
Canadian Traveler Problem with Remote Sensing

Zahy Bnaya

Information Systems Engineering
Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel
zahy@bgu.ac.il

Ariel Felner

Information Systems Engineering
Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel
felner@bgu.ac.il

Solomon Eyal Shimony

Computer Science
Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Isrel
shimony@cs.bgu.ac.il

Abstract

The Canadian Traveler Problem (CTP) is a navigation
problem where a graph is initially known, but some edges
may be blocked with a known probability. The task is to
minimize travel effort of reaching the goal. We general-
ize CTP to allow for remote sensing actions, now requir-
ing minimization of the sum of the travel cost and the
remote sensing cost. Finding optimal policies for both
versions is intractable. We provide optimal solutions for
special case graphs. We then develop a framework that
utilizes heuristics to determine when and where to sense
the environment in order to minimize total costs. Several
such heuristics, based on the expected total cost are in-
troduced. Empirical evaluations show the benefits of our
heuristics and support some of the theoretical results.

1 Introduction.

Efficient navigation to a predefined goal in unknown, partially
known, or dynamically changed environments is a fundamen-
tal field of research in AI, robotics and other areas of com-
puter science. While navigation is a common term, different
assumptions can be made about the available actions of the
agent and about the ways that the agent discovers information
about unknown parts of the environment. The cost function
to be minimized can also vary.

Basic actions generally assumed are move actions, where
the agent moves from its current location (cell in a gird, ver-
tex in a graph) to a neighboring location. Almost all naviga-
tion algorithms assume that a move of the agent incurs a cost
(usually proportional to the length of the move) called travel
cost. One usually assumes that a navigating agent can sense
its immediate local environment (adjacent cells in a grid, out-
going edges in a graph etc.); called local sensing in this paper.
Local sensing is usually assumed to be performed at no cost.

Additionaly, in some scenarios an agent can activate a sen-
sor towards a distant location, (e.g. in a graph, towards
specific vertex or edge, or even a given area of the graph).
We call this remote sensing. Some prior work assume a
static environment and no remote sensing abilities [Nikolova
and Karger, 2008; Papadimitriou and Yannakakis, 1991;
Bar-Noy and Schieber, 1991; Felner et al., 2004]. Others as-
sume dynamic environments, allow for remote sensing, but
assume that all changes are immediately visible to the agent
at no cost [Stentz, 1994; Koenig and Likhachev, 2002].

In this paper, the agent’s task is to reach the goal while aim-
ing to minimize a total cost function including both sensing
and traveling. Specifically, we focus on the Canadian Trav-
eler Problem (CTP) - a special kind of navigation problem.
We generalize this problem to the case where remote sensing
is allowed at a given cost. Both versions (with and without
remote sensing) are intractable. We provide efficient optimal
solutions for special case graphs. We then develop a frame-
work that utilizes heuristic functions to determine when and
where to sense the environment in order to minimize total
cost. We develop several such heuristics and provide experi-
mental results that show their benefit.

2 The Canadian Traveler Problem

In the Canadian traveler problem(CTP) [Papadimitriou and
Yannakakis, 1991] a traveling agent is given a connected
weighted graph G = (V,E) as input together with its ini-
tial source vertex (s ∈ V), and a target vertex (t ∈ V). The
input graph G may undergo changes, that are not known to
the agent, before the agent begins to act, but remains fixed
subsequently. In particular, some of the edges in E may be-
come blocked and thus untraversable. Each edge e in G has a
weight, or cost, w(e), and is blocked with a probability p(e),
where p(e) is known to the agent.1 The agent can perform
move actions along an unblocked edge which incurs a travel
cost w(e). Traditionally, the CTP was defined such that the
status of an edge can only be revealed apon arriving at a node
incident to that edge, i.e., only local sensing is allowed. In
this paper we call this variant the basic CTP variant. The task
of the agent is to travel from s to t while aiming to minimize
the total travel cost Ctravel. As the exact travel cost is un-
certain until the end, the task is to devise a traveling strategy
which yields a small (ideally optimal) expected travel cost.

We generalize the CTP and introduce the CTP with sensing
variant. In this variant, in addition to move actions (and local
sensing), an agent situated at a vertex v can also perform a
Sense action and query the status of any edge e ∈ G. This
action is denoted sense(v, e), and incurs a cost SC(v, e), or
just SC(e) when the cost does not depend on v. The cost
function is domain-dependent, as discussed below. The task
of the agent is to travel to the goal while minimizing a total
cost Ctotal = Ctravel + Csensing .

1Note that it is sufficient to deal only with blocking of edges,
since a blocked vertex would have all of its incident edges blocked.

437

(a) Expected cost (b) Disjoint paths (c) Special case

Figure 1: Navigation and the expected cost heuristic

To illustrate CTP with sensing, consider the simple ex-
ample from figure 1.a where all edges are known to be
traversable, except for edge e. If e is traversable, the cheapest
path is (s, v, t) and its cost is 8. If e is blocked, the cheapest
path is d(s) and its cost is 12. The agent may choose not to
sense edge e from s and to take the risk and travel to v. If it
then realizes (from v with local sensing) that e is traversable,
the travel cost will be 8. However, if it finds e to be blocked
it will need to use segment d(v) with an additional cost of 12
and the total travel cost will be 16. Alternatively, the agent
might choose to sense e from s, and pay the sensing cost.
Then, if e is traversable the total cost will be 8 plus the sens-
ing cost and if e is blocked, the total cost will be 12 (segment
d(s)) plus the sensing cost.

This problem has several realistic scenarios. For example,
an agent or robot may have a map of the city (G), knowing
that some of the roads can be blocked. The agent can per-
form some actions to get that information, such as calling the
city info center, incurring a cost. This scenario is relevant for
GPS navigation, as the GPS navigator has a map of the city
and knows the location of the car but information of currently
blocked streets may not be available in the GPS system itself.

2.1 Related work

Since even the basic CTP is computationally intractable, re-
searchers dealing with this problem achieve positive theoret-
ical results by adding restricting assumptions, such as graphs
consisting only of disjoint paths and i.i.d. distributions of
weights and blockages [Nikolova and Karger, 2008] or re-
quiring that blockages only last a short time [Papadimitriou
and Yannakakis, 1991; Bar-Noy and Schieber, 1991].

Partially Observable Markov Decision Processes
(POMDP) offer a model for cost optimization under
uncertainty. A variant of POMDP proposed by Hansen
[Hansen, 2007], called indefinite horizon POMDPs, is
particularly relevant here. POMDPs use the notion of a belief
state to indicate knowledge about the state. In CTP the belief
state is the location of the agent coupled with the belief status
of the edges (the hidden variables). One could specify edge
variables as ternary variables with domain: {traversable,
blocked, unknown}, thus the belief space size is |V |3|E|
(where is the agent, what do we know about the status of
each edge). An optimal policy for this POMDP, is a mapping
from the belief space into the set of actions (both sensing and
moving), that minimizes the expected total cost.

Solving POMDPs is PSPACE-hard (in the number of be-
lief states) in the general case. Although some approxima-
tion techniques, such as point-based approximations, show
promise (e.g., [Shani et al., 2006]), the size of the state-
space of our problem is beyond the current state of the art

of POMDP approximation, since the belief state-space size
itself is exponential in the size of the graph.

An alternate description of the optimal policy, as a policy
tree, may also result in a tree that has size exponential in the
number of hidden variables. The time it takes to compute it
may be orders of magnitude larger. Thus, such policies can
be computed and described only for very small input graphs.
For example, the PAO* algorithm [Ferguson et al., 2004] op-
timally solves basic CTP, but was reported to apply only for a
very small number of hidden variables (10 ”pinch points” in
the experimental results supplied in that paper).

Another related scheme is the PPCP algorithm [Likhachev
and Stentz, 2006] which was applied to navigation on uncer-
tain terrain. PPCP uses reverse A* to generate a policy based
on clear preferences. In succeeding iterations, the policy is
improved, until convergence, with optimality guarantees un-
der certain assumptions. However, there is a clear assumption
in PPCP that every action may reveal only one hidden vari-
able. In CTP, when arriving at a node, the status of all its
incident edges are revealed. Thus, PPCP is not directly appli-
cable to CTP, and its adaptation to this problem is non-trivial.

3 Theoretical Results

We examine special cases where an optimal policy can be
computed efficiently, specifically, the case of disjoint paths,
as shown in figure 1.b. [Nikolova and Karger, 2008] also
studied CTP with disjoint paths but with completely different
assumptions on the distribution and possible costs of edges.

3.1 CTP on disjoint paths without sensing

In order to have a finite expected cost (since it is possible for
all paths to the goal to be blocked), we assume a finite (but
very large) cost edge between the source and target, that has
probability 1 of being traversable as in figure 1.c.

First, consider just committing policies: a policy is com-
mitting if, once traversal along any path i begins (we call this
“trying path i”) it commits the agent to continue along path
i until either the target t or a blocked edge is reached. In
the latter case, the agent backtracks to s and chooses another
path. Even considering just committing policies is still non-
trivial, as for n disjoint paths, there are n! such policies. Let
(ei1, ei2, ...eiki

) be the edges composing the ith path. Define
Wi,j =

∑j
m=1 w(eim), the cost of the first j edges on path i.

We define a “backtracking cost” on path i, denoted BCi, the
cost to travel to the first blocked edge and back to s, or 0 if
the path is traversable. The expectation of this cost is:2

E[BCi] = 2
ki−1∑

j=2

Wi,(j−1)p(eij)
j−1∏

m=1

(1 − p(eim)) (1)

Lemma 1 The optimal committing travel policy is to try the
paths in non-decreasing order of the value Di, where:

Di =
E[BCi]

Prob(path i is traversable)
+ Wi,ki

(2)

2Explanation: We sum over every possible j where edge eij

is the first blocked edge, the cost of getting to edge eij and back.
Each case is multiplied by the probability that all preceding edges
are traversable, and eij is blocked.

438

Proof (Outline): For disjoint paths, a committing policy is
equivalent to an ordering of the paths to be tried. The rest
is proved by contradiction: assume the existence of an opti-
mal ordering of the paths where the non-decreasing property
is violated, specifically let Di > Di+1. Simply switching
Di, Di+1 creates a policy that can be shown to be better, a
contradiction. �

Lemma 2 For disjoint paths, there exists a committing policy
that is optimal among all policies.

Proof (outline): Since it is clearly suboptimal to traverse
edges that have been traversed before without reaching an un-
known edge, we can re-formulate CTP over disjoint paths by
defining a new action space consisting of two types of macro
actions, all starting from s:
1: TRYi: attempt to directly reach the goal through path i,
returning to s if a blocked edge is encountered. This macro
action can have outcomes: “success” (placing the agent at t),
or “blocked at j”, placing the agent at s.
2: INSPECTi,j: attempt to reach up to the jth edge in path
i, and return to s regardless of whether that edge is blocked.
This macro action can have outcomes: “unblocked” (until j)
or “blocked at l” (where l ≤ j), both placing the agent at s.

Consider an optimal policy π with one or more
INSPECT actions. The last macro action in every path in
π must be a TRY action, for π to be a complete policy that
reaches the goal. Thus, there exists a subtree T of π rooted
at a node v, labeled by some INSPECTi,j action, such that
all subtrees T ′ of T have only TRY actions. Observe that
each sub-tree T ′ is actually a committing policy, which can
be fully described by a total ordering over the TRY actions
in the subtree. We can now show that π can be improved by
replacing the INSPECTi,j action at v by a TRYi action,
which contradicts the optimality of π. In order to do so, we
make use of Lemma 1, and the fact that INSPECTi,j never
increases Di when its outcome is “unblocked”. �

Immediately following from Lemmas 1 and 2, we have:

Theorem 1 The optimal travel policy for disjoint paths is to
TRY the paths in order of non-decreasing Di.

3.2 CTP with sensing on disjoint paths

Adding remote sensing actions makes computing the optimal
policy hard even for disjoint paths. However, optimality can
be guaranteed for special cases with the following condition
— a given set S of sensing actions is currently necessary
but once we perform one “successful” sensing action from
S (where success depends on context, as discussed below) no
further sensing from S is required. Examples for such cases
are presented below. Let p(si) be the probability a sensing
action on ei succeeds. In such special cases, we can show:

Lemma 3 Ordering the sensing action in non-increasing or-
der of p(si)

SC(ei)
is an optimal sensing policy.

Proof (outline): The sensing policy here is a permutation
O over the sensing actions, with expected sensing cost:

E[SC(O)] =
n∑

i=1

SC(eO(i))
i−1∏

j=1

(1 − p(sO(j))) (3)

Let O′ be an optimal ordering that violates the lemma. Then
there must be two consecutive sensing actions that are in in-
creasing order in O′. It is easy to show in the above summa-
tion that switching them in O′ results in a smaller expected
cost, a contradiction. �

In general, it is very hard to determine whether the con-
ditions of Lemma 3 hold. But it is applicable in the simple
graph shown in figure 1.c. There are n paths to the goal,
each with two edges. In each path, the first edge is always
traversable at a cost of 1, and the second edge ei has zero cost,
but is blocked with probability p(ei). A additional traversable
“default” edge with a very large cost W that goes directly to
the goal also exists. The robot can sense (from the initial lo-
cation) the status of an edge by paying a cost SC(ei) or by
physically traveling to an incident vertex. In this case, we say
that a sensing operation is “successful” if it discovers that an
edge is unblocked (it can now follow that path to the goal and
no further sensing is required). Thus p(si) = 1 − p(ei). As-
sume that SC(ei) > 1 , and that 2p(ei) > SC(ei), for all
1 ≤ i ≤ n. In this case, algorithm 1 below applies:

Algorithm 1 Optimal policy for special case
{01} while there is an unsensed edge
{02} Perform sensing of an edge with highest 1−p(ei)

SC(ei)
.

{03} If ei is unblocked, travel through it to the goal.
{04} endwhile

{05} Use edge en+1 to travel to the goal.

Theorem 2 : Algorithm 1 reaches the goal with minimal ex-
pected cost.

Proof (outline): The costs are such that it never pays to
try to move the robot to a vertex unless it is certain that the
next edge is traversable. After the first successful sensing
action a traversable path is found and no more sensing actions
are needed. Thus, the problem is equivalent to finding the
permutation O of [1 : n] that minimizes the expected sensing
cost (of equation 3). This is achieved by having 1−pO(i)

SC(eO(i))

monotonically non-increasing, due to Lemma 3. �

Observe that allowing dependencies between edges in this
simple graph, we can prove that finding the optimal plan with
dependencies is NP-hard. Proof is by reduction from mini-
mum DNF cover [Garey and Johnson, 1979].

Another scenario where lemma 3 is applicable is for a dis-
joint path, when all sensing operations must be done before
moving, and only along that path. When considering a set of
sensing actions, Lemma 3 allows us to find the optimal order-
ing, except that in this case a sensing operation is considered
“successful” if it detects that the respective edge is blocked
(and further sensing is not needed). Thus p(si) = p(ei). The
following result follows immediately from Lemma 3.

Theorem 3 For a set of sensing operations to be made along
a single disjoint path, the optimal sensing policy is to perform
the sensing operations in non-increasing order of p(ei)

SC(ei)
.

This theorem can be also applied as a heuristic in some
cases of non-disjoint paths, as the indicated policy is “locally”
optimal for this sequence of observations, (in the sense that it
ignores potential benefit of the gathered information w.r.t. fu-
ture travel that may use the same edges). For example, the

439

Algorithm 2 Pseudo-code for SN
procedure main (Graph G, vertex s, vertex t)
{01} OG = G;
{02} v = s;
{03} Update OG based on local sensing;
{04} while(v �= t) do
{05} P =CalculatePath(OG,v,t);
{06} v=TraversePath(P);
{07} endwhile

vertex function TraversePath (Path P)
{08} While P �= ∅ do
{09} (x, y)=pop first edge from P .
{10} if((x, y) is blocked)
{11} return(x);
{12} if (VerifyPath(P)==FALSE)
{13} return(x);
{14} Traverse(x, y) and place Agent at y;
{15} Update OG based on local sensing;
{16} endwhile

{17} return(t);

bool function VerifyPath (Path P)
{18} foreach(unknown e ∈ (P ∩OG))
{19} if(shouldSense(e))
{20} if(sense(e)==BLOCKED)
{21} delete e from OG;
{22} return(FALSE);
{23} endif

{24} endfor

{25} return(TRUE);

“always sense” policy used in our experiments below com-
mits to remote sensing of the entire path it intends to travel.
Here, it is “locally” optimal to perform the sensing operations
using this scheme, and this is shown empirically to be benefi-
cial even when the indicated path is not disjoint.

4 CTP with sensing in the general case

We now turn to CTP with sensing in a general graph. As
indicated above, solving this problem optimally is intractable
and even representing the optimal policy requires exponential
space in the worst case, necessitating a heuristic approach.
We follow the common heuristic approach, which removes
some of the problem’s constraints in order to generate heuris-
tics. One such direction is to use the free-space assumption
[Koenig et al., 2003]. The assumption is that any part of
the ”space” is free (in our case an edge is unblocked) unless
specifically known otherwise. We propose the Free-space as-
sumption Sensing-based Navigation scheme (FSSN) for nav-
igating in physical graphs.

FSSN is a navigation algorithm that plans a path to the goal
but allows plugging in different sensing policies for decid-
ing which edges to sense during the moves. In FSSN the
agent maintains an optimistic graph (OG), initially a copy
of G, which contains all edges which are either known to
be traversable or unknown (OG unifies traversable and un-
known in the belief state). Outcomes of sensing (remote or
local) on unknown edges are updated based on the agent’s
knowledge: edges found to be blocked are deleted from OG.

The pseudo-code for FSSN is presented in Algorithm 2.
The agent first plans a path P on OG from v to t with any
known path finding algorithm, such as Dijkstra’s algorithm
or a heuristic search algorithm based on A* (line 5). The
agent can then attempt to traverse P , without sensing (line
6). However, since edges in OG may turn out to be blocked,

this may result in wasted travel cost when a blocked edge on
P is physically reached. Therefore, the agent may decide to
interleave sensing actions on P (and pay their costs) into its
movements to update OG prior to continuing along the path.
The decision on which edges from P to sense is done by the
sensing layer in the verify path which is invoked in line 12.
The ShouldSense() function (line 19) is activated on all un-
known edges of P . ShouldSense() is a key function: different
implementations determine the actual behavior of FSSN. We
describe several such implementations below. If no blocked
edges are detected by sensing, the agent moves one step along
P (line 14) and the process is repeated. If a blocked edge in
P is detected (line 13), and thus OG changes, a new path to
the goal is calculated and the process is repeated.

The basic simplification in this method is that edges that
were not sensed are assumed (according to the free space as-
sumption) to be traversable. Thus, if the shortest path P is not
known to be blocked it is assumed traversable and the agent
just takes it. The benefit of this approach is that no compli-
cated calculations are needed on expected costs of each ac-
tion, making the memory for applying the policy linear, rather
than exponential, in the size of the graph. In addition, the
sensing policies may choose to sense edges that are believed
to be essential.

5 Sensing policies

We propose a number of the sensing policies for FSSN. Per-
haps the two simplest policies are those that ignore the sens-
ing costs altogether. These approximate many existing ap-
proaches to navigation.

5.1 Brute force policies

The brute force Never Sense (BFNS) policy never senses any
remote edges. As edges are sensed automatically with local
sensing, no sensing cost is ever incurred by BFNS, but it may
lead to increased travel costs when a blocked edge is only
recognized by local sensing. In fact, FSSN with BFNS is a
free-space assumption algorithm for basic CTP.

In contrast, the brute-force Always Sense (BFAS) policy
takes the opposite direction. In BFAS, the agent queries all
remaining edges in the path before it moves through it. If an
edge on the path is discovered to be blocked, BFAS recom-
putes the shortest path to the goal. Only after the entire path is
proved to be traversable does the agent perform a sequence of
moves along the computed path. The BFAS policy optimally
minimizes the travel cost, but may incur a large sensing cost.
An agent using BFAS can still try to keep down the sensing
cost by trying to optimize the order in which sensing opera-
tions of unknown edges on the path are attempted, by using
theorem 3, which we evaluate empirically below.

5.2 Value of Information polices

The sensing layer should focus on determining the merit of
new information gathered by each possible edge-sensing op-
eration in order to make sensing decisions. There are four
scenarios to consider for each edge. If we choose to sense,
the edge might turn out to be traversable (this scenario is la-
beled S+) or to be blocked (labeled S−). Alternatively, if
we choose not to sense, the edge may be traversable (NS+)

440

or blocked (NS−) but we do not know this unless we phys-
ically get there. We can now define the expected cost of the
two different decisions (sense and not sense) as follows:
E(sense(s, e)) = (1 − p(e))E(S+) + p(e)E(S−) (4)

E(¬sense(s, e)) = (1 − p(e))E(NS+) + p(e)E(NS−) (5)
The value of information (VOI) of sensing an edge e is de-

fined as V OI(e) = E(¬sense(s, e))−E(sense(s, e)). Now
if the VOI of a given sensing action is greater than the corre-
sponding sensing cost ((V OI(e) > SC(v, e))) then it is ben-
eficial to perform the sensing action and the shouldSense()
functions recommends this.

Observe that to compute a true value of information, one
should compute the above expected costs assuming optimal
future behavior, which is itself intractable. In order to prac-
tically approximate the value of information, one makes sim-
plifying (usually myopic) assumptions. One such set of as-
sumptions is that we will only do a single sensing operation
before beginning to move, never do another sensing opera-
tion, and commit to the sensing operation that shows the high-
est net value under these assumptions. In CTP with sensing,
even under this strict set of assumptions, we must compute
the expected cost of an optimal motion policy without sens-
ing. However, since CTP is itself intractable, and the optimal
policy may require exponential space we propose the idea of
“value of information given a non-optimal subsequent pol-
icy” as an approximation. In particular, we examine the case
where the subsequent policy is to act under the free-space
assumption, but this concept can be generalized to other effi-
ciently computable policies.

Expected Total Cost with Free Space Assumption.

A computationally efficient heuristic for sensing adopts the
free space assumption yet again for the purpose of estimating
the post-sensing path cost. The idea is to assume (for the sake
of the decision making about sensing) that every edge in OG
is traversable, except for the edge e under consideration.

To demonstrate the dilemma of whether to sense or not
consider Figure 1 again. The expected cost with the free space
assumption (EXP) heuristic uses Equations 4 and 5 to esti-
mate the VOI, except that we use E(S+) = E(NS+) =
w(s → t) for cases where e is traversable, and E(S−) =
w(d(s)), E(NS−) = w(s → v) + w(d(v)) for the cases
where e is blocked. The action with the minimal expected
cost is chosen. In our example of figure 1.a, suppose that
SC(s, e) = 1 and that p(e) = 0.5. The expected cost for
sensing e from s is E(sense(s, e)) = 0.5×8+0.5×12 = 10.
Likewise, the expected cost of not performing the sensing is
E(¬sense(s, e)) = 0.5 × 8 + 0.5 × 16 = 12. According to
the expected cost policy the agent will choose to perform the
sensing because the net VOI for sensing e is greater than 1.

FSSN Single-step VOI

The EXP policy acted under the unrealistic assumption that
all edges other than edge e in question are traversable. We
wish to estimate the true expected cost of navigation under
FSSN. This is called the VOI policy. Observe that this re-
quires a summation of a number of graphs exponential in the
number of unobserved edges. As an exact efficient scheme
for doing so is not known, we approximate the expected

travel cost by sampling. For each of the four scenarios used
in Equations 4 and 5 we generate sample graphs where un-
known edges are blocked according to their respective p(ei).
For each such graph Gsm, we execute the FSSN navigation
scheme with no remote sensing. That is, we find a path on
OG, try to follow it until we hit a blocked edge, repeatedly,
until the target is reached, and record the total path cost for
Gsm. These costs are averaged across samples, and used in
Equations 4 and 5 when estimating the VOI.

6 Experimental results

We have experimented with the above policies, using two
sensing cost functions, inspired by real-world settings:

Constant cost: Assumes a constant SC(v, e) = c. For ex-
ample, in a city, a car driver might call up roadside assistance
which charges a constant amount per information item. If
c = 0, the expected cost policies converge to the always sense
policy, since there is nothing to lose by sensing. Likewise, if
c = ∞, the expected cost policies converge to the never sense
policy, since any travel cost is cheaper than a sensing action.

Distance cost: Assumes that cost is proportional to dis-
tance from the current location of the agent to the sensed item.
Formally, for an edge e = (x, y) we define:

SC(v, e) = c · min(dist(v, x), dist(v, y)).
Our experimental setting aims to simulate graphs that

could correspond to a small city, and we used Delaunay
graphs [Okabe et al., 1992] which are common for this. First,
a Delaunay graph of 50 vertices was created by placing the
vertices in a square of size 100 × 100 units, resulting in 94
edges. Then, two vertices were selected as the start and tar-
get vertices. Now, each edge of the graph was blocked with a
fixed blocking probability (BP). We ran the different policies
on 50 such different cases and report the average cost below.

Table 1 shows the results for different sensing costs. For
each cost we tried four BP values of 0.1, 0.3, 0.5 and 0.6.
For each case we report the travel, sensing, and total costs
for each of the four policies discussed in the paper.3 In the
VOI policy we sampled 500 cases.

In cases with very small sensing costs, the relative cost of
sensing is much cheaper than the cost of traveling. Thus,
there is almost no reason not to sense a questionable edge.
Indeed, the BFAS policy usually resulted in the lowest total
cost. Similarly, in the opposite cases, where sensing was very
expensive BFNS should be the policy of choice. These obvi-
ous cases are not shown in the table.

The first section of table 1 corresponds to a constant sens-
ing cost of 5. With BP = 0.1 most of the edges are
traversable. Thus, the BFNS policy of not sensing anything
proved best. But, with larger values of BP the VOI pol-
icy proved best. It is important to note that the EXP policy
which is much simpler to compute (a few milliseconds for
these graphs), performed comparably well, and even won by
a slight margin in the case of BP = 0.5.

Table 1 also shows results for distance cost function with
coefficient (c) of 0.04 and 0.2. For 0.04 we also show

3We also experimented with an optimal policy but for very small
graphs. Our heuristics were not significantly worse than optimal but
no real conclusions can be drawn from these graphs. We also tried a
random policy and it was always worse than all other policies.

441

Constant sensing cost of 5

Policy travel sense total travel sense total travel sense total travel sense total

BP p=0.1 p=0.3 p=0.5 p=0.6
Never 157.37 0.00 157.37 227.04 0.00 227.04 317.51 0.00 317.51 313.24 0.00 313.24
Exp 157.37 0.67 158.04 206.16 20.00 226.16 258.30 37.50 295.80 283.25 49.33 332.58
VOI 157.37 1.00 158.37 201.37 15.00 216.37 264.47 46.17 310.64 246.27 48.00 294.27
Always 147.83 57.17 205.00 165.53 136.17 301.70 188.32 253.50 441.82 191.55 215.83 407.38

Sensing cost of distance * 0.04

Policy travel sense total travel sense total travel sense total travel sense total

BP p=0.1 p=0.3 p=0.5 p=0.6
Never 157.37 0.00 157.37 227.04 0.00 227.04 317.51 0.00 317.51 313.24 0.00 313.24
EXP 154.80 2.17 156.98 203.60 8.57 212.17 275.63 15.20 290.83 264.14 14.10 278.24
VOI 151.15 4.66 155.81 202.45 6.36 208.82 245.32 21.5 266.83 235.76 13.65 249.41
AlwaysR 147.83 38.99 186.83 165.53 101.02 266.55 188.32 194.17 382.48 191.55 155.29 346.84
Always 147.83 27.49 175.32 165.53 57.44 222.97 188.32 102.61 290.93 191.55 101.16 292.71

Sensing cost of distance * 0.2

Policy travel sense total travel sense total travel sense total travel sense total

BP p=0.1 p=0.3 p=0.5 p=0.6
Never 157.37 0.00 157.37 227.04 0.00 227.04 317.51 0.00 317.51 313.24 0.00 313.24
EXP 156.21 0.85 157.06 208.78 11.55 220.33 271.96 25.59 297.55 268.34 28.96 297.30
VOI 156.21 0.85 157.06 199.13 16.12 215.26 266.62 40.21 306.83 250.32 54.35 304.66
Always 147.83 137.44 285.28 165.53 287.20 452.73 188.32 513.05 701.37 191.55 505.80 697.35

Table 1: Results with different sensing costs. The best sensing policy in each group is highlighted in bold.

an implementation of BFAS where we randomize the order
of the sensing actions (this is labeled AlwaysR). Observe
that adopting the policy of Theorem 3 for “always sense” is
clearly a winner. In all the possible cases both expected costs
policies systematically outperformed the two brute force po-
lices in their total costs and the VOI policy was the best in
most cases. In a small number of cases, the EXP policy was
best but the VOI policy did not do much worse. We performed
a large number of other experiments (e.g. with varied edge
probabilities) and similar tendencies were observed.

7 Discussion and future work

We have introduced optimal policies for CTP in a number
of special case graphs and presented two heuristic policies.
Both policies proved useful across the sensing cost functions
we tried. Single-step VOI is more complicated than EXP but
works better in most of the scenarios.

Due to the fact that we had to resort to sampling in order to
estimate single-step VOI, the resulting estimate may be noisy.
Thus, in addition to estimating the VOI, we can also estimate
its sampling variance. The estimated sampling variance can
be used in several ways: in order to control the number of
samples, or to evaluate risk for not performing sensing. Ini-
tial results in applying these methods show promise, but a
disciplined treatment of this issue remains for future work.

Another future direction is in extending the theoretical re-
sults on disjoint graphs so as to get a better heuristic for the
general case. This involves trading off policy size for a better
approximation to the optimal behavior.

8 Acknowledgements

This work was supported by the Israeli Science Foundation.
References
[Bar-Noy and Schieber, 1991] A. Bar-Noy and B. Schieber. The

canadian traveller problem. In SODA, pages 261–270, 1991.

[Felner et al., 2004] A. Felner, R. Stern, A. Ben-Yair, S. Kraus, and
N. Netanyahu. PHA*: Finding the shortest path with A* in un-
known physical environments. JAIR, 21:631–679, 2004.

[Ferguson et al., 2004] D. Ferguson, A. Stentz, and S. Thrun. PAO*
forplanning with hidden state. In ICRA, 2004.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Com-
puters and Intractability, A Guide to the Theory of NP-
completeness. W. H. Freeman and Co., 1979.

[Hansen, 2007] Eric A. Hansen. Indefinite-horizon POMDPs with
action-based termination. In AAAI, pages 1237–1242, 2007.

[Koenig and Likhachev, 2002] S. Koenig and M. Likhachev. D*
lite. In AAAI, pages 476–483, 2002.

[Koenig et al., 2003] S. Koenig, Y. Smirnov, and C. Tovey. Perfor-
mance bounds for planning in unknown terrain. Artificial Intelli-
gence Journal, 147(1-2):253–279, 2003.

[Likhachev and Stentz, 2006] M. Likhachev and A. Stentz. PPCP:
Efficient probabilistic planning with clear preferences in
partially-known environments. In AAAI, 2006.

[Nikolova and Karger, 2008] E. Nikolova and D. R. Karger. Route
planning under uncertainty: The canadian traveller problem. In
AAAI, pages 969–974, 2008.

[Okabe et al., 1992] A. Okabe, B. Boots, and K. Sugihara. Spatial
Tessellations, Concepts, and Applications of Voronoi Diagrams.
Wiley, Chichester, UK, 1992.

[Papadimitriou and Yannakakis, 1991] C. Papadimitriou and
M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84:127–150, 1991.

[Shani et al., 2006] G. Shani, R. I. Brafman, and S. E. Shimony.
Prioritizing point-based POMDP solvers. In ECML, volume 4212
of LNCS, pages 389–400. Springer, 2006.

[Stentz, 1994] A. Stentz. Optimal and efficient path planning for
partially-known environments. In ICRA, pages 3310–3317, San
Diego, CA, May 1994.

442

