
A Soft Global Precedence Constraint

David Lesaint

BT, UK
david.lesaint@bt.com

Deepak Mehta

4C, UCC, Ireland
d.mehta@4c.ucc.ie

Barry O’Sullivan

4C, UCC, Ireland
b.osullivan@4c.ucc.ie

Luis Quesada

4C, UCC, Ireland
l.quesada@4c.ucc.ie

Nic Wilson

4C, UCC, Ireland
n.wilson@4c.ucc.ie

Abstract

Hard and soft precedence constraints play a key
role in many application domains. In telecommuni-
cations, one application is the configuration of call-
control feature subscriptions where the task is to
sequence a set of user-selected features subject to a
set of hard (catalogue) precedence constraints and
a set of soft (user-selected) precedence constraints.
When no such consistent sequence exists, the task
is to find an optimal relaxation by discarding some
features or user precedences. For this purpose, we
present the global constraint SOFTPREC. Enforc-
ing Generalized Arc Consistency (GAC) on SOFT-
PREC is NP-complete. Therefore, we approximate
GAC based on domain pruning rules that follow
from the semantics of SOFTPREC; this pruning is
polynomial. Empirical results demonstrate that the
search effort required by SOFTPREC is up to one
order of magnitude less than the previously known
best CP approach for the feature subscription prob-
lem. SOFTPREC is also applicable to other prob-
lem domains including minimum cutset problems
for which initial experiments confirm the interest.

1 Introduction

Precedence constraints play a key role in planning, schedul-
ing and sequencing problems. In internet telephony for in-
stance, service delivery architectures support the sequential
activation of call control features. Users can then personalise
their call logic by selecting and sequencing features from a
catalogue, e.g., announcement followed by call-divert on in-
coming calls. However, hard constraints apply to avoid unde-
sirable feature interactions, e.g., call-divert and call-waiting
are mutually exclusive. This feature subscription configura-
tion problem, which generalises the minimum cutset prob-
lem, can be formulated as a constraint optimisation problem
[Lesaint et al., 2008b]. Informally, a feature subscription is
defined by a set of features, a set of user specified precedence
constraints, a function that maps features and user specified
precedence constraints to weights, and a set of precedence
and exclusion constraints from the catalogue. The task is to
find a sequence of features that is consistent with all the con-
straints. If such a sequence does not exist then the task is to

find an optimal relaxation of the feature subscription that is
closest to the initial requirements of the user. This problem is
NP-hard [Lesaint et al., 2008b].

We propose the soft global precedence constraint SOFT-
PREC that holds if and only if there is a strict partial order
on the selected features subject to hard (catalogue) prece-
dence constraints and soft (user-selected) precedence con-
straints, and the value of the subscription is within the pro-
vided bounds. Note that a sequence can be derived from a
strict partial order in polynomial time. Enforcing generalised
arc consistency (GAC) [Rossi et al., 2006](Chap. 3) on SOFT-
PREC is NP-complete. Therefore, we approximate it by prun-
ing the domains of the variables based on the rules that follow
from the definition of SOFTPREC; this pruning is polynomial.
The pruning rules are presented declaratively which allows us
to separate concerns. We also present five upper bounds for
pruning the bounds of the value of the subscription. These
bounds are computed based on the incompatibilities that are
inferred between pairs of features, and the dependencies be-
tween user precedences and their corresponding features. The
tightness of these bounds depends on the degree of inference
made on these incompatibilities and dependencies.

We use these bounds along with the other pruning rules of
SOFTPREC within branch and bound search to find an opti-
mal relaxation of a feature subscription. We also compare our
approach with the alternative constraint programming (CP)
approaches presented in [Lesaint et al., 2008b]. Empirical re-
sults demonstrate that the filtering achieved by using SOFT-
PREC reduces the search effort to such an extent that it is up
to one order of magnitude faster than the previously known
best CP approach for feature subscription problems. We also
experiment with minimum cutset problems and compare our
approach with the one presented in [Barták and Čepek, 2008].
When compared with the latter approach, SOFTPREC reduces
the search effort up to two orders of magnitude.

2 Feature Subscription

In this section we provide some background relevant with the
feature subscription problem considered in this paper.

Let fi and fj be features, we write a precedence constraint
of fi before fj as fi ≺ fj or as 〈fi, fj〉. We write fi ≺� fj

to mean fi ≺ fj and fj ≺ fi, which corresponds to fi and
fj being incompatible (mutually exclusive). A catalogue is
a pair 〈F ,H〉, where F is a set of features and H is a set of

566

precedence constraints on F . A feature subscription S of
a catalogue 〈F ,H〉 is a tuple 〈F,H, P, w〉, where F ⊆ F ,
H is the projection of H on F , i.e., H ↓F = {fi ≺ fj ∈
H : {fi, fj} ⊆ F}, P is a set of (user defined) precedence
constraints on F , w is a function that maps features and user
precedence constraints to weights. The value of S is defined
by Value(S) =

∑
f∈F w(f) +

∑
p∈P w(p).

A subscription S = 〈F,H, P, w〉 is defined to be consis-
tent if and only if the directed graph 〈F,H ∪ P 〉 is acyclic.
The time complexity for checking the consistency of a sub-
scription is O(|F | + |H ∪ P |) [Lesaint et al., 2008b]. If a
subscription is consistent then there exists at least one se-
quence of features that respects all the constraints. A relax-
ation of 〈F,H, P, w〉 is a subscription 〈F ′, H ′, P ′, w′〉 such
that F ′ ⊆ F , H ′ = H↓F ′ , P ′ ⊆ P↓F ′ , w′ is w restricted to
F ′ and P ′. Let RS be the set of all consistent relaxations of
a feature subscription S. We say that Si ∈ RS is an optimal
relaxation of S if it has maximum value among all relax-
ations, i.e., if and only if there does not exist Sj ∈ RS such
that Value(Sj) > Value(Si). Finding an optimal relaxation
of a subscription is NP-hard [Lesaint et al., 2008b].

A simple constraint optimisation problem (COP) formula-
tion for finding an optimal relaxation of 〈F,H, P, w〉 is as
follows. Each feature fi ∈ F is associated with a Boolean
variable bf(i) and an integer variable pf(i). The domain of
each integer variable pf(i) is {1, . . . , |F |}. Each user prece-
dence constraint (fi ≺ fj) ∈ P is associated with a Boolean
variable bp(i, j). A variable v is associated with the objective
function. A catalogue precedence constraint, (fi ≺ fj) ∈ H,
can be expressed as bf(i) ∧ bf(j) ⇒ (pf(i) < pf(j)).
A user precedence constraint (fi ≺ fj) ∈ P can be ex-
pressed as bp(i, j) ⇒ (bf(i) ∧ bf(j) ∧ (pf(i) < pf(j))).
The objective is to maximise the value of v, where v =∑

fi∈F bf(i) × w(fi) +
∑

〈i,j〉∈P bp(i, j) × w(〈i, j〉). Note
that this model encodes the precedence relation using abso-
lute position variables. [Lesaint et al., 2008b] present results
of using the following consistency techniques: arc consis-
tency (AC), singleton arc consistency (SAC), and restricted
singleton arc consistency (RSAC) on the Boolean variables of
the model. All these consistency techniques enforce bounds
consistency on the objective variable v.

3 The SoftPrec Global Constraint

Let 〈F,H, P, w〉 be a feature subscription. Let bf be a vector
of Boolean variables associated with F . We say that fi is
included if bf(i) = 1, and fi is excluded if bf(i) = 0. We
abuse notation by using bf(i) to mean bf(i) = 1, and ¬bf(i) to
mean bf(i) = 0. A similar convention is adopted for the other
Boolean variables. Let bp be a matrix of Boolean variables.
Here bp is intended to represent a strict partial order on the
included features F ′ which is compatible with the catalogue
constraints restricted to F ′.

Definition 1 (SOFTPREC). Let S = 〈F,H, P, w〉 be a fea-
ture subscription, bf be a vector of Boolean variables, bp be a
matrix of Boolean variables, and v be an integer variable, the
global constraint SOFTPREC(S, bf, bp, v) holds if and only if

1. bp is a strict partial order restricted to bf, i.e.,
∀i, j ∈ F : bp(i, j) ⇒ bf(i) ∧ bf(j) (restricted),
∀i, j ∈ F : bp(i, j) ⇒ ¬bp(j, i) (asymmetric),
∀i, j, k ∈ F : bp(i, j) ∧ bp(j, k) ⇒ bp(i, k) (transitive),

2. bp is compatible with H restricted to bf, i.e.,
∀(fi ≺ fj) ∈ H : bf(i) ∧ bf(j) ⇒ bp(i, j),

3. v =
∑

i∈F bf(i)×w(i)+
∑

〈i,j〉∈P bp(i, j)×w(〈i, j〉).
A solution of SOFTPREC is a consistent relaxation of the

subscription 〈F,H, P, w〉. Notice that the minimum cutset
problem [Garey and Johnson, 1979] can be expressed in terms
of SOFTPREC by associating vertices with features and arcs
with catalogue precedence constraints. Therefore, achieving
generalised arc consistency on SOFTPREC is NP-hard and
hence NP-complete.

If (fi ≺ fj) ∈ H and (fj ≺ fk) ∈ H then fi ≺ fk can
be inferred only if fj is included, as features are optional. In
order to do this kind of inference we introduce another matrix
ψ of auxiliary Boolean variables.
Proposition 1. Let ψ(i, j) ≡ ¬bf(i) ∨ ¬bf(j) ∨ bp(i, j).
SOFTPREC(S, bf, bp, v) holds if and only if the following
holds:

1. bp(i, j) ⇒ bf(i) ∧ bf(j);
2. bf(i) ∧ bf(j) ∧ ψ(i, j) ⇒ ¬ψ(j, i);
3. bf(j) ∧ ψ(i, j) ∧ ψ(j, k) ⇒ ψ(i, k);
4. (fi ≺ fj) ∈ H ⇒ ψ(i, j);
5. v =

P
i∈F bf(i) × w(i) +

P
〈i,j〉∈P bp(i, j) × w(〈i, j〉).

4 Pruning Rules

An algorithm for pruning the domains is presented in terms
of rules that follow from the semantics of SOFTPREC. Each
pruning rule has the following form: Precondition

Postcondition . Here
Precondition defines what should be true for the rule to be
triggered and Postcondition defines what should be true after
executing the pruning rule. The algorithm iterates until no
precondition is met.

4.1 Pruning Rules Related to Transitive and
Asymmetric Properties

From Proposition 1.1 and the definition of ψ:
bf(i) ∧ bf(j) ∧ ψ(i, j)

bp(i, j)

bf(i) ∧ ¬bp(i, j) ∧ ψ(i, j)

¬bf(j)

bp(i, j)

bf(i) ∧ bf(j) ∧ ψ(i, j)

¬bf(i) ∨ ¬bf(j) ∨ ¬ψ(i, j)

¬bp(i, j)

From Proposition 1.2:
bf(i) ∧ bf(j) ∧ ψ(i, j)

¬ψ(j, i)

bf(i) ∧ ψ(i, j) ∧ ψ(j, i)

¬bf(j)

From Proposition 1.3:
bf(j) ∧ ψ(i, j) ∧ ψ(j, k)

ψ(i, k)

From Proposition 1.1, 1.2, and the definition of ψ:
ψ(j, i)

¬bp(i, j)

From Proposition 1.4, consistency with the catalogue prece-
dence constraints is ensured by pruning the domain of ψ(i, j)
based on the implication (fi ≺ fj) ∈ H ⇒ ψ(i, j).

567

4.2 Pruning Rules Related to Bounds

Let mv be the maximum value of the subscription, which is
defined to be the sum of the weights of all the features and
user precedences. Let bv be the backward value of the sub-
scription, which is defined to be the sum of the weights of
included features and user precedences. Let bc be the back-
ward cost, which is defined to be the sum of the weights of
the excluded features and user precedences.

We say that fi and fj are mutually exclusive when we can-
not include both of them, i.e., ψ(i, j) ∧ ψ(j, i). Let M be the
set of mutually exclusive pairs of undecided (unassigned) fea-
tures. Let c+

f (i) be the connected cost of including fi, which
is defined to be the sum of the weights of the undecided fj

and user precedences involving fj such that {fi, fj} ∈ M .
Let c−f (i) be the connected cost of excluding fi, which is de-
fined to be the sum of the weight of fi and the weights of the
undecided user precedences that involve fi.

Let lb+
f (i) and lb−f (i) be the lower bounds on v when fi is

included and excluded, respectively. Let ub+
f (i) and ub−f (i)

be the upper bounds on v when fi is included and excluded,
respectively:

lb+f (i) = bv + w(i), ub+
f (i) = mv − (bc + c+

f (i)),

lb−f (i) = bv, ub−f (i) = mv − (bc + c−f (i)).

We maintain a lower bound, v−, on v and an upper bound,
v+, on v. If a bound obtained when excluding (including)
fi is not within the bounds of v then fi must be included
(excluded).

(lb−f (i) > v+) ∨ (ub−f (i) < v−)

bf(i)

(lb+f (i) > v+) ∨ (ub+
f (i) < v−)

¬bf(i)
(1)

The upper (lower) bound of v cannot be greater (less) than
the maximum (minimum) of the upper (lower) bound of the
value resulting from the inclusion and exclusion of fi:

v+ > max(ub+f (i), ub−f (i))

v+ := max(ub+f (i), ub−f (i))

v− < min(lb+f (i), lb−f (i))

v− := min(lb+f (i), lb−f (i))
(2)

Let v+
p (〈i, j〉) be the connected value of including a user

precedence 〈i, j〉 ∈ P , which is defined to be the sum of the
weights of the user precedence and the features involved in it
(if the latter are undecided). Let c+

p (〈i, j〉) be the connected
cost of including 〈i, j〉 ∈ P , which is defined to be the sum
of the weights of the undecided fk and user precedences in-
volving fk such that either {fi, fk} ∈ M or {fj , fk} ∈ M .

Let lb+
p (ρ) and lb−p (ρ) be the lower bounds on v and let

ub+
p (ρ) and ub−p (ρ) be the upper bounds on v when a user

precedence ρ is included and excluded, respectively.

lb+p (ρ) = bv + v+
p (ρ), ub+

p (ρ) = mv − (bc + c+
p (ρ)),

lb−p (ρ) = bv, ub−p (ρ) = mv − (bc + w(ρ)).

The pruning rules associated with these bounds are obtained
by replacing lb+

f (i), lb−f (i), ub+
f (i), ub−f (i) and bf(i) with

lb+
p (ρ), lb−p (ρ), ub+

p (ρ), ub−p (ρ) and bp(ρ), respectively, in
Equations (1) and (2).

If n is the sum of the number of features and user prece-
dences then the worst-case time complexity of the pruning
rules presented in this section is O(n3) [Lesaint et al., 2008a].

5 Tighter Upper Bounds using Forward Costs

In this section, we introduce the notion of forward cost and
use it to compute tighter upper bounds on v when a feature
(and a user precedence) is included/excluded.

5.1 Forward Costs

The set of pairs of incompatible features, M , can be asso-
ciated with an undirected graph where the vertices represent
features involved in the incompatibilities and edges represent
incompatibilities. Let C1, . . . , Ck be the components (maxi-
mal connected subgraphs) of the graph M . The features in-
volved in any intersecting pairs of incompatible features are
always in the same component, e.g. if {fi, fj} ∈ M and
{fj , fk} ∈ M then fi, fj and fk are in the same compo-
nent. If fi ∈ F is not involved in any pair of incompatible
features of M , then fi is not in any component.

Let us assume that F = {a, b, c, d, g, h, j}, P = {p, q, r}.
Here p, q and r are user precedences defined on features a
and b, c and g, and g and j, respectively. Let us also as-
sume that M = {{a, b}, {b, c}, {c, d}, {g, h}}. There are
two components of the graph associated with M , which are
C1 = {a, b, c, d} and C2 = {g, h}. This is pictorially de-
picted in Figure 1. An ellipse represents a feature, and the
integer number its weight. A dashed line denotes a user
precedence between the corresponding features and the inte-
ger number its weight. A solid line represents incompatibility
between two features based on the set M . The features in-
volved in the components of M are encapsulated in the boxes.
Notice that feature j is not involved in any pair of incompati-
ble features of M , therefore, it is not in any component of M .

C1 C2

a
3

b
5

c
1

p
1

d
5

g
1

q
1

h
4

j
2

r
1

Figure 1: A graph depicting pairs of incompatible features.

Given the components of M , the forward cost is the sum of
the lower-bounds of the costs incurred from the components.
We present different forward costs and explain them with an
example as illustrated in Figure 1. As the forward cost de-
pends on M , we use the notation fcl(M) to denote the lth

forward cost.
The simplest way of computing the forward cost is by com-

puting the minimum weight of features of each component
and summing up those weights:

fc1(M) =
kX

i=1

min{w(f)|f ∈ Ci}.

This is based on the fact that at least one feature will be
removed from each component. For Figure 1, the forward
cost based on fc1 is w(c)+w(g), which is equal to 2. Observe
that w(c) and w(g) are the minimum weights of features of
C1 and C2, respectively.

568

Let λi be the lower bound on the number of features that
should be excluded from Ci in order to break all the incom-
patibilities. The value of λi for each Ci is implicitly 1 for fc1.
However, a tighter forward cost can be computed by using
a stronger λi and summing the λi smallest costs of exclud-
ing features of each component. There exist several ways of
doing this. However, for this paper, we define λi to be the
maximum value of k such that the sum of the degrees of the
first k vertices is no more than the number of edges, where
the vertices are listed in decreasing order of degree. Based on
this, a forward cost can be computed as follows:

fc2(M) =
kX

i=1

λiX
j=1

min
j{w(f)|f ∈ Ci}.

Here minj is the function that gives the jth smallest weight.
For Figure 1, the forward cost based on fc2 is w(c) + w(a) +
w(g), which is 5. Unlike fc1, λ1 = 2 for C1 and, there-
fore, the two smallest weights of features are selected from
C1 which are w(a) and w(c).

Neither fc1 nor fc2 take advantage of the fact that the exclu-
sion of a feature may also exclude a user precedence. For this
purpose, we present fc3 which can be seen as an extension of
fc1. Instead of considering only the minimum weight of the
features of each component, fc3 considers the minimum sum
of the weight of a feature and the weights of user precedences
that involve the feature.

fc3(M) =
kX

i=1

min

8<
:w(f) +

1

2

X
p∈interi(f)

w(p) +
X

p/∈interi(f)

w(p)

˛̨
˛̨
˛̨ f ∈ Ci

9=
; .

Here interi(f) is the set of user precedences that involve fea-
ture f of Ci and feature g of Cj �= Ci. The forward cost based
on fc3 is 5 for Figure 1. It is the sum of the cost of excluding c
from C1, which is w(a)+w(p)+w(q)/2, and the cost of ex-
cluding g from C2, which is w(g)+w(q)/2+w(r). Although
c and g are in different components, their exclusion costs in-
clude the weight of the user precedence q, since excluding c
or g would exclude q. In order to ensure that the weights of
user precedences involving features of different components
are considered only once, the weights are halved. This allows
us to compute the cost of each component independently.

The cost of each component in fc3 is based on the minimum
cost incurred by excluding only one feature. However, fc4
may consider multiple features along with their user prece-
dences as shown below:

fc4(M) =

kX
i=1

λiX
j=1

min
j

8<
:w(f) +

1

2

X
p/∈resti(f)

w(p) +
X

p∈resti(f)

w(p)

˛̨
˛̨
˛̨ f ∈ Ci

9=
; .

Here, resti(f) is the set of user precedences that involve
features f and g such that f is in Ci and g is not in any Cj .
The cost of the component C1 based on fc4 is the sum of the
costs of excluding features a and c which are w(a) + w(p)/2
and w(c) + w(p)/2 + w(q)/2 respectively. The cost of the
component C2 based on fc4 is the cost of excluding feature
g which is w(g) + w(q)/2 + w(r). Hence, the forward cost
is 8. Notice that the weights of the user precedences that in-
volve features of the same component are not divided by 2 in
fc3. The reason is that the cost of each component is based
on the cost of excluding only one feature which is not true
for fc4. Therefore, fc4 also halves the weights of those user
precedences that involve features of the same component.

If the value obtained after subtracting the backward cost
and the forward cost from the maximum value of the sub-
scription is less than the upper bound of v, then the upper
bound can be updated accordingly.

5.2 Tighter Upper Bounds

This section describes the computation of tighter upper
bounds on v due to the inclusion/exclusion of a feature based
on the notion of forward cost. Remember that these upper
bounds also use the connected costs. Therefore, it may not
be possible to consider all the pairs of incompatible features
of M for the forward cost computation. Let us consider an
example. Let M = {{f1, f2}, {f2, f3}, {f3, f4}, {f5, f6}}.
The connected cost of including f2 is w(f1) + w(f3). There-
fore, all the incompatibilities that involve either f1 or f3 can-
not be considered for the forward cost computation. So the
forward cost of including f2 would be based on only one pair
of incompatible features, which is {f5, f6}. Similarly, the
forward cost of excluding f2 would be based on {f3, f4} and
{f5, f6} pairs of incompatible features.

Let M+
f (i) be the subset of the pairs of features of M based

upon which the forward cost of including fi is computed.
Formally, M+

f (i) = M − {{j, k} ∈ M : {i, j} ∈ M}. Let
M−

f (i) be the subset of pairs of features of M based upon
which the forward cost of excluding fi is computed. For-
mally, M−

f (i) = M − {{i, j} ∈ M}. Based on the forward
cost with respect to the sets M+

f (i) and M−
f (i), the tighter

upper bounds can be defined as follows:

ub+f (i) = mv − (bc + c+
f (i) + fc(M+

f (i)))

ub−f (i) = mv − (bc + c−f (i) + fc(M−
f (i))).

(3)

The computation of the upper bounds, as presented in Equa-
tion (3), could be expensive as its worst-case time complexity
is O(n4), where n is |F | + |P |. A less expensive approach
would be to compute fc(M) and store the cost of each compo-
nent of M . An under-estimate of the forward cost of includ-
ing/excluding fi (fc(M+

f (i))/fc(M−
f (i))) can be computed

by subtracting the cost of the component associated with fi

from the sum of the cost of all the components of M , i.e.,
fc(M). By sacrificing some incompatible pairs of features of
the component associated with fi, the worst-case time com-
plexity would then be O(n3). A similar approach can be used
for tightening the upper bounds on v when a user precedence
is included/excluded.

6 Comparison of Pruning

We use the notation Φac and Φsac to denote the pruning
achieved by enforcing AC and SAC respectively on the
Boolean variables of the model, as presented in Section 2.
Both Φac and Φsac enforce bounds consistency on the objec-
tive variable v. We use the notation Φsp to denote the pruning
achieved by using the rules of SOFTPREC. In this section we
compare Φac, Φsp, and Φsac. For simplicity, we ignore user
precedences. Nevertheless, the results can be extended for
user precedences.

Proposition 2. Φsp and Φsac are incomparable.

569

a b c d

Figure 2: Φsac > Φsp

a b

Figure 3: Φsp > Φsac

Proof. We show that Φsp and Φsac are incomparable by
showing cases where each prunes more than the other one. In
Figures 2 and 3, a dashed (solid) ellipse represents an unde-
cided (included) feature, and an edge represents a hard prece-
dence constraint. All features have weight equal to 1.

In Figure 2, if v− = 3 and v+ = 4, then Φsac determines
the undecided variables. Φc includes feature a, since exclud-
ing it results in the inclusion of b and c, which causes a failure.
As a is included, b is excluded, which causes the inclusion of
c. Φsp is not able to include a, since the bounds on v when
excluding a are within the bounds of v.

In Figure 3, if v− = 0 and v+ = 2 then Φsp updates v+ to
1. This is not done by Φsac since the inclusion/exclusion of
each feature does not make the subproblem arc-inconsistent.

Proposition 3. Φsp is tighter than Φac.

Proof. To prove Φsp is tighter than Φac, we show that if Φac

includes/excludes a feature or prunes the bounds of v then
Φsp also does that, and the converse does not always hold.

Only the sum constraint of Φac can include/exclude a fea-
ture. The lower bounds on v when including/excluding fi in
Φac are bv + w(i) and bv respectively, which are the same
for Φsp. The upper bounds of including/excluding fi in Φac

are mv − bc and mv − bc − w(i) respectively, which are
greater than or equal to the bounds of Φsp (see Equation (1)).
Therefore, each feature included/excluded by Φac is also in-
cluded/excluded by Φsp, and each value removed from v by
Φac is also removed by Φsp.

In order to show that the inclusion/exclusion of a feature
by Φsp does not imply the same by Φac, we consider a trivial
example. Assume that f1, f2 and f3 are in F and have weight
equal to 1, f1 ≺� f2, f1 ≺� f3 are catalogue constraints,
and v− is 2 and v+ is 3. The upper bound on v when includ-
ing f1 in Φsp would be 1, since f1 is mutually exclusive with
f2 and f3. Therefore Φsp would exclude f1. Based on the
sum constraint, the upper bound on v when including f1 in
Φac would be 3. Therefore, Φac would not exclude f1. Thus,
Φsp is tighter than Φac.

7 Experimental Results

In this section, we empirically evaluate the performance of
the pruning rules and bounds computation of SOFTPREC.

All the search algorithms were implemented using Choco1

and were equipped with a static version of the dom/deg vari-
able ordering heuristic, where dom is the domain size and deg
is the original degree of a variable. All the experiments were
performed on a PC Pentium 4 (CPU 1.8 GHz and 768MB of
RAM) processor. The performances of all the approaches are
measured in terms of nodes and runtime in seconds.

1http://choco.sourceforge.net/

Table 1: Mean results for feature subscription 〈45, 45, 4〉 of
catalogue 〈50, 250, {≺,�}〉.

SP 0 SP 1 SP 2 SP 3 SP 4
time (ms) 105,240 65,539 60,689 52,735 45,720
nodes 32,880 18,111 15,272 14,052 10,143

7.1 Feature Subscription Problem

We experimented with a variety of random catalogues and
many classes of random feature subscriptions [Lesaint et
al., 2008b]. A random catalogue is defined by a tuple
〈nc, mc, Tc〉. Here, nc is the number of features, mc is the
number of catalogue precedence constraints and Tc ⊆ {≺,�
,≺�} is a set of types of constraints. A random feature sub-
scription is defined by a tuple 〈nu, mu, w〉. Here, nu is the
number of features, mu is the number of user precedence con-
straints and w is an integer greater than 0. Each feature and
each user precedence constraint is associated with an integer
weight which is between 1 and w inclusive.

We generated catalogues of the following forms:
〈50, 250, {≺,�}〉, 〈50, 500, {≺,�,≺�}〉 and 〈50, 750, {≺
,�}〉. For each random catalogue, we generated 〈5, 5, 4〉,
〈10, 10, 4〉, . . . , 〈45, 45, 4〉 classes of random feature sub-
scriptions. For each class, 10 instances were generated and
their mean results are reported in this paper.

We first investigated the impact of using different upper
bounds on v. The notation SP0 is used to denote the compu-
tation of the upper bound without any forward cost and SPi,
1 ≤ i ≤ 4, to denote the computation of the upper bound
with fci as presented in Section 5. Due to the lack of space,
the results of only the hardest problems that we experimented
with are shown in Table 1. Notice that without forward cost
SOFTPREC visits almost 50% more nodes. The computation
of a tight forward cost, as in SP4, pays off by saving time and
nodes. In the remainder of this section, the results obtained
by using SP4 are denoted by SP.

We also compared the results of SP with the results ob-
tained by maintaining AC, SAC and RSAC on the COP model
as presented in Section 2. The results are shown in Ta-
ble 2. Note that RSAC is known to be the most efficient
CP approach for feature subscription problems [Lesaint et al.,
2008b]. The results suggest that AC is inferior to the other
approaches by several orders of magnitude. Results also sug-
gest that maintaining RSAC on the Boolean variables reduces
the number of nodes and time significantly. Note that RSAC
usually visits more nodes than those visited by SAC, but the
difference between them is not that significant. SP outper-
forms all the approaches in terms of nodes and time. It spends
at least 5 to 11 times less time than RSAC on hard instances.

7.2 Minimum Cutset Problem

We also demonstrate the efficiency of SOFTPREC on the well
known minimum cutset problem [Garey and Johnson, 1979].
The minimum cutset problem consists of only hard prece-
dence constraints and the task is to find the largest set of
vertices such that the sub-graph induced by these vertices
does not contain a cycle. We use the same instances as those
used in [Barták and Čepek, 2008] and compare with their ap-
proach as well as with RSAC. We remark that when there

570

Table 2: Mean Results for Feature Subscription Problems.
〈50, 750, {≺,	}〉 〈50, 500, {≺,	,≺	}〉 〈50, 250, {≺,	}〉

subscription AC SAC RSAC SP AC SAC RSAC SP AC SAC RSAC SP
Results in terms of search nodes

〈30, 30, 4〉 100,644 655 787 183 17,160 143 167 50 104,731 230 262 158
〈35, 35, 4〉 508,318 2,008 2,366 396 97,321 378 451 111 722,328 1,224 1,465 744
〈40, 40, 5〉 2,209,450 5,947 6,843 993 242,609 781 922 188 6,155,598 9,398 11,123 2,707
〈45, 45, 4〉 8,055,304 16,047 18,469 2,425 740,587 1,607 1,925 428 66,905,754 31,404 37,277 10,143

Results in terms of time (in seconds)
〈30, 30, 4〉 24.27 3.92 3.52 0.50 2.49 0.54 0.48 0.15 20.34 1.16 1.04 0.33
〈35, 35, 4〉 146.72 15.01 13.68 1.52 16.18 1.82 1.69 0.44 183.49 9.13 8.70 2.16
〈40, 40, 5〉 779.77 50.62 47.34 4.71 47.73 4.43 4.09 0.83 1,836.39 81.77 76.59 9.46
〈45, 45, 4〉 3,468.08 164.83 149.36 13.86 164.89 11.03 10.19 2.26 23,009.72 345.10 320.01 45.72

are no user precedences the approach in [Barták and Čepek,
2008] is similar to SP0. Figure 4 shows the results in terms
of nodes using a logarithmic scale. Results in terms of time
coincide with nodes, but they are not shown due to lack of
space. SOFTPREC outperforms both the approaches signifi-
cantly in terms of nodes and time. When there are 200 prece-
dence constraints, SOFTPREC visits two orders of magnitude
fewer nodes when compared with the approach in [Barták
and Čepek, 2008], and three orders of magnitude fewer nodes
when compared with those of RSAC.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 S

ea
rc

h
N

od
es

Number of Precedences

RSAC
[Bartak and Cepek, 2008]

SP

Figure 4: Results for minimum cutset problem with 50 vari-
ables.

8 Related Work

[Codish et al., 2008] propose a SAT approach to the feature
subscription problem by modeling it as a partial order con-
straint problem. Although the results reported in [Codish et
al., 2008] appear to be better than the results in [Lesaint et al.,
2008b], the results of the former were obtained on easier in-
stances. A global constraint for cutset problems is proposed
in [Fages and Lal, 2006]. The filtering rules of this global
constraint are based on graph contraction operations. We still
need to compare SOFTPREC with the cutset constraint.

9 Conclusions and Future Works

We proposed the soft global precedence constraint SOFT-
PREC. Since achieving GAC on SOFTPREC is NP-hard, we
presented a set of rules that follow from the semantics of
SOFTPREC. The pruning achieved by these rules approxi-
mates GAC on SOFTPREC. We introduced the notion of for-

ward cost, and based on it, we proposed various upper bounds
computation techniques. We also showed that the pruning
achieved by the rules of SOFTPREC is tighter than the prun-
ing achieved by AC on the discussed COP model. The former
is incomparable with SAC on the COP model. Empirical re-
sults obtained using feature subscription and min-cutset prob-
lems demonstrate that SOFTPREC significantly outperforms
the other approaches.

In our future work we would like to further investigate
tighter bounds. It would also be interesting to investigate the
performance of SOFTPREC on other benchmarks.

Acknowledgements

This material is based upon works supported by the Sci-
ence Foundation Ireland under Grant No. 05/IN/I886, and
Embark Post Doctoral Fellowships No. CT1080049908 and
No. CT1080049909.

References

[Barták and Čepek, 2008] Roman Barták and Ondrěj Čepek.
Incremental filtering algorithms for precedence and depen-
dency constraints. IJAIT, 17(1):205–221, 2008.

[Codish et al., 2008] M. Codish, V. Lagoon, and P. J.
Stuckey. Telecommunications feature subscription as a
partial order constraint problem. In ICLP, pages 749–753,
2008.

[Fages and Lal, 2006] François Fages and Akash Lal. A con-
straint programming approach to cutset problems. Com-
put. Oper. Res., 33(10):2852–2865, 2006.

[Garey and Johnson, 1979] M. Garey and D. Johnson. Com-
puters and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[Lesaint et al., 2008a] D. Lesaint, D. Mehta, B. O’Sullivan,
L. Quesada, and N. Wilson. Consistency techniques for
finding an optimal relaxation of a feature subscription. In
ICTAI, pages 283–290, 2008.

[Lesaint et al., 2008b] D. Lesaint, D. Mehta, B. O’Sullivan,
L. Quesada, and N. Wilson. Solving a Telecommunica-
tions Feature Subscription Configuration Problem. In CP,
pages 67–81, 2008.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh. Handbook of Constraint Programming. El-
sevier Science Inc., 2006.

571

