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Abstract

In Model-Based Diagnosis (MBD), the problem
of computing a diagnosis in a strong-fault model
(SFM) is computationally much harder than in a
weak-fault model (WFM). For example, in propo-
sitional Horn models, computing the first minimal
diagnosis in a weak-fault model (WFM) is in P
but is NP-hard for strong-fault models. As a re-
sult, SFM problems of practical significance have
not been studied in great depth within the MBD
community. In this paper we describe an algorithm
that renders the problem of computing a diagno-
sis in several important SFM subclasses no harder
than a similar computation in a WFM. We propose
an approach for efficiently computing minimal di-
agnoses for these subclasses of SFM that extends
existing conflict-based algorithms like GDE (Sher-
lock) and CDA∗. Experiments on ISCAS85 combi-
national circuits show (1) inference speedups with
CDA∗of up to a factor of 8, and (2) an average of
28% reduction in the average conflict size, at the
price of an extra low-polynomial-time consistency
check for a candidate diagnosis.

1 Modeling for Diagnostic Inference

Model-based diagnosis (MBD), as formulated in terms of
logic [Reiter, 1987], focuses on determining whether an as-
signment of failure status to a set of mode-variables is con-
sistent with a system description and an observation (e.g., of
sensor values). Hence, the diagnostic process consists of tak-
ing an observation OBS, and then inferring the failure-mode
assignment (diagnosis) consistent with OBS.

Within MBD, two broad classes of model types have been
specified: weak-fault models WFM [de Kleer et al., 1992]
and strong-fault models SFM [Struss and Dressler, 1989].
Traditionally, WFM has been considered to be computa-
tionally simple, and SFM computationally hard. Weak-
fault models describe a system only in terms of its normal
(non-faulty) behaviour, whereas strong-fault models include
a definition of some aspects of abnormal behaviour. Strong-
fault models can avoid violating physical rules (cf. [Struss
and Dressler, 1989]), but at the cost of increased complex-
ity: moving from a binary-valued model with n components
(which is adequate for weak-fault models) to one with m + 1

possible faulty values increases the maximum number of fail-
ure candidates from 2n to (m + 1)n.

In terms of worst-case complexity, finding the first mini-
mal diagnosis for a Horn model in WFM can be done in
polynomial time, but finding the next minimal diagnosis is
NP-complete [Friedrich et al., 1990]. In contrast, inference
in strong-fault models entails computing kernel diagnoses [de
Kleer et al., 1992], which is a ΣP

2 -hard task and is known to
be computationally intensive in practice; for example, kernel
diagnoses are given by the prime implicants of the minimal
conflicts [de Kleer et al., 1992]. Further, the average case
complexity of reasoning in WFM versus SFM increases
from poly-time in n (WFM) to exponential in n (SFM) [de
Kleer et al., 1992].

Given this intractability associated with inference using
SFM, we show that, by closer examination of SFM, there is
a spectrum of model types, and corresponding inference com-
plexities. We identify two main categories of SFM, which
we call literal-based SFM, lSFM, and function-based SFM,
fSFM, and show that lSFM has the same properties (includ-
ing inference complexity) as WFM, whereas fSFM has the
properties traditionally assigned to SFM.

This paper is the first detailed analysis of SFM, to our
knowledge, which exploits model structure for computational
advantage. It demonstrates the spectrum of fault modeling
choices available to the system designer, and the computa-
tional implications such choices impose on the resulting di-
agnostic inference.

We propose a SFM algorithm that: (1) decomposes a
strong-fault model into strong and weak sub-models; (2)
computes diagnoses first in the “relaxed” weak sub-model;
and then (3) discards any diagnosis which is not also a diag-
nosis in the strong sub-model. We identify classes of SFM
in which the SFM diagnosis verification (step 3 above) can
be done efficiently. Using ISCAS85 benchmark circuits, we
have empirically demonstrated that: (1) our algorithm re-
duces the diagnosis computation time in CDA∗by up to a fac-
tor of 8; and (2) the average LTMS conflict size decreases
(at the price of an extra consistency check, which has low-
polynomial or better time-complexity for several classes of
propositional strong-fault models).

2 Related Work

One of the key elements of our approach is decomposing a
strong-fault model into strong and weak sub-models, and then
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computing diagnoses first in the “relaxed” weak sub-model,
and efficiently verifying if this diagnosis is also a diagnosis
in the strong sub-model.

Mozetič and Holzbaur [1994] have proposed a related ap-
proach: their diagnostic engine, IDA, computes diagnoses
first with a structural model, which specifies the topological
connections of components in the model. This model enables
propagation of input values to components to output values,
given that the component is OK, and is strictly less expres-
sive than either weak- or strong-fault models. Given any di-
agnoses computed in a structural model, they are then verified
by the weak fault-model, and finally the resulting minimal di-
agnoses are verified by the strong-fault model.

In contrast to Mozetič and Holzbaur, who relax models
into an abstract structural relation, we relax models by parti-
tioning the model into weak and strong sub-models, and then
verifying the diagnoses of the weak sub-model by the strong
sub-model (exploiting the efficient satisfiability of particular
classes of strong sub-model, such as lSFM). Furthermore,
our work differs in that they make assumptions on the under-
lying MBD engines, incrementally updating the underlying
conflict set, a step which is not necessary in our approach.
In contrast to IDA, our relaxation scheme and algorithm are
completely orthogonal to the diagnostic engine.

Our work also bears some relation to work on abstraction
of propositional knowledge bases, e.g., [Selman and Kautz,
1996; del Val, 2000]. However, rather than relax a model to a
Horn approximation, we relax a strong-fault diagnostic model
to a more tractable sub-model, the weak-fault model.

This paper also characterises strong-fault models. In con-
trast to previous work discussing strong fault models, e.g.,
[Console and Torasso, 1991; Mozetič and Holzbaur, 1994;
Struss and Dressler, 1989], we propose tractable sub-classes
of strong-fault models that occur in practice, such as stuck-at
circuit models.

Maier and Sachenbacher [2008] propose a general abstrac-
tion approach within the framework of constraint optimiza-
tion. This approach is orthogonal to ours, in that it adaptively
abstracts constraints to control the memory requirements
of message-passing algorithms within a tree-decomposition
framework, whereas we abstract the model prior to any infer-
ence, independent of any particular inference algorithm. It is
possible to combine these two approaches, which is a topic of
future work.

Strong-fault model relaxation is related to hierarchical ab-
straction [Chittaro and Ranon, 2004]. Due to the bad worst-
case computational complexity of diagnosis, hierarchical di-
agnosis is often necessary, and strong-fault model relaxation
can be applied at each level of a hierarchical abstraction to
further improve inference efficiency.

3 Diagnostic Model Taxonomy

We represent an artifact as a propositional Wff over a set V
of variables.

Definition 1 (Diagnostic System). A diagnostic system DS is
defined as the triple DS = 〈SD, COMPS,OBS〉, where SD
is a propositional theory over a set of variables V , COMPS ⊆

V , OBS ⊆ V , COMPS is the set of assumables, and OBS is
the set of observables.
Throughout this paper we will assume that SD �|=⊥.

3.1 Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable
variables which are explanations for the system description
and an observation.
Definition 2 (Health Assignment). Given a diagnostic sys-
tem DS = 〈SD, COMPS,OBS〉, an assignment HA to all
variables in COMPS is defined as a health assignment.
A health assignment HA is a conjunction of propositional lit-
erals. Lit−(HA) is the set of negative literals in HA.
Definition 3 (Diagnosis). Given a diagnostic system DS =
〈SD,COMPS,OBS〉, an observation α over some variables
in OBS, and a health assignment ω, ω is a diagnosis iff SD∧
α ∧ ω �|=⊥.
Traditionally, other authors [de Kleer and Williams, 1987]
arrive at minimal diagnoses by computing a minimal hitting
set of the minimal conflicts (broadly, minimal health assign-
ments incompatible with the system description and the ob-
servation), while this paper makes no use of conflicts, hence
the equivalent direct definition above.

In the MBD literature, a range of types of “preferred” di-
agnosis has been proposed. This turns the MBD problem into
an optimization problem. We assume that we have a prefer-
ence relation � over diagnoses, which enables us to specify a
minimal diagnosis with respect to �.
Definition 4 (Minimal Diagnosis). A diagnosis ω� is defined
as minimal if no diagnosis ω̃� exists such that Lit−(ω̃�) ⊂
Lit−(ω�).
This definition allows us to capture the two best-known def-
initions of minimality, namely subset-minimality (using or-
der ⊆) and cardinality-minimality (using order ≤ which min-
imizes the number of negative literals).

The set of all diagnoses/minimal-cardinality (MC) diag-
noses of a system description SD and an observation α is
denoted as Ω(SD, α)/Ω≤(SD, α), respectively. We are often
interested in computing the size of |Ω≤(SD, α)|. We refer to
the latter problem as counting all MC diagnoses of SD and α.

3.2 Classification of Diagnostic Fault Models

We now introduce our classification of fault models. Given
a health variable hi and an arbitrary Wff Fi, normal be-
haviour for component i is denoted using the clause hi ⇒
Fi, and abnormal behaviour by ¬hi ⇒ Fi. Hence a
weak-fault model, as depicted in row 2 of Table 1, is
given by

∧n
i=1 (hi ⇒ Fi); a strong-fault model consists of

clauses denoting both normal and abnormal behaviour, i.e.,∧n
i=1 (hi ⇒ Fi,1) ∧ (¬hi ⇒ Fi,2).
We generalize the well-known class of stuck-at models us-

ing the strong-fault class lSFM, in which each clause denot-
ing abnormal behaviour is given by (¬hi ⇒ li) for some lit-
eral li; for example, this captures component i (with output li
being stuck-at-0) as given by [(hi = stuck-at-0) ⇒ (li = 0)].

The class hSFM of Horn strong-fault models has the con-
sequent Wff Fi restricted to Horn clauses. The class fSFM
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Notation Model Class System Description Restrictions

M abduction models propositional Wff

WFM weak-fault models
nV

i=1

(hi ⇒ Fi) none of hi appears in Fj , hi ∈ COMPS (1 ≤
i, j ≤ n)

SFM strong-fault models SFM = lSFM ∪ hSFM ∪ fSFM

lSFM literal-based strong-fault models
nV

i=1

(hi ⇒ Fi) ∧ (¬hi ⇒ li) none of hi appears in Fj , hi ∈ COMPS, li �∈
COMPS, (1 ≤ i, j ≤ n)

hSFM Horn strong-fault models
nV

i=1

(hi ⇒ Fi) ∧ (¬hi ⇒ Hi) none of hi appears in Fj , Hi = xi,1 ∨ xi,2 ∨ . . .∨
xi,ni is a disjunction with at most one negative lit-
eral (1 ≤ i, j ≤ n)

fSFM functional strong-fault models
nV

i=1

(hi ⇒ Fi,1) ∧ (¬hi ⇒ Fi,2) none of hi appears in Fj,1 and Fj,2 for 1 ≤ i, j ≤
n

nlSFM negative literal strong-fault models
nV

i=1

(hi ⇒ Fi) ∧ (¬hi ⇒ ¬Fi) none of hi appears in Fj , hi ∈ COMPS (1 ≤
i, j ≤ n)

Table 1: Model classification

of functional strong-fault models allows the consequent Wff
Fi to take on any form. Finally, the class nlSFM of negative-
literal strong-fault models has the consequent Wff Fi re-
stricted to defining the negation of the normal behaviour of
component i given hi.

4 SFM Algorithm

In this section we show that we can define an algorithm for
specific classes of strong fault models which have complexity
of the same class as weak fault models.

4.1 SFM Decomposability

We use the notion of model decomposability in this algo-
rithm, which we introduce first.
Proposition 1. SD ∈ SFM is decomposable, i.e., SD =
SDw∧SDs, where SDw, SDs are the weak and strong subsets
of clauses, respectively, such that the subsets have no clauses
in common, i.e., SDw ∩ SDs = ∅.

Proof. If we have a consistent SD, there can be no clause of
the form hi ∧ ¬hi ⇒ Fi, where Fi is an arbitrary Wff ; i.e.,
every clause can have only one of hi or ¬hi in it. Hence
we must be able to partition the clauses into: SDw which
consists of clauses of the form hi ⇒ Fi, for i = 1, ...,m,
and SDs which consists of clauses of the form ¬hi ⇒ Fi, for
i = 1, ...,m. As a consequence, we can decompose SD =
SDw ∪ SDs, such that SDw ∩ SDs = ∅.

In order to make use of this decomposability property,
we need to prove that the strong fault portion of the model
SDs will constrain the diagnoses that are generated by the
weak part of the model SDw, since we compute the inter-
section of the diagnosis sets of the weak (Ω(SDw, OBS))
and strong (Ω(SDs, OBS)) sub-models, i.e., Ω(SD, OBS) =
Ω(SDs, OBS) ∩ Ω(SDw, OBS).
Lemma 1. For a strong fault model SD ∈ SFM which is
decomposable such that SD = SDs ∧ SDw, we must have
Ω(SD, α) = Ω(SDw, α) \ Ω(SDs, α).

Proof. Since we are using a monotonic propositional logic,
adding extra clauses to any formula F will reduce the number
of logical models (diagnoses) of F . It is easy to show that
Ω(SDw, α) ⊇ Ω(SDs, α). The diagnoses of SDs alone are
given by Ω(SDs, α), and diagnoses excluded by SDs alone
are given by Ω(SDs, α). Hence by adding SDs to SDw we
obtain Ω(SD, α) = Ω(SDw, α) \ Ω(SDs, α).

4.2 SFM Algorithm

Algorithm 1 shows how SFM decomposability can be used to
extend existing MBD engines which can benefit from reason-
ing in WFM.

Algorithm 1 SFM Decomposition Algorithm
1: function DIAGNOSE(DS, α) returns a set of diagnoses

inputs: DS = 〈SD, COMPS,OBS〉, diag. system
α, term, observation

local variables: ω, term, diagnosis
z, term, internal variables
SDw, SDs, system descriptions
Ω, result, set of diagnoses

2: SDw ← NOMINALBEHAVIOR(SD)
3: SDs ← FAULTYBEHAVIOR(SD)
4: while MOREDIAGNOSES?(SDw, α) do
5: ω ← NEXTDIAGNOSIS(SDw, α)
6: U ← COMPUTEINTERNALS(SDw, α, ω)
7: if SDs ∧ α ∧ ω ∧ U �|=⊥ then
8: Ω ← Ω ∪ {ω}
9: end if

10: end while
11: return Ω
12: end function

Note that Alg. 1 is independent of the diagnostic inference
engine Ξ. In lines 2-3, we decompose the model; in line
5 we compute a diagnosis ω using the weak portion SDw

of the model using Ξ. Then, line 7 determines if ω is con-
sistent with the strong portion of model, SDs. Our SFM
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algorithm relies on being able to assign values in function
COMPUTEINTERNALS to all internal variables, the correct-
ness of which we show in Lemma 3.

The complexity of Diagnose(DS, α) depends on the com-
plexity of three steps:

1. Computing a diagnosis in a weak fault model using a
diagnostic oracle Ξ;

2. Computing values of internal variables U = V \(OBS∪
COMPS);

3. Computing a diagnosis in the strong portion of the fault
model, SDs.

Our algorithm is independent of the diagnostic oracle Ξ,
so we state the worst-case complexity here, and do not focus
on the average-case complexity of any particular inference
algorithm.

The complexity of computing a diagnosis in a weak fault
model SD ∈ WFM (e.g., in the weak portion SDw of the
fault model) is as follows:

Lemma 2. Given SD ∈ WFM, an observation α, the
complexity of computing the first diagnosis ω(SD, α) is Σp

1-
complete, and of computing subsequent diagnoses is Σp

2-
complete.

Proof. For the class of propositional Horn abduction prob-
lems, Bylander et al. [1991] show that computing the first di-
agnosis ω(SD, α) is polynomial in |COMPS| + |OBS|), and
of computing subsequent diagnoses is Σp

1-complete. Since
we now deal with general propositional problems, the re-
spective complexities will be up one level of the polyno-
mial hierarchy, i.e., computing the first diagnosis ω(SD, α)
is Σp

1-complete, and of computing subsequent diagnoses is
Σp

2-complete. Further, these results concur with appropriate
formulations in [Nordh and Zanuttini, 2008].

The complexity of computing the internal variables is as fol-
lows:

Lemma 3. Given SD ∈ WFM, an observation α assign-
ing values to all variables in OBS, and a diagnosis ω, we
can assign values to all internal variables U = V \ (OBS ∪
COMPS) in time O(|COMPS| · |V |).
Proof (Sketch). We first show the correctness of this proce-
dure, and then show its complexity.

Correctness: Let OBS = IN ∪ OUT. For SD ∈ WFM
and α, diagnosis ω assigns all hi for the clauses hi ⇒ Fi. For
each component i that has all inputs in IN, we can compute its
outputs given hi. Here we have to distinguish (1) hi and (2)
¬hi. In (1) the output of each gate can be computed directly
from the inputs and the assumption that the gate is function-
ing correctly. In (2) the output of the gate is opposite to the
one of a correctly functioning gate, otherwise the diagnos-
tic inference cannot deduce ¬hi. If the circuit is connected,
which we assume is the case, we can recursively compute the
outputs of all downstream components, using induction on
COMPS and the connectivity assumption.

Complexity: In the worst case every component has O(|V |)
outputs, each of which can be determined in O(1) time, hence
a total of O(|COMPS| · |V |) computations.

For nlSFM, we prove the following Lemma to be used later.

Lemma 4. The strong part SDs of SD ∈ nlSFM is isomor-
phic to SD ∈ WFM.

Proof. We show this isomorphism by rewriting SDs so that
it has the form of SDw. SDs has the form ¬hi ⇒ ¬Fi, and
SDw has the form hi ⇒ Fi. If we rename the literals in SDs

by replacing each literal v ∈ V such that ¬vi is replaced with
ṽi, we obtain SDs with the form h̃i ⇒ F̃i. The description
for the strong part is now isomorphic to the description for
the weak part, up to variable renaming.

The complexity of computing a diagnosis in the strong por-
tion SDs of the fault model depends on the class of the
model. We focus on the following strong fault model classes:
lSFM, nlSFM, hSFM, fSFM.

Lemma 5. Given the strong portion SDs of SD ∈ SFM, an
observation α assigning values to all variables in OBS, di-
agnosis ω(SDw, α) for the weak portion SDs of SD ∈ SFM,
and values for internal variables U = V \(OBS∪COMPS),
the worst-case complexity of the consistency check SDs∧α∧
ω ∧ U �|=⊥ is given by:

• O(|V |) for SD ∈ lSFM;

• O(|V |) for SD ∈ hSFM;

• Σp
1-complete for the first diagnosis for SD ∈ nlSFM;

• Σp
2-complete for SD ∈ fSFM.

Proof. For SD ∈ lSFM, the strong part of the system de-
scription SDs is a 2SAT Boolean function, since it has the
form

∧n
i=1(¬hi ⇒ li) ≡

∧n
i=1(hi ∨¬li). As a consequence,

SDS can be solved in time linear in the number of literals
(using unit propagation).

For SD ∈ hSFM, SDs has the form ¬hi ⇒ Hi. Given
we have assignments to all the hi, we need to check the con-
sistency of a set of Horn formulae each of which is set to t
or f . Since consistency checking of a set of Horn formulae
is a linear-time operation, we can evaluate the consistency of
SDs in linear time.

For SD ∈ nlSFM, the strong part of the system descrip-
tion SDs has the form

∧n
i=1 [¬hi ⇒ (¬oi ⇔ Ci)], where Ci

is any CNF Wff that does not include oi or hi, for i =
1, ..., n. Using Lemma 4, we can show that this task has the
same complexity as computing a weak-fault diagnosis.

For SD ∈ fSFM (the case of general clauses),
the complexity reverts to the worst-case result of Σp

2-
completeness.

5 Experimental Results

Our approach applies to any domain in which models can be
defined as in Table 1. We empirically demonstrate our ap-
proach using the well-known ISCAS85 circuits [Brglez and
Fujiwara, 1985]. In addition to the original ISCAS85 models,
we have performed cone reductions as described by Siddiqi
and Huang [2007] and de Kleer [2008].

Table 2 gives an overview of all models (V and C denote
the total number of variables and number of clauses, respec-
tively). For each circuit we have generated 100 non-masking
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original reduced

id |OBS| |COMPS| V C |COMPS|
c432 43 160 356 1 028 59

c499 73 202 445 1 428 58
c880 86 383 826 2 224 77
c1355 73 546 1 133 3 220 58
c1908 58 880 1 793 4 756 160
c2670 373 1 193 2 695 6 538 167
c3540 72 1 669 3 388 9 216 353
c5315 301 2 307 4 792 13 386 385
c6288 64 2 416 4 864 14 432 1 456
c7552 315 3 512 7 232 19 312 545

Table 2: nlSFM ISCAS85 models

double-faults and counted the number of minimal-cardinality
diagnoses for each observation. The results are summarized
in Table 3 for the nlSFM and WFM representations.

original reduced

id min mean max min mean max

c432 88 165.8 370 18 55 114

c499 168 214.1 292 2 6.9 11
c880 783 1 032.5 1 944 15 28 99
c1355 1 200 1 623.3 1 996 3 6 18
c1908 1 782 2 321.9 5 614 37 84.4 625
c2670 2 747 3 621.7 7 275 9 16.8 90
c3540 1 364 1 642.2 2 650 128 169.1 312
c5315 3 312 6 202.1 17 423 10 21.6 121
c6288 6 246 8 526.1 15 795 2 385 3 040.4 4 970
c7552 16 617 23 641.2 46 003 22 61.3 657

Table 3: Number of MC diagnoses (nlSFM)

Next we have repeated the counting of MC diagnoses in
stuck-at-0 and stuck-at-1 models (SD ∈ lSFM). The results
are shown in Table 4 (data for stuck-at-1 are very similar).
With lSFM, there are observations α such that SD ∧ α |=⊥.
The number of these “inconsistent” observations are given in
the θ columns of Table 4. Note that, in practice, θ increases
with the cardinality of the MC diagnoses.

original reduced

id min mean max θ min mean max θ

c432 19 66.2 192 0 1 32.1 103 0

c499 6 36.4 75 32 1 4.8 13 64
c880 114 217.9 510 0 1 5.4 21 10
c1355 286 503.6 688 0 1 4.8 11 54
c1908 410 716.5 1 823 0 1 51.5 522 7
c2670 46 952.2 1 950 0 1 7.1 30 30
c3540 42 333.3 768 0 1 29.1 112 57
c5315 372 1 591.6 4 615 0 1 13.1 50 30
c6288 704 1 083.1 1 755 0 188 374.3 784 0
c7552 3 200 6 168.9 15 655 0 2 33.9 241 22

Table 4: Number of MC diagnoses (lSFM, stuck-at-0)

The data in Table 3 and Table 4, show similar diagnostic den-

sity for lSFM and nlSFM models. For the non-reduced
circuits, the ratio of the mean number of MC diagnoses
in lSFM to nlSFM varies between 0.13 (for stuck-at-0,
c6552) and 0.41 (for stuck-at-1, c6552). The mean ratio of
0.26 shows that more than a quarter of the WFM diagnoses
are also diagnoses in SFM. This evidence, together with the
large number of MC diagnoses in WFM, presume the exis-
tence of one or several continuous large lSFM subspaces.

Next we studied the effect of the fault modes on the average
conflict size computed by a Logic-Based Truth Maintenance
System (LTMS) [Forbus and de Kleer, 1993]. The conflict
size is very important for algorithms like GDE [de Kleer and
Williams, 1987] and CDA∗[Williams and Ragno, 2007]. The
LTMS conflict sizes for full models are shown in Table 5.
We have measured similar reduction in the conflict size for
reduced models. For each circuit and observation we com-
puted the average conflict size from the “all nominal” candi-
date (SD ∧ α leads to a double fault, hence assuming each
component is healthy leads to a conflict) and from all single-
fault candidates. The WFM columns show these values av-
eraged over all observations. The remaining three columns
show the ratio of the average conflict sizes in WFM to the
respective SFM subclasses.

id WFM stuck-at-0 stuck-at-1 nlSFM

c432 2.91 0.97 0.95 1.04

c499 3.42 0.94 0.92 0.98
c880 2.33 0.88 0.89 0.85
c1355 2.44 0.83 0.86 0.79
c1908 3.95 0.96 0.98 1.03
c2670 2.74 0.98 0.96 0.97
c3540 3.09 0.95 0.96 0.96
c5315 3.04 0.97 0.96 0.96
c6288 3.15 0.7 0.67 0.64
c7552 3.06 0.99 0.93 0.99

Table 5: Average LTMS conflict size

Interestingly, the savings in the average conflict size (between
30% and 36%) are biggest in c6288, which is considered the
most difficult ISCAS85 circuit in MBD.

Finally, we studied the effect of Alg. 1 on CDA∗, whose av-
erage-case complexity is governed by the following two NP-
hard problems, which must be solved to compute minimal di-
agnoses, given a set of (non-minimal) conflicts: (1) compute
the set of minimal conflicts by using, for example, directed
resolution, and (2) compute the Minimal Hitting Sets (MHS)
of all minimal conflicts [Reiter, 1987]. In this experiment
we measured the time for computing the first 10 diagnoses in
lSFM with (1) CDA∗and (2) Alg. 1 (i.e., CDA∗with WFM
models and then discarding part of the WFM diagnoses af-
ter fast consistency check). Table 6 demonstrates speed-ups
of up to 750%. Note that our CDA∗implementation is pretty
limited in solving only “easier” diagnostic problems, and the
advantage of model relaxation would be more visible with
problems leading to diagnoses of higher cardinalities (more
conflicts).

Table 6 shows that Alg. 1 leads to a considerable diagnostic
speedup (up to a factor of 8) and that the speedup increases
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original reduced
id CDA∗ Alg. 1 speedup CDA∗ Alg. 1 speedup

[s] [s] [%] [s] [s] [%]

c432 3.2 1.2 267 0.1 0.1 100

c499 3.7 1.3 285 0.2 0.1 200
c880 12.2 10.1 121 1.4 0.2 700
c1355 25.8 17 152 3 0.6 500
c1908 49.1 15.3 321 5.2 4 130
c2670 191 43.1 443 15.9 10.4 153
c3540 514.7 148.6 346 28.1 18.8 149
c5315 712.9 94.8 752 81.2 72.3 112
c6288 2 240 412.8 543 1815.1 812.1 224
c7552 915.1 212.1 431 93.5 41.1 227

Table 6: Speed-up of CDA∗due to model relaxation

with the model size. The speedup is better observed with
the non-reduced models. We expect even better speedup for
diagnosis instances leading to a higher number of conflicts
(and respectively higher MC diagnosis cardinality).

6 Conclusions

We have provided a classification of strong-fault diagnostics
models, and have shown some computational properties of
key sub-classes of such models. In particular, by decompos-
ing a strong-fault model into disjoint strong and weak sub-
models, we have shown a relaxation algorithm which im-
proves the efficiency of conflict-based inference algorithms
by computing first the diagnoses for the weak sub-model,
Ω(SDw, α), and then removing any diagnoses in Ω(SDw, α)
inconsistent with the strong sub-model, which can be per-
formed in low-polynomial or better time for several classes
of propositional strong-fault models.

Our method is complementary to algorithms (such as
conflict-based algorithms), which, on average, work faster
with WFM models. Using ISCAS85 circuits, we have em-
pirically demonstrated that: (1) a large portion of the WFM
models are also diagnoses in the corresponding SFM mod-
els; (2) the average LTMS conflict size decreases; and (3)
the diagnosis computation time in CDA∗decreases by up to
a factor of 8. Our method gives best results with the “diffi-
cult” c6288 circuit, and we conjecture that its speedups will
increase with the complexity of diagnostic inference.

In the future we plan to extend our methods beyond propo-
sitional logic. One straightforward extension of our strong-
fault model classification is to many-valued logic, where
components may have more than one nominal state; similar
relaxation (or strengthening) techniques are also applicable to
temporal logic.
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