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Abstract

We propose a new framework for reasoning about
knowledge, action and time for domains that in-
clude actions with non-deterministic and context-
dependent effects. The axiomatization is based on
the Event Calculus and combines the expressive-
ness of possible worlds semantics with the effi-
ciency of approaches that dispense the use of the
accessibility relation. The framework is proved
logically sound and, when restricted to determin-
istic domains, is also logically complete. To prove
correctness of the approach, we construct a knowl-
edge theory based on a branching version of the
Event Calculus and study their correlation.

1 Introduction

Agents operating in complex dynamic worlds often need to
achieve control over partially known and uncertain environ-
ments. Managing information acquired at execution time
through sensing has proven to be an important cognitive skill.
The topic of reasoning about action and knowledge has re-
sulted in a wave of research triggered by Moore’s adaptation
of the possible worlds model in formal action theories [1985]
and has since been extended in a multitude of formalisms;
within the Situation Calculus Scherl and Levesque [2003]
have adapted Reiter’s solution to the frame problem which
has also been extended to concurrent actions [Scherl, 2003],
Thielscher [2000] has utilized the Fluent Calculus to also
solve the inferential frame problem for knowledge and pro-
vide an elaborate notion of ability, while Lobo et al. [2001]
introduced the action languageAk that in addition considered
non-deterministic action effects that cause loss of knowledge.

While these rigorous frameworks have provided very ex-
pressive formal accounts for knowledge and change, a se-
rious impediment has been identified, owed to their depen-
dence on the accessibility relation used to define knowledge
in possible worlds (the semantics of epistemic states inAk are
similarly defined); determining whether n atomic formulae
are known potentially requires 2n distinguishable worlds to
check truth in, leading to computationally less promising im-
plementations. Aiming at tractability, contemporary progress
in the field explores alternative characterizations of knowl-
edge that are disengaged from the accessibility relation. An

increasing number of recent approaches focus on restricting
expressiveness, in order to perform efficient reasoning while
preserving logical completeness with respect to the standard
possible worlds specifications.

In this paper, we propose a new knowledge framework
for enabling reasoning about a broad range of common-
sense phenomena, beyond those considered by existing ap-
proaches that do not manipulate possible worlds. Specifi-
cally, we construct a unified theory of action, knowledge and
time within the Event Calculus, to reason non-monotonically
about conditional and indirect knowledge effects, ramifica-
tions of knowledge, as well as loss of knowledge caused by
non-deterministic events. Moreover, due to the explicit rep-
resentation of time, the framework can exploit the interaction
of knowledge and time, in order to express temporal knowl-
edge and delayed knowledge effects, cumulative and can-
celing knowledge effects of concurrent events or knowledge
about continuously changing world aspects. The proposed
approach treats knowledge in a way such that disjunctive or
existentially quantified formulae are still derivable, approxi-
mating the possible worlds-based theories, but, when reason-
ably restricted, it can also perform tractable reasoning.

We illustrate logical soundness and completeness in deter-
ministic domains with respect to the possible worlds speci-
fications by constructing a branching Event Calculus knowl-
edge theory and proving equivalence in the way knowledge
changes in each case. We also suggest a way to extend the
result and achieve correctness in the general case.

The paper proceeds as follows. We first review related ap-
proaches that do not utilize the accessibility relation. Then,
we describe our proposed knowledge theory and also a theory
based on a branching time representation that uses possible
worlds. We study their correlation in Section 5. We conclude
with a discussion on weaknesses and future objectives.

2 Related Work

To alleviate the computational intractability of reasoning with
the possible worlds semantics (as well as other problematic
issues, such as the logical omniscience side-effect), alterna-
tive approaches for reasoning about action and knowledge,
disengaged from the accessibility relation, have been pro-
posed. These approaches adopt restrictions about the type of
knowledge formulae or domain classes that can be supported.
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Maybe the first stimulating approach towards an alterna-
tive formal account for reasoning about knowledge and ac-
tion is due to Demolombe and Pozos-Parra [2000] who intro-
duced two different knowledge fluents to explicitly represent
the knowledge that an ordinary fluent is true or false. Working
on the Situation Calculus, they treated knowledge change as
changing each of these fluents individually, the same way or-
dinary fluent change is performed in the calculus, thus reduc-
ing reasoning complexity by linearly increasing the number
of fluents. Nevertheless, the expressive power of the repre-
sentation was limited to knowledge of literals.

Petrick and Levesque [2002] have proved the correspon-
dence of this approach to the possible worlds-based Situation
Calculus axiomatization for successor state axioms of a re-
stricted form. Specifically, when the conditions under which
a fluent changes its truth value contain no fluent (context-free
theories) or fluents in a restricted disjunctive normal form
(literal-based theories). Moreover, they have defined a com-
bined action theory that extended knowledge fluents to also
account for first-order formulae when disjunctive knowledge
is tautology-free, but enforcing it to be broken apart into
knowledge of the individual parts. Recently, a decomposi-
tion property of even more expressive classes of action the-
ories has been suggested, based on the notion of a Cartesian
situation, that simplifies certain complex types of disjunctive
formulae into equivalent components that only mention fluent
literals [Petrick, 2008]. The price to pay is a requirement of
definite knowledge of some of the disjunction components.

Regression used by standard Situation Calculus is consid-
ered impractical for large number of actions and introduces
strong assumptions, such as closed-world and domain clo-
sure, which is problematic when reasoning with incomplete
knowledge. Recent approaches deploy different forms of pro-
gression. Liu and Levesque [2005] for instance, study a class
of incomplete knowledge that can be represented in so called
proper KBs and perform progression on them. The approach
is efficient and sound for actions with local-effects (i.e., when
the properties of fluents changed are contained in the action),
still proper KBs do not permit some general forms of disjunc-
tions. The solution may even be complete when queries are
in a certain normal form and the theory is context-complete
(i.e., when there is complete knowledge about the context of
context-dependent actions). The latter restriction is raised in
[Vassos and Levesque, 2007], but with an extra cost of ex-
plicitly listing the possible values of each fluent, essentially
rendering the theory propositional.

In all aforementioned approaches knowledge loss due to
uncertain effects or unknown preconditions is not investi-
gated. Beyond Situation Calculus, Son and Baral [2001] ex-
tend the action language A capturing an agent’s mental state
with a simpler structure, as compared to traditional Kripke
models and provide semantics for sound progression approx-
imations of action transitions that have a more manageable
state space and a lower complexity. Knowledge update is also
suggested in [Amir and Russell, 2003] that uses transition of
belief states instead of possible worlds. Algorithms for com-
plete or approximate recursive state estimation (or logical fil-
tering) are described, including non-deterministic domains.
Both approaches are restricted to the propositional case.

3 DECKT Axiomatization

Our account of action and knowledge is formulated within
the Linear Discrete Event Calculus (LDEC) [Mueller, 2006],
a discrete version of the classical logic Event Calculus [Miller
and Shanahan, 2002]. This formalism applies the principle of
inertia, which captures the property that things tend to per-
sist over time unless affected by some event; when released
from inertia, a fluent may have a fluctuating truth value. It
also uses circumscription [Lifschitz, 1994] to solve the frame
problem and support default reasoning. A set of predicates is
defined to express which fluents hold when (HoldsAt), what
events happen (Happens), what their effects are (Initiates,
Terminates, Releases) and whether a fluent is subject to in-
ertia or released from it (ReleasedAt). If a fluent is initiated
or terminated it becomes inertial at the next time instant.

The proposed Discrete Event Calculus Knowledge The-
ory (DECKT) assumes agents acting in dynamic, non-
deterministic environments, having accurate but potentially
incomplete knowledge and able to perform both knowledge-
producing actions and actions that cause loss of knowledge,
as well as actions with context-dependent effects. In a famil-
iar trend, we treat knowledge as a fluent, namely the Knows
fluent, to express knowledge about fluents and fluent formu-
lae. The Knows fluent is always released from inertia, as
a means to enable the application of rules in an elaboration
tolerant manner, i.e., without having to write additional rules
for each new axiom added to the theory. As a consequence,
its truth value is only dependent on the state constraints trig-
gered at each time instant that refer to it, preventing it from
fluctuating. Still, as situations where the effects of actions are
subject to inertia are very common, knowledge about them
should persist until some event affects them. To ”simulate”
inertial knowledge, we introduce the KP fluent (for ”knows
persistently”). In brief, direct action effects cause inertial
knowledge, while ramifications of knowledge, owed to state
constraints, do not affect the KP fluent at all.

This intuition is captured in DECKT’s core set of axioms
presented in the next section. First, we introduce a minimal
set of axioms and abbreviations needed to deploy the knowl-
edge theory and clarify its properties. In the rest, event vari-
ables are represented by e, fluent variables by f , first-order
fluent formulae by φ and variables of the timepoint sort by t,
with subscripts where necessary.1

(D) HoldsAt(Knows(φ), t) ⇒ HoldsAt(φ, t)
(K) HoldsAt(Knows(φ1 ⇒ φ2), t) ⇒
(HoldsAt(Knows(φ1), t) ⇒ HoldsAt(Knows(φ2), t))
(P1) HoldsAt(Knows(φ1 ∧ φ2), t) ⇔
HoldsAt(Knows(φ1), t) ∧ HoldsAt(Knows(φ2), t)
(P2) HoldsAt(Knows(φ1), t) ∨
HoldsAt(Knows(φ2), t) ⇒ HoldsAt(Knows(φ1∨φ2), t)
(P3) HoldsAt(Knows(∀�xφ), t) ⇔
∀�xHoldsAt(Knows(φ), t)
(P4) ∃�xHoldsAt(Knows(φ), t) ⇒
HoldsAt(Knows(∃�xφ), t)
This set is flexible enough not to adopt certain undesirable
properties of epistemic logics, such as the necessitation rule

1Free variables are implicitly universally quantified. The term
fluent literal denotes either a fluent f(�x) or its negation ¬f(�x).

886



(NR), which dictates that all valid formulae are known, lead-
ing to implementations that avoid aspects of the logical om-
niscience problem. In general, in DECKT, instead of (D) we
can apply the consistency axiom, but for the purposes of the
present study we concentrate on a theory of knowledge, rather
than belief. Furthermore, according to (P1)-(P4) no simplifi-
cation concerning disjunctive or existentially quantified for-
mulae is applied. Finally, we also introduce the abbreviation
(Kw) HoldsAt(Kw(φ), t) ≡
HoldsAt(Knows(φ), t) ∨ HoldsAt(Knows(¬φ), t)
and, similarly, HoldsAt(KPw(φ), t) for the KP fluent.

3.1 Core DECKT Axioms

DECKT consists of the following axiom sets:
Knowledge and the law of inertia. Knowledge is released

from inertia at all times.
(KT1) ReleasedAt(Knows(φ), t)

Knowledge persistence. This axiom captures the correla-
tion between the Knows and the KP fluent, introduced as a
state constraint to the theory. KP is always subject to inertia.
(KT2) HoldsAt(KP (φ), t) ⇒ HoldsAt(Knows(φ), t)

Knowledge minimization. In DECKT knowledge is de-
rived either from direct actions effects (see axiom sets (KT3-
6) below) that affect the KP fluent or indirectly from state
constraints of the form HoldsAt(φ1, t) ⇒ HoldsAt(φ2, t)
that affect the Knows fluent according to (K). As knowl-
edge is always released from inertia, we need a way to pre-
vent the Knows fluent from fluctuating whenever knowledge
cannot be inferred, i.e., whenever no domain state constraint
is triggered to produce either HoldsAt(Knows(φ2), t) or
HoldsAt(Knows(¬φ2), t). To obtain this result, we apply
a form of default reasoning, assuming that by default at any
timepoint knowledge about a fluent formula does not hold.
Axiom (KT7) below performs exactly such a minimization
to the extension of the Knows fluent (in a style similar to
performing circumscription to a formula for the purpose of
minimizing the extension of a predicate).

Let φ2(�fi), φ1(�f ′

j) denote arbitrary formulae whose only

free variables are fluents �fi, �f ′

j and which do not mention
epistemic fluents. Axiom (KT7) is structured as follows:

(KT7) HoldsAt(Kw(φ2(�fi)), t) ⇔

∃f ′

1
, ..., f ′

n(HoldsAt(Knows(φ1(�f ′

j)), t)∧

HoldsAt(Knows(φ1(�f ′

j) ⇒ (¬)φ2(�fi)), t))∨

HoldsAt(Knows(KPw(φ2(�fi))), t)

where f ′

1
, ..., f ′

n (0 ≤ n ≤ j) are those fluents in φ1(�f ′

j) that

do not appear in φ2(�fi). The intuition is that an agent knows
a formula iff there exists some state constraint known to be
triggered at that particular time instant (therefore (KT2) is
also accounted for).

By grounding (KT7) on the set of available state constraints
of a particular domain axiomatization, its instantiation can
significantly simplify the whole complexion and complexity
of the axiom. This set is well defined, even though it may
be modified online according to occurring events and con-
text. Suppose, for instance, that the only available to an agent
state constraints are HoldsAt(f1, t) ⇒ HoldsAt(f, t) and

HoldsAt(f2, t) ⇒ HoldsAt(f, t), then (KT7) instance for
f will be formulated as follows:
HoldsAt(Kw(f), t) ⇔
HoldsAt(Knows(f1 ∨ f2), t) ∨ HoldsAt(KPw(f), t).

Events with known preconditions. If an agent knows all
preconditions of a deterministic action, then it also knows its
effect. KP (f) and KP (¬f) cancel one another to preserve

consistency. Specifically whenever
∧i

[HoldsAt(fi, t)] ⇒
Initiates(e, f, t), i.e., the domain theory includes a posi-
tive effect axiom according to which event e initiates fluent f

when the conjunction of fluent preconditions �fi holds, then:

(KT3.1) Happens(e, t) ∧
∧i

[HoldsAt(Knows(fi), t)] ⇒
Initiates(e, KP (f), t)

(KT3.2) Happens(e, t) ∧
∧i[HoldsAt(Knows(fi), t)] ⇒

Terminates(e, KP (¬f), t)
Similarly, for negative effect axioms of the form

∧j
[HoldsAt(fj , t)] ⇒ Terminates(e, f, t) we have

(KT3.3) Happens(e, t) ∧
∧j

[HoldsAt(Knows(fj), t)] ⇒
Initiates(e, KP (¬f), t)

(KT3.4) Happens(e, t) ∧
∧j [HoldsAt(Knows(fj), t)] ⇒

Terminates(e, KP (f), t)
Knowledge-producing (sense) events.

(KT4) Initiates(sense(f), KPw(f), t)
From this axiom, Kw(f) is also implied, due to (KT2), (Kw).

Events with uncertain effects. If an action with deter-
ministic effects occurs, which (a) has at least one precondi-
tion whose truth value the agent does not know (hence, the
agent does not know whether the effect axiom is triggered),
(b) there is no precondition that the agent knows it does not
hold (otherwise, the agent would have been certain that the
effect axiom would not be triggered) and (c) the agent does
not already know the potential new truth value of the effect
fluent, then the agent loses its knowledge about the state of
the effect.

(KT5.1)
∨i

[¬HoldsAt(Kw(fi), t)]∧

¬HoldsAt(Knows(
∨i

¬fi), t)∧
¬HoldsAt(Knows(f), t) ∧ Happens(e, t) ⇒

Terminates(e, KPw(f), t)

whenever
∧i

[HoldsAt(fi, t)] ⇒ Initiates(e, f, t).

(KT5.2)
∨j

[¬HoldsAt(Kw(fj), t)]∧

¬HoldsAt(Knows(
∨j

¬fj), t)∧
¬HoldsAt(Knows(¬f), t) ∧ Happens(e, t) ⇒

Terminates(e, KPw(f), t)

whenever
∧j [HoldsAt(fj , t)] ⇒ Terminates(e, f, t).

Moreover, for actions with non-deterministic effects, i.e.,

whenever
∧k

[HoldsAt(fk, t)] ⇒ Releases(e, f, t), then
axiom (KT5.3) below expresses that if none of the precon-
ditions is known not to hold (either the effect’s preconditions
are unambiguously satisfied or the agent does not know if
they are satisfied; in either case knowledge about the effect is
lost), then the agent cannot infer the state of the effect.

(KT5.3) ¬HoldsAt(Knows(
∨k

¬fk), t)] ∧
Happens(e, t) ⇒ Terminates(e, KPw(f), t)

Hidden causal dependencies. The set of axioms (KT5)
captures direct fluent effects due to unknown preconditions,
causing knowledge to be lost. Still, knowledge about the ef-
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fect becomes contingent on the preconditions; sensing the
latter may provide information about the truth value of the
former (assuming no event happens in the meantime af-
fecting them). Such a dependency, which we call hidden
causal dependency (HCD), is inherently modeled in possible
worlds by appropriately decreasing the number of accessible
worlds, even when the agent’s epistemic state remains unaf-
fected. In DECKT we treat HCDs by means of a new fluent,
Implies(φ, f), which encodes a notion of epistemic causal-
ity in the sense that if future knowledge brings about φ is also
brings about f :
(Im) HoldsAt(Implies(φ, f), t) ⇒
HoldsAt(Knows(φ ⇒ f), t)

HCDs are created each time an action occurs whose effect
preconditions are unknown to the agent. For instance, for
positive effect axioms we have that:

(KT6.1)
∨i

[¬HoldsAt(Kw(fi), t)]∧

¬HoldsAt(Knows(
∨i

¬fi), t) ⇒

Initiates(e, Implies(
∧j

fj, f), t)

where �fj are those �fi that the agent does not know. In addi-
tion, if the agent knows that before the action the effect fluent
did not hold, another HCD is created between the effect and
the precondition (sensing that f is true means that all precon-
ditions must have been true, as well):

(KT6.2) ¬HoldsAt(Knows(
∨i

¬fi), t) ∧∨i[¬HoldsAt(Kw(fi), t)] ∧ HoldsAt(Knows(¬f), t) ⇒
∧j

[Initiates(e, Implies(f, fj), t)]

where �fj are those �fi that the agent does not know.
On the other hand, a HCD expires whenever any of the

involved fluents is potentially affected.2 The axiomatization
for negative and release effect axioms is defined in a similar
way, but, due to lack of space, we do not explicitly represent
all axioms here, instead refer to their conjunction as (KT6).

As an example with HCDs consider the effect axioms
HoldsAt(fp, t) ⇒ Initiates(e, f, t)
HoldsAt(f ′

p, t) ⇒ Terminates(e, f ′, t)
If initially no fluent is known, after Happens(e, T ) ax-
iom (KT6.1) results in HoldsAt(Implies(fp, f), T +1) and
HoldsAt(Implies(f ′

p, f
′), T + 1). Although still no fluent

is known, if the agent later senses either fp or f ′

p it can also

infer knowledge about f or f ′, respectively.
Similarly, if initially the agent knows that

HoldsAt(Knows(fp ∨ f ′

p), T ), at T +1 it can now in-

fer that HoldsAt(Knows(f ∨¬f ′), T + 1), due to (KT6.1),
(Im) and (K). Nevertheless, still none of f , f ′ is known!

4 BDECKT Axiomatization

To prove correctness of the DECKT treatment of knowledge
in terms of standard possible worlds semantics, we need to
show its correspondence to a theory that utilizes the latter
approach. Yet, no such theory exists for the Event Calcu-
lus and, moreover, the classical Event Calculus is based on

2Yet, new HCDs may be created, for instance if the event affects
some of the involved fluents non-deterministically. We substantiate
in detail the complete HCD axiomatization for even broader domain
classes that also involve natural actions in a further work.

a linear time representation, where parallel worlds cannot be
imitated. Therefore, in this section we construct a knowl-
edge theory that is based on the Branching Event Calculus
[Mueller, 2007] (BDEC) and study their equivalence.

BDEC is a modified version of the Linear Discrete Event
Calculus; the two formalisms are proved logically equivalent
on the grounds of a bridging set of axioms (see Section 5).
BDEC replaces the timepoint sort with the sort of situations
and introduces the relation S(s1, s2) to express that situation
s2 is a successor of s1 (in the rest, we also interchange sorts
for DECKT as well, to maintain consistency with Mueller’s
work). BDEC’s axiomatization shares the same set of axioms
with LDEC, with the addition of a second order induction
axiom similar to the one for the Situation Calculus. The dif-
ference to LDEC is that a situation is allowed to have zero
or more successors, therefore all event-related predicates are
modified to also specify the resulting situation. Thus, the fol-
lowing axiom is also introduced to capture the intuition:
(BDEC12) Happens(e, s1, s2) ⇒ S(s1, s2)

Our Branching Event Calculus Knowledge Theory
(BDECKT) follows Moore’s [1985] formalization of possi-
ble world semantics in action theories, where the number of
K-accessible worlds remains unchanged upon ordinary event
occurrences and reduces as appropriate when sense actions
occur. Similar to Scherl and Levesque’s approach for the Sit-
uation Calculus [2003], BDECKT generalizes BDEC in that
there is no single initial situation in the tree of alternative
situations, but rather a forest of trees each with its own ini-
tial situation. Note, also, that for reasons that will become
clear in the next section, we restrict non-determinism to only
allow for events with unknown preconditions; although re-
lease effect axioms are still modeled, we implicitly assume
that whenever a known fluent becomes released it remains
known, subject to some state constraint.

To axiomatize knowledge in BDECKT we introduce the
predicate K(s′, s) denoting that world (or situation) s′ is ac-
cessible from s. The theory proceeds as follows:
(BKT1) HoldsAt(KnowsB(f), s) ≡
∀s′K(s′, s) ⇒ HoldsAt(f, s′)
(BKT2) K(s′

1
, s1) ⇒

∃s2, s
′

2
(HappensB(e, s1, s2) ⇔ HappensB(e, s′

1
, s′

2
))

(BKT3) InitiatesB(e, f, s1, s2) ⇔ InitiatesB(e, f, s′
1
, s′

2
)

(BKT4) TerminatesB(e, f, s1, s2) ⇔
TerminatesB(e, f, s′

1
, s′

2
)

(BKT1) is the standard definition for knowledge. Axiom
(BKT2) states that an event happens in all K-related states,
while axioms (BKT3) and (BKT4) require for an event to
have the same effect regardless of the world it occurs in.

Ordinary events. When an ordinary event occurs in a sit-
uation, then all successor situations of the K-related to it sit-
uations (and only them) are K-related to its successor.
(BKT5) HappensB(e, s1, s2) ⇒
(K(s′

2
, s2) ⇔ ∃s′

1
(S(s′

1
, s′

2
) ∧ K(s′

1
, s1)))

Knowledge-producing (sense) events. Sensing a fluent
ensures that it will be known in the successor situation, i.e., it
will have the same truth value in all possible worlds.
(BKT6) HappensB(sense(f), s1, s2) ⇒
(K(s′

2
, s2) ⇔ ∃s′

1
(S(s′

1
, s′

2
) ∧ K(s′

1
, s1) ∧

(HoldsAt(f, s1) ⇔ HoldsAt(f, s′
1
))))
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5 DECKT - BDECKT Equivalence Result

In [2007] Mueller has established a set of mapping rules L
between the Linear and the Branching Event Calculus and
showed that these two versions can be logically equivalent.
This set restricts BDEC to a linear past (i.e., only one branch
at a time can have an equivalent linear axiomatization), which
introduces an important limitation to our attempt to relate
DECKT and BDECKT; non-determinism due to release ef-
fect axioms cannot be supported, as it requires new worlds to
emerge from a single one. Still, even this restriction can be
lifted, as we discuss in the next section.

The objective now is to show that knowledge evolves the
same way in both DECKT and BDECKT, i.e., the set of
known formulae is the same after a sequence of actions.
Therefore, in contrast to the linear and branching versions of
the classical Event Calculus, whose equivalence is based on a
one-to-one mapping of all their axioms, our intention here is
to only focus on those axioms of the two knowledge theories
that manipulate knowledge change. In particular, we focus on
proving logical equivalence between axiom sets (KT3,4,5,6)
and (BKT5,6) and define a set M that serves as a bridge be-
tween DECKT and BDECKT for that purpose.

The set L, defined by Mueller, comprises the following ax-
ioms, where SL(s1) denotes the successor situation of s1 in
the LDEC:
(L1) S(s1, s2) ⇔ SL(s1) = s2

(L2) HappensB(e, s1, s2) ⇔
Happens(e, s1) ∧ SL(s1) = s2

(L3) InitiatesB(e, f, s1, s2) ⇔ Initiates(e, f, s1)
(L4) TerminatesB(e, f, s1, s2) ⇔ Terminates(e, f, s1)
(L5) ReleasesB(e, f, s1, s2) ⇔ Releases(e, f, s1)

Let M be the following set of axioms:
(M1) HoldsAt(Knows(f), s) ⇔
HoldsAt(KnowsB(f), s)
(M2) SL(s1) = s2 ⇒
(K(s′

2
, s2) ⇒ ∃s′

1
(S(s′

1
, s′

2
) ∧ K(s′

1
, s1)))

(NR) If 
 HoldsAt(φ, t), then 
 HoldsAt(Knows(φ), t)
Axiom (M2) relates event occurrences in DECKT with
BDECKT’s accessibility relation. Specifically, it disallows
a world to be K-related to worlds other than those whose
precedents were K-related to its own precedent (apart from
the initial state, of course, which has no precedent). In other
words, it prohibits unexpected world appearances, as well as
it prevents worlds to be accessibly related to others that be-
long to future or past situations. The necessitation rule (NR)
is produced as a side-effect in BDECKT, due to the definition
of knowledge, therefore we need to explicitly include it in the
set M in order to accomplish equivalence.

For our equivalence result we will use some lemmas. The
proofs proceed in a similar style, therefore we only sketch
the most representative one.

Lemma 1. DECKT ∧ BDEC ∧ LDEC ∧ L ∧ M 

(BKT5)
Proof sketch: Let e an arbitrary event, f , fi arbitrary fluents
and s1, s2 arbitrary situations such that HappensB(e, s1, s2),

where (
∧i[HoldsAt(fi, t)] ⇒ InitiatesB(e, f, s1, s2))

(the procedure for negative effect axioms is similar). Let us
first consider the case where the preconditions are known,

Figure 1: First step in proving Lemma 1.

i.e., HoldsAt(Knows(
∧i

fi), s1). From (L2) and (L3),
axiom (KT3.1) is triggered which, due to (KT2) and (M1),
results in HoldsAt(KnowsB(f), s2). According to (BKT1)
f is true in all situations K-related to s2. These situations,
as instructed by (M2), must have a precedent that is K-
related to s1. Therefore, e happens and initiates f in all of
them, due to (BKT2) and (BKT3). What has been proved
so far is that K(s′

2
, s2) ⇒ ∃s′

4
(S(s′

4
, s′

2
) ∧ K(s′

4
, s1)),

which is schematically depicted in the graph of Figure 1,
where nodes represent situations, solid arcs accessibility
relations and dashed arcs successor situations due to event
occurrences. To also prove that there cannot be situations
K-related to s1 whose successors are not K-related to s2

recall that, due to inertia, any fluent not affected by e and
known (unknown) in s1 must still be known (unknown,
respectively) in s2. Consequently, any information, i.e.,
fluent truth values and accessibility relations, must be
”transferred” to s2, which is proved by contradiction,
since if some successor situation is not accessible from
s2 inertia may be violated. This leads us to K(s′

2
, s2) ⇔

∃s′
1
(S(s′

1
, s′

2
) ∧ K(s′

1
, s1)), as required. The proof proceeds

in a similar style if initially
∨i[¬HoldsAt(Kw(fi), s1)] ∧

¬HoldAt(Knows(
∨i

¬fi), s1) by replacing axiom (KT3.1)
above with (KT5.1), while it is trivially shown if initially

HoldAt(Knows(
∨i

¬fi), s1). �

Lemma 2. DECKT∧BDEC∧LDEC∧L∧M 
 (BKT6)
Using Lemmas 1 and 2 we can conclude:
Theorem 1. (Completeness) The conjunction of DECKT, L
and M axioms produces all BDECKT epistemic derivations.
Lemma 3. BDECKT ∧ BDEC ∧ LDEC ∧ L ∧ M 

(KT 3.1) ∧ (KT 3.2) ∧ (KT 3.3)∧ (KT 3.4)
Lemma 4. BDECKT∧BDEC∧LDEC∧L∧M 
 (KT 4)
Lemma 5. BDECKT ∧ BDEC ∧ LDEC ∧ L ∧ M 

(KT 5.1) ∧ (KT 5.2)
Lemma 6. BDECKT∧BDEC∧LDEC∧L∧M 
 (KT 6)
Using Lemmas 3 to 6 we can conclude:
Theorem 2. (Soundness) All epistemic derivations produced
by the conjunction of DECKT, L and M axioms are also
produced by BDECKT.
Corollary 1 After any ground sequence of actions with deter-
ministic effects but with potentially unknown preconditions,
a fluent formula φ is known whether it holds in DECKT if
and only if it is known whether it holds in BDECKT, under
the bridging set of axioms L and M.
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6 Discussion

The proposed approach combines the expressiveness of
possible-worlds specifications with the efficiency of reason-
ing without the accessibility relation. Whereas with possible
worlds an agent needs to perform an exponential, with the
number of fluents, number of reasoning tasks after each ac-
tion (one for each possible world), DECKT requires a sin-
gle reasoning task using the same set of inference rules, but
to a larger number of fluents, ought to the different epis-
temic fluents. Specifically, although knowledge about con-
junctions is decomposable according to (P1), disjunctions
are not, resulting in 2n − 1 epistemic fluents with n do-
main fluents. Nevertheless, the efficiency of reasoning does
not deteriorate analogously, as the set of state constraints re-
mains unaffected and most inferences for epistemic fluents
become trivial. For instance, when the only state constraint
available is HoldsAt(f, t) ⇒ HoldsAt(f1, t), determining

the truth value of HoldsAt(Knows(f1 ∨
∨i

fi), t) is the
same for any arbitrary i, because all the agent needs to con-
sider is whether HoldsAt(Knows(f1), t) and consequently
HoldsAt(Knows(f), t) is true; axiom (KT7) for each flu-
ent formula is grounded to the available state constraints.
Moreover, if DECKT is restricted to domains that satisfy
the property that knowledge of disjunctions can be broken
apart to knowledge of the individual fluents, as most alterna-
tive approaches require, then reasoning can become tractable.
Nevertheless, compared to them, DECKT is also applicable
to non-deterministic domains, non-context-complete theories
and can also express time-dependent knowledge effects.

One restriction of the current equivalence result is that log-
ical completeness for non-deterministic domains cannot be
proved using the current BDECKT semantics. Extending cor-
respondence between DECKT and BDECKT for actions with
non-deterministic effects cannot be based on producing mul-
tiple successor situations from an initial one, as this would
ruin equivalence between the underlying linear and branch-
ing formalisms. We plan to resolve this issue by introducing
the notion of parallel universes in the definition of knowl-
edge for BDECKT, where in each sub-universe only deter-
ministic actions may occur. The idea is that whenever a
non-deterministic action is ought to happen, then in one sub-
universe this action deterministically initiates a fluent and in
another it deterministically terminates it. Knowledge is un-
derstood as universal in all sub-universes; a fluent is consid-
ered known if it is locally known in every sub-universes. An-
other restriction is the inability to support functional fluents
(eg. see [Vassos and Levesque, 2007]). They can be implic-
itly represented though, by means of relational fluents, but
with a less elegant manipulation.

Beyond the aforementioned research issues, the current
framework offers also the means to go beyond the strict tenets
of possible worlds specifications. One example is the model-
ing of agents that remember and forget, which has been used
to accommodate knowledge-producing actions about both in-
ertial and continuously changing world properties in a uni-
form manner. Representing introspection is also a challeng-
ing issue. But more important, we also intend to investigate
ways to adopt solutions to aspects of the logical omniscience

problem, inherent in the possible worlds specification. An ap-
propriate modification of (KT7) axiom can play the role of an
awareness set, where only knowledge about specified fluents
can be derived.

References
[Amir and Russell, 2003] Eyal Amir and Stuart J. Russell. Logical

filtering. In IJCAI’03, pages 75–82, 2003.

[Demolombe and Pozos-Parra, 2000] R. Demolombe and
MP Pozos-Parra. A Simple and Tractable Extension of Situation
Calculus to Epistemic Logic. Twelfth International Symposium
on Methodologies for Intelligent Systems (ISMIS-00), pages
515–524, 2000.

[Lifschitz, 1994] V. Lifschitz. Circumscription. Handbook of Logic
in Artificial Intelligence and Logic Programming, 3:297–352,
1994.

[Liu and Levesque, 2005] Yongmei Liu and Hector J. Levesque.
Tractable Reasoning with Incomplete First-Order Knowledge
in Dynamic Systems with Context-Dependent Actions. In IJ-
CAI’05, pages 522–527, 2005.

[Lobo et al., 2001] Jorge Lobo, Gisela Mendez, and Stuart R. Tay-
lor. Knowledge and the Action Description Language A. Theory
and Practice of Logic Programming, 1(2):129–184, 2001.

[Miller and Shanahan, 2002] Rob Miller and Murray Shanahan.
Some Alternative Formulations of the Event Calculus. In Compu-
tational Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, pages 452–490, London, UK,
2002. Springer-Verlag.

[Moore, 1985] R. C. Moore. A Formal Theory of Knowledge and
Action. In Formal Theories of the Commonsense World, pages
319–358. J. Hobbs, R. Moore (Eds.), 1985.

[Mueller, 2006] Erik Mueller. Commonsense Reasoning. Morgan
Kaufmann, 1st edition, 2006.

[Mueller, 2007] Erik Mueller. Discrete Event Calculus with
Branching Time. In 8th International Symposium on Logical For-
malizations of Commonsense Reasoning, pages 126–131, 2007.

[Petrick and Levesque, 2002] Ronald P. A. Petrick and Hector J.
Levesque. Knowledge Equivalence in Combined Action Theo-
ries. In KR’02, pages 303–314, 2002.

[Petrick, 2008] Ronald P. A. Petrick. Cartesian Situations and
Knowledge Decomposition in the Situation Calculus. In KR’08,
pages 629–639, 2008.

[Scherl and Levesque, 2003] Richard B. Scherl and Hector J.
Levesque. Knowledge, Action, and the Frame Problem. Arti-
ficial Intelligence, 144(1-2):1–39, 2003.

[Scherl, 2003] R.B. Scherl. Reasoning about the Interaction of
Knowledge, Time and Concurrent Actions in the Situation Cal-
culus. In IJCAI’03, volume 18, pages 1091–1098, 2003.

[Son and Baral, 2001] Tran Cao Son and Chitta Baral. Formalizing
Sensing Actions—A Transition Function based Approach. Arti-
ficial Intelligence, 125(1-2):19–91, 2001.

[Thielscher, 2000] Michael Thielscher. Representing the Knowl-
edge of a Robot. In KR’00, pages 109–120, 2000.

[Vassos and Levesque, 2007] Stavros Vassos and Hector Levesque.
Progression of Situation Calculus Action Theories with Incom-
plete Information. In IJCAI’07, pages 2024–2029, 2007.

890


