) Reduc.
een 8 62% 1.1× 103 1762%
goldb 11 100% 1.4× 106 93%
grieu 7 71% 1.3× 106 −
hoons 5 100% 7.2× 104 123%
ibm-2002 7 71% 4.6× 104 28%
ibm-2004 13 92% 1.9× 105 52%
manol-pipe 55 91% 1.9× 105 64%
miz 13 0% − −
schup 5 80% 4.8× 105 32%
simon 10 90% 1.1× 106 50%
vange 3 66% 4.0× 105 6%
velev 54 92% 1.5× 105 81%
all 199 83% 3.2× 105 68%

Table 1: xj = −n/m (fourth column) is the positive look-
back “justification” of the number of conflicts needed to solve
benchmarks, median value over all benchmarks that show a
decreasing of their decision level (%Decr). Last column will
be discussed in section 5.

solvers: A typical branch of a CDCL solver can be seen as
a sequence of decisions followed by propagations, repeated
until a conflict is reached. Each decision literal is assigned
at its own level (starting from 1), shared with all propagated
literals assigned at the same level. Each time a conflict is
reached, a nogood is extracted using a particular method, usu-
ally the First UIP (Unique Implication Point) one [Zhang and
Madigan, 2001]. The learnt clause is then added to the clause
database and a backjumping level is computed from it. The
interested reader can refer to [Marques-Silva et al., 2009] for
more details.

2.1 Observing the decreasing

The experimental study is done as follows. We run MIN-
ISAT on a selection of benchmarks from last SAT contests
and races. For a given benchmark, each time a conflict xc

is reached, we store the decision level yl where it occurs.
We limit the search to 2 million of conflicts. Then, we
compute the simple least-square linear regression on the line
y = m × x + n that fits the set of couples (xc, yl). If m is
negative (resp. positive) then decision levels decrease during
search (resp. increase). In case of decreasing, we can trivially
“predict” when the solver will finish the search. This should
occur, if the solver follows its characteristic line, when this
line intersects the x-axis. We call this point the “look-back
justification” of the solver performance (looking-back is nec-
essary to compute the characteristic line). The coordinates of
this point are (xj = −n/m, 0). This value gives also a good
intuition of how decision levels decrease during search. Note
that we make very strong hypotheses here: (1) the solver fol-
lows a linear decreasing of its decision levels (this is false in
most of the cases, but sufficient to compute the look-back jus-
tification), (2) finding a contradiction or a solution gives the
same look-back justification and (3) the solution (or contra-
diction) is not found by chance at any point of the computa-
tion.

Table 1 shows the median values of xj (fourth column)
over some series of benchmarks. “#Benchs” gives the num-

1e+03

1e+04

1e+05

1e+06

1e+07

1e+03 1e+04 1e+05 1e+06 1e+07

H
is

to
ric

al
 ju

st
ifi

ca
tio

n
of

 n
ee

de
d

co
nf

lic
ts

Effective number of conflicts reached

Prediction vs Reality (SAT)
Prediction vs Reality (UNSAT)

Linear Regression m=3.75
Restricted Regression m=1.37

Lower Bound: m=0.90
Upper Bound: m=8.33

Figure 1: Relationship between look-back justification and
effective number of conflicts needed by MINISAT to solve the
instance.

ber of benchmarks in series, “%Decr.” gives the percentage
of benchmarks that exhibits a decreasing of decision levels. If
a cut-off occurs, then the last value of the estimation is taken.
In most of the cases (167 over 199 benchmarks), the regres-
sion line is decreasing, and some small values of x0 illustrates
important ones. This phenomenon was not observed on ran-
dom problems and seems heavily related to the “industrial”
origin of benchmarks: the “mizh” series is 100% increasing,
but it encodes cryptographic problems.

2.2 Justifying the number of reached conflicts

At this point of the discussion, we showed that decision lev-
els are decreasing in most of the cases. However, is it re-
ally a strong – but unsuspected – explanation of the power of
CDCL solvers, or just a natural side effect of their learning
schema? It is indeed possible that learning clauses trivially
add more constraints, and conflicts are obviously reached at
lower and lower levels in the search tree. However, if the
look-back justification is a strong estimation of the effective
number of conflicts needed by the solver to find the contra-
diction (or, amazingly, a solution), then this probably means
that the decreasing reveals an important characteristic of their
overall behavior and strength: CDCL solvers enforce the de-
cision level to decrease along the computation, whatever the
fitting quality of the linear regression.

Figure 1 exhibits the relationship between look-back jus-
tification and effective number of conflicts needed by MIN-
ISAT to solve the instance. It is built as follows: Each dot
(x, y) represents an instance. x corresponds to the effective
number of conflicts needed by MINISAT to solve the instance,
y corresponds to the look-back justification. Only instances
solved in less than 2 million of conflicts are represented (oth-
erwise, we do not have the real look-back justification). Fig-
ure 1 clearly shows the strong relationship between justifica-
tion and effective number of conflicts needed: in all the cases,
the look-back justification is bounded between 0.90 and 8.33
times the real number of conflicts needed by MINISAT to
solve the problem. In most of the cases, the justification is

400

around 1.37 times the effective number of conflicts. On may
also notice that no distinction can be made between justifica-
tion over SAT and UNSAT instances.

It is important here to notice that the aim of our study is
not to predict the CPU time of the solver like in [Hutter et
al., 2006]. Our goal is, whatever the error obtained when
computing the regression line, to show the strong relation-
ship between the overall decreasing of decision levels and the
performances of the solver. What is really striking is that the
look-back justification is also strong when the solver finds a
solution. When a solution exists, it is never found suddenly,
by chance. This suggests that, on SAT instances, the solver
does not correctly guess a value for a literal, but learns that
the opposite value directly leads to a contradiction. Thus, if
we find the part of the learning schema that enforces this de-
creasing, we may be able (1) to speed-up the decreasing, and
thus the CPU time of the solver, and (2) to identify in ad-
vance the clauses that play this particular role for protection
and aggressive clause database deletion.

3 Identifying good clauses in advance

Trying to enhance the decreasing of decision levels during
search is not new. It was already pointed out, but from a
general perspective only, in earlier papers on CDCL solvers:
“ A good learning scheme should reduce the number of deci-
sions needed to solve certain problems as much as possible.”
[Zhang and Madigan, 2001]. In the previous section, it was
however demonstrated for the first time how crucial this abil-
ity is for CDCL solvers.

3.1 Some known results on CDCL behavior

Let us first recall some high level principles of CDCL solvers,
by firstly focusing on their restart policies. In earlier works,
restarting was proposed as an efficient way to prevent heavy-
tailed phenomena [Gomes et al., 2000]. However, in the
last years, restart policies were more and more aggressive,
and, now, a typical run of a state-of-the art CDCL solver
sees most of its restarts occurring before the 1000th con-
flict [Huang, 2007; Biere, 2008] (this strategy especially pays
when it is associated to phase savings [Pipatsrisawat and Dar-
wiche, 2007]). So, in a few years, the concept of restarting
has saw his meaning moving from “restart elsewhere” (trying
to reach an easier contradiction elsewhere in the search space)
to “restart dependencies order” that just reorder variable de-
pendencies, leading the solver to the same search space, by a
different path ([Biere, 2008] has for instance already pointed
out this phenomenon).

In addition to the above remark, it is striking to notice how
CDCL solvers are particularly efficient on the so-called “in-
dustrial” benchmarks. Those benchmarks share a very partic-
ular structure: they often contain very small backdoors sets
[Williams et al., 2003], which, intuitively, encode inputs of
formulas. Most of the remaining variables directly depend on
their values. Those dependencies implicitly links sets of vari-
ables that depend on the same inputs. During search, those
“linked” variables will probably be propagated together again
and again, especially with the locality of the search mecha-
nism of CDCL solvers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25

C
D

F
 o

f m
ea

su
re

Measure (length or dependencies level)

LBD, used in propagations
Length, used in propagations
LBD, used in conflict analysis

Length, used in conflict analysis

Figure 2: CDF of usefulness of clauses w.r.t. LBD and size.

3.2 Measuring learnt clause quality

During search, each decision is generally followed by a num-
ber of unit propagations. All literals from the same level are
what we call “blocks” of literals in the later. At the semantic
level, there is a chance that they are linked with each other by
direct dependencies. Thus, a good learning schema should
add explicit links between independent blocks of propagated
(or decision) literals. If the solver stays in the same search
space, such a clause will probably help reducing the number
of next decision levels in the remaining computation.

Definition 1 (Literals Blocks Distance (LBD)) Given a
clause C, and a partition of its literals into n subsets accord-
ing to the current assignment, s.t. literals are partitioned
w.r.t their decision level. The LBD of C is exactly n.

From a practical point of view, we compute and store the
LBD score of each learnt clause when it is produced. This
measure is static, even if it is possible (we will see in the
later) to update it during search. Intuitively, it is easy to un-
derstand the importance of learnt clauses of LBD 2: they only
contain one variable of the last decision level (they are FUIP),
and, later, this variable will be “glued” with the block of lit-
erals propagated above, no matter the size of the clause. We
suspect all those clauses to be very important during search,
and we give them a special name: “Glue Clauses”.

3.3 First results on the literals blocks distance

We first ran MINISAT on the set of all SAT-Race 061 bench-
marks, with a CPU cut off fixed at 1000s. For each learnt
clause, we measured the number of times it was useful in
unit-propagation and in conflict analysis. Figure 2 shows the
cumulative distribution function of the values over all bench-
marks (statistics over unfinished jobs were also gathered). For
instance, 40% of the unit propagations on learnt clauses are
done on glue clauses, and only 20% are done on clauses of
size 2. Half of the learnt clauses used in the resolution mech-
anism during all conflict analysis have LBD < 6, whereas we
need to consider clauses of size smaller than 13 for the same
result. Let’s look at some details on table 2. What is strik-
ing is how the usefulness drops from 1827 times in conflict

1Used as a basis for the SAT-Race 08 too.

401

Measure 2 3 4 5
LBD 202 / 1827 50 / 295 26 / 136 19 / 80
Length 209 / 2452 127 / 884 46 / 305 33 / 195

Table 2: Average number of times a clauses of a given mea-
sure was used (propagation/conflict analysis).

analysis for glue clauses to 136 for clauses of LBD 4. We ran
some additional experiments to ensure that clauses may have
a large size (hundreds of literals) and a very small LBD.

From a theoretical point of view, it is interesting to no-
tice that LBD of FUIP learnt clause is optimal over all other
possible UIP learning schemas [Jabbour and Sais, 2008]. If
our empirical study of this measure shows its accuracy, this
theoretical result will cast a good explanation of the effi-
ciency of First UIP over all other UIP mechanisms (see for
instance [Marques-Silva et al., 2009] for a complete survey
of UIP mechanisms): FUIP efficiency would then be partly
explained by its ability to produce clauses of small LBD.

Property 1 (Optimality of LBD for FUIP Clauses) Given
a conflict graph, any First UIP asserting clause has the
smallest LBD value over all other UIPs.

sketch of proof: This property was proved as an extension
of [Audemard et al., 2008]. When analyzing the conflict, no
decision level can be deleted by resolution on a variable of
the same decision level, because the resolution is done with
reasons clauses: if a variable is propagated at level l, then the
reason clause contains also another variable set at the same
level l, otherwise the variable would have been set at a lower
decision level < l, by unit propagation.

4 Agressive clauses deletion

CDCL solvers performances are tightly related to their
clauses database management. Keeping too many clauses
will decrease the BCP efficiency, but cleaning out to many
ones will break the overall learning benefit. Most effort in the
design of modern solvers is put in efficient BCP, leading to
a very fast learnt clauses production. Following the success
of the VSIDS heuristics, good learnt clauses are identified by
their recent usefulness during conflicts analysis, despite the
fact that this measure is not a guarantee of its future signifi-
cance. This is why solvers often let the clauses set grow ex-
ponentially. This is a necessary evil in order to prevent good
clause to be deleted. On hard instances, this greedy learn-
ing scheme deteriorates the core of CDCL solvers: their BCP
performance drops down, making some problems yet much
harder to solve.

Our aim in this section is to build an aggressive clean-
ing strategy, which will drastically reduce the learnt clauses
database. This is possible especially if the LBD measure in-
troduced above is accurate enough. No matter the size of the
initial formula, we remove half of the learnt clauses (assert-
ing clauses are kept) every 20000+500×x conflicts (x is the
number of times this action was previously performed).

Table 3 summarizes the performances of four different ver-
sions of MINISAT: the original one, the original one with ag-

#N (sat-unsat) #avg time
MINISAT 70 (35 – 35) 209
MINISAT +ag 74 (41 – 33) 194
MINISAT +lbd 79 (47 – 32) 145
MINISAT +ag+lbd 82 (45 – 37) 175

Table 3: Comparison of four versions of MINISAT.

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 50000

 100000

 150000

 200000

 250000

 300000

pr
op

ag
at

io
n

ra
te

 (
/s

ec
on

ds
)

le
ar

nt
 c

la
us

e
da

ta
ba

se
 s

iz
e

cpu time

minisat - learnt clauses database size
minisat+ag+lbd - learnt database clauses size

minisat - bcp rate
minisat+ag+lbd - bcp rate

Figure 3: Comparison of BCP rate (left y scale) and learnt
clauses database size (right y scale) between MINISAT and
MINISAT +ag+lbd.

gressive clause deletion (MINISAT +ag) based on the origi-
nal clause activity, the classical one based on LBD (MINISAT
+lbd) and the classical one with aggressive clause deletion
based on LBD scoring (MINISAT +ag+lbd). This compari-
son is made on the set of 200 benchmarks from the SAT-Race
2006, with a time out of 1000s. We report the number of
solved problems and the average time needed to solve them.
It is firstly surprising to see that aggressive clause deletion
can pay with the original MINISAT. However, less UNSAT
benchmarks are solved, despite the overall speed-up dues to
fast BCP rates. This may be explained by the deletion of too
much good learnt clauses, that are essential for efficient UN-
SAT proofs. The version with LBD solves yet more instances,
illustrating its efficiency. What is especially encouraging is
the speedup observed between the original MINISAT and the
one with our static LBD measure, despite the fact that three
less UNSAT benchmarks are solved. Using our very simple
and static measure in place of the dynamic one already pays
a lot. Finally, the combination of both aggressive clause dele-
tion and LBD is very strong.

In order to justify these facts, figure 3 shows, for a selected
hard UNSAT formula (with approximatively 50000 variables
and 180000 clauses), the evolution of BCP rates and the size
of the learnt clauses database. Values are gathered at regular
clock time. This figure shows the huge explosion of learnt
clauses in the original MINISAT. Only two calls to the reduc-
tion of the database are performed in 2000 seconds. In MIN-
ISAT +ag+lbd, an important number of database reductions
are performed, keeping the BCP rate of MINISAT +ag+lbd
much faster than MINISAT.

402

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160 180

cp
u

tim
e

(s
ec

on
ds

)

nb instances

zchaff (2001)
zchaff (2004)

minisat (2007)
minisat+

picosat (2008)
rsat (2007)

glucose

Figure 4: Cactus plot on the 234 industrial instances of the
SAT’07 competition.

5 Comparison with the best CDCL solvers

In this final section, we show how our ideas can be embed-
ded in an efficient SAT solver. We used as a basis for it the
well-known core of MINISAT using a Luby restarts strategy
(starting at 32) with phase savings. We call this solver GLU-
COSE for its hability to detect and keep “Glue Clauses”. We
added two tricks to it. Firstly, each time a learnt clause is
used in unit-propagation (it is a reason of a propagated lit-
eral), we compute a new LBD score and update it if neces-
sary. Secondly, we explicitly increase the score of variables
of the learnt clause that were propagated by a glue clause.

We propose here to compare GLUCOSE with the three
winners of the last SAT competition: MINISAT (version 2-
070721) [Eén and Sörensson, 2003], RSAT (version 2.02)
[Pipatsrisawat and Darwiche, 2007] and PICOSAT (version
846) [Biere, 2008]. We also add in this comparison ZCHAFF
[Moskewicz et al., 2001], the first CDCL solver (versions of
years 2001 and 2004) and a version of MINISAT including
luby restarts (starting at 100) and phase polarity (called MIN-
ISAT+ in the rest of the section, as the last – but unreleased –
version of it, as it was described). We use the same (234) in-
dustrial benchmarks and running characteristics (10000s and
1Gb memory limit) than the SAT’07 competition [Le Berre
et al., 2007] in the second stage. According to well admitted
idea, we pre-processed instances with SATELITE [Eén and
Biere, 2005] and ran all solvers on these pre-processed in-
stances. We used a farm of Xeon 3.2 Ghz with 2 Go RAM
for this experiment.

Figure 4 shows the classical ”cactus” plot used in SAT
competitions. X-axis represents the number of instances and
Y-axis represents the time needed to solve them if they were
ran in parallel. First of all, comparing ZCHAFF and the last
winners of the 2007 SAT competition, we can see the gap
made during the last seven years. We can also remark that
MINISAT, RSAT and MINISAT+ have approximatively the
same performances. Before GLUCOSE, PICOSAT was the bet-
ter solver. We see how GLUCOSE outperforms all of these
solvers. It is able to solve 140 problems in 2500 seconds,
when currently state-of-the-art solvers need between 4000

solver #N (SAT-UNSAT) #U #B #S
ZCHAFF 01 84 (47 – 37) 0 13 2.9
ZCHAFF 04 80 (39 – 41) 0 5 3.9
MINISAT+ 136 (66 – 74) 0 15 1.5
MINISAT 132 (53 – 79) 1 16 2.1
PICOSAT 153 (75 – 78) 1 26 1.2

RSAT 139 (63 – 75) 1 14 1.7
GLUCOSE 176 (75 – 101) 22 68 -

Table 4: Relative performances of solvers. Column #N re-
ports the number of solved benchmarks with, in parenthe-
sis, the number of SAT and UNSAT instances. Column #U
shows the number of times where the solver is the only one to
solve an instance, column #B gives the number of times it is
the fastest solver, and column #S gives the relative speed-up
of GLUCOSE when considering only the subset of common
solved instances between GLUCOSE and each solvers (for in-
stance GLUCOSE is 1.7 times faster than RSAT on the subset
of benchmarks they both solve).

and 10000 seconds for this. One of the advantages of this kind
of plots is its ability to emphasize when each solver reaches
some kind of CPU time limit, when adding more CPU time
doesn’t add much chance to solve additional problems. For
instance, RSAT solves approximatively 100 instances in 1000
seconds but only 40 more in 10000. It is not the case for
GLUCOSE, which shows a better scaling up (it solves around
120 instances in 1000 seconds and 60 more in 10000). This is
clearly due to our aggressive learnt clause database reduction
combined with our clause usefulness measure (BCP perfor-
mance is maintained and good clauses are kept).

Table 4 shows some detailed results. GLUCOSE solves 176
instances, for approximately 140 for RSAT, MINISAT and
MINISAT+ (note that GLUCOSE needs only 2500 seconds to
solve 140 instances) and 153 for PICOSAT. GLUCOSE espe-
cially shows impressive results on UNSAT instances, which
really matches our initial motivation, i.e. enhancing the de-
cision levels decreasing. However, we can assume that this
strategy is also interesting on SAT instances, since GLUCOSE
obtains, with PICOSAT, the best result on these instances. An
interesting point is the number of times GLUCOSE is the only
solver to solve a given problem (column #U). This shows the
power of our method. Finally, the last two columns of table 4
show that GLUCOSE is much faster than all other solvers. It
is the fastest solver in 68 cases and performs a speed-up on
common instances of at least 1.2.

Before concluding this section, Figure 5 allows us to fo-
cus on the relative performances of GLUCOSE and PICOSAT
which behaves very well (as shown table 4). The x-axis (resp.
y-axis) corresponds to the cpu time tx (resp. ty) obtained by
PICOSAT (resp. GLUCOSE). Each dot (tx, ty) matches the
same benchmark. Thus, dots below (resp. above) the di-
agonal indicate that GLUCOSE is faster (resp. slower) than
PICOSAT.

In many cases, GLUCOSE outperforms PICOSAT. When
PICOSAT wins, GLUCOSE is still close to its performances.
On UNSAT instances, and except a few cases, even when
GLUCOSE looses, it is close to PICOSAT. Most bad perfor-
mances are observed on SAT instances only. After a deeper

403

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

SAT (others)
SAT (mizh)

UNSAT

Figure 5: Comparison between GLUCOSE and PICOSAT.

look on those instances, we noticed that seven of those diffi-
cult instances are from the mizh family. This result is para-
doxically yet again encouraging because, as pointed out in
table 1, the evolution of decision levels of CDCL solvers on
those instances is increasing, and thus does not match our ini-
tial aim: accelerating the decreasing of decision levels (let us
recall here that mizh benchmarks are not “industrial” ones, in
the classical sense).

In order to come full circle, let us explain now the last
column of table 1. This percentage is the relative value of
the look-back justification of GLUCOSE by comparison with
MINISAT. For instance, on the ibm-2002 instances, the look-
back justification of GLUCOSE is 28% smaller than the one
of MINISAT. Thus, our overall strategy pays: we accelerated
the decreasing of decision levels in most of the cases.

6 Conclusion

In this paper, we introduced a new static measure over learnt
clauses quality that enhances the decreasing of decision lev-
els along the computation on both SAT and UNSAT instances.
This measure seems to be so accurate that very aggressive
learnt clause database management is possible. We expect
this new clause measure to have a number of great impacts.
We may try to use it to propose preprocessing techniques
(adding short LBD clauses), but also more exotic ones, like
trying to reorder the formula in order to get a good starting of
the decreasing. More classically, we think that our measure
will also be very useful in the context of parallel SAT solvers.
Indeed, such solver needs to share good clauses, which can
be now identified with confidence by our measure.

Finally, we can now put efforts in designing an efficient
framework for incomplete algorithm for Unsatisfiability. We
know what efficient solvers should look for, and the future
of our work is clearly on that path. We think that this work
opens a new a promising path to answer one of the strongest
challenges proposed more than ten years ago, in [Selman et
al., 1997], and still wide open.

References

[Audemard et al., 2008] G. Audemard, L. Bordeaux,
Y. Hamadi, S. Jabbour, and L. Sais. A generalized
framework for conflict analysis. In proceedins of SAT,
pages 21–27, 2008.

[Biere, 2008] A. Biere. PicoSAT essentials. Journal on Sat-
isfiability, 4:75–97, 2008.

[Eén and Biere, 2005] N. Eén and A. Biere. Effective pre-
processing in SAT through variable and clause elimination.
In proceedings of SAT, pages 61–75, 2005.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. In proceedings of SAT, pages 502–
518, 2003.

[Gomes et al., 2000] C. Gomes, B. Selman, N. Crato, and
H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. Journal of Automated
Reasoning, 24:67–100, 2000.

[Huang, 2007] J. Huang. The effect of restarts on the effi-
ciency of clause learning. In proceedings of IJCAI, pages
2318–2323, 2007.

[Hutter et al., 2006] F. Hutter, Y. Hamadi, H. Hoos, and
K. Leyton-Brown. Performance prediction and automated
tuning of randomized and parametric algorithms. In pro-
ceedings of CP, pages 213–228, 2006.

[Jabbour and Sais, 2008] S. Jabbour and L. Sais. personnal
communication, February 2008.

[Le Berre et al., 2007] D. Le Berre, O. Rous-
sel, and L. Simon. SAT competition, 2007.
http://www.satcompetition.org/.

[Marques-Silva et al., 2009] J. Marques-Silva, I. Lynce, and
S. Malik. Handbook of Satisfiability, chapter 4. 2009.

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff : Engineering
an efficient SAT solver. In proceedings of DAC, pages
530–535, 2001.

[Pipatsrisawat and Darwiche, 2007] K. Pipatsrisawat and
A. Darwiche. A lightweight component caching scheme
for satisfiability solvers. In proceedings of SAT, pages
294–299, 2007.

[Prasad et al., 2005] M. Prasad, A. Biere, and A. Gupta. A
survey of recent advances in SAT-based formal verifica-
tion. journal on Software Tools for Technology Transfer,
7(2):156–173, 2005.

[Selman et al., 1997] B. Selman, H. Kautz, and
D. McAllester. Ten challenges in propositional rea-
soning and search. In proceedings of IJCAI, pages 50–54,
1997.

[Williams et al., 2003] R. Williams, C. Gomes, and B. Sel-
man. Backdoors to typical case complexity. In Proceed-
ings of IJCAI’03, 2003.

[Zhang and Madigan, 2001] L. Zhang and C. Madigan. Ef-
ficient conflict driven learning in a boolean satisfiability
solver. In proceedings of ICCAD, pages 279–285, 2001.

404

