
Negotiation Using Logic Programming with Consistency Restoring Rules∗

Tran Cao Son

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA

tson@cs.nmsu.edu

Chiaki Sakama

Computer and Communication Sciences
Wakayama University

Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp

Abstract

We formalize negotiations using logic program-
ming with consistency restoring rules (or CR-
Prolog) [Balduccini and Gelfond, 2003]. Our for-
mulation deals with incomplete information, pref-
erences, and changing goals. We assume that each
agent is equipped with a knowledge base for negoti-
ation which consists of a CR-program, a set of pos-
sible assumptions, and a set of ordered goals. We
use the notion of an answer set as a means to for-
malize the basic notions of negotiation such as pro-
posal, response, negotiation, negotiation tree (pro-
tocol), etc. and discuss their properties.

1 Introduction

An intelligent agent situated in the real world often has to
negotiate with others to achieve his/her objectives. Consider
a typical negotiation between a seller and a buyer:
• Seller: Would you like to have this PC for $1000?
• Buyer: Can I get it for $900?
• Seller: Only if you pay by cash.
• Buyer: Done.

This simple negotiation shows that a negotiation between
agents often involves reasoning with incomplete information
and preferences. Here, the seller prefers to sell his/her PC for
$1000 but he/she could accept $900 if the buyer pays by cash.
The seller, at the beginning of the negotiation, does not have
the information about the method of payment of the buyer.
He/she would learn about this information during the negoti-
ation. Furthermore, due to his/her preference, it is natural to
expect that the seller would discuss the method of payment
only if the buyer requests for a discount.

The above discussion implies that any formalism for rea-
soning about negotiation needs to have the capability to deal
with preferences and incomplete information. Surprisingly,
there have been only a few attempts to formalize negotiation
using logic programming despite the fact that logic program-
ming is known as a knowledge representation language suit-
able for reasoning with incomplete information and prefer-
ences (e.g., [Baral, 2003; Gelfond and Leone, 2002]). These

∗Partially supported by NSF grants IIS-0812267, MII-0220590,
CREST-0420407, and a JSPS award.

attempts use logic programming under the answer set seman-
tics but rely on techniques in belief revision to compute deals
between agents (e.g., [Chen et al., 2006]).

The example also shows that agents might change their
goals during the negotiation. This is also a key issue in for-
malizing negotiation, which seems to prefer argumentation-
based negotiation [Rahwan et al., 2003]. Recent proposals
on formalizing negotiation (see, e.g., [Amgoud et al., 2006;
Kakas and Moraitis, 2006; Rahwan et al., 2003]) seem to be
in-line with this conclusion. This raises a question on the suit-
ability of logic programming in formalizing negotiation. Our
goal in this paper is to address this question.

In this paper, we use logic programming with consis-
tency restoring rules (or CR-Prolog) [Balduccini and Gel-
fond, 2003] to formalize negotiation. We represent the
knowledge (for negotiation) of each agent as a CR-Prolog
program extended with a set of assumptions and a set of or-
dered goals and use answer sets as a means to define propos-
als and their acceptability as well as a negotiation and related
notions. We will begin with a short review of CR-Prolog.
After that, we define the notion of a negotiation knowledge
base, proposal, and discuss our proposal classification. We
then present our formalization of negotiation based on these
notions and discuss how it can be extended to accommodate
agents’ changes in goals. Finally, we relate our work to others
and discuss future work.

2 LP with Consistency Restoring Rules

A logic program Π is a set of normal rules of the form

c1 | . . . | ck ← a1, . . . , am,not am+1, . . . ,not an (1)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of
a propositional language1 and not represents negation-as-
failure. A negation as failure literal (or naf-literal) is of the
form not a where a is a literal. For a rule of the form (1), the
left and right hand sides of the rule are called the head and the
body, respectively. Both the head and the body can be empty.
When the head is empty, the rule is called a constraint. When
the body is empty, the rule is called a fact.

For a rule r of the form (1), H(r) and B(r) denote the left
and right hand side of←, respectively; head(r) denotes the

1Rules with variables are viewed as a shorthand for the set of its
ground instances.

930

set {c1, . . . , ck}; and pos(r) and neg(r) denote {a1, . . . , am}
and {am+1, . . . , an}, respectively.

Consider a set of ground literals X . X is consistent if
there exists no atom a such that both a and ¬a belong to
X . The body of a rule r of the form (1) is satisfied by X
if neg(r) ∩X = ∅ and pos(r) ⊆ X . A rule of the form (1)
with nonempty head is satisfied by X if either its body is not
satisfied by X or head(r) ∩X �= ∅. A constraint is satisfied
by X if its body is not satisfied by X .

For a consistent set of ground literals S and a program Π,
the reduct of Π w.r.t. S, denoted by ΠS , is the program ob-
tained from the set of all ground instances of Π by deleting
(i) each rule that has a naf-literal not a in its body with a ∈ S,
and (ii) all naf-literals in the bodies of the remaining rules.

S is an answer set (or a stable model) of Π [Gelfond and
Lifschitz, 1991] if it satisfies the following conditions: (i) If
Π does not contain any naf-literal (i.e. m = n in every rule of
Π) then S is a minimal consistent set of literals that satisfies
all the rules in Π; and (ii) If Π does contain some naf-literal
(m < n in some rule of Π), then S is an answer set of Π if S
is the answer set of ΠS . (Note that ΠS does not contain naf-
literals, its answer set is defined in the first item.) A program
Π is said to be consistent if it has a consistent answer set.
Otherwise, it is inconsistent.

CR-Prolog introduces an additional type of rules, called
consistency restoring rules (or cr-rules), of the form

r : c1 | . . . | ck
+← a1, . . . , am,not am+1, . . . ,not an (2)

where r is the name of the rule and ci’s and aj’s are literals as
in the rule (1). Observe that a cr-rule can be viewed as a nor-
mal rule (of the form (1)) by dropping its name and replacing
the connective +← with←.

A CR-program P is given by a pair (P r, P c) where P r is
a set of rules of the form (1) and P c is a set of rules of the
form (2). Let C be a subset of P c. By P r ∪ C we denote
the program consisting of rules in P r and the cr-rules in C
viewed as normal rules.

Answer sets of P are defined as follows. If P r is consis-
tent, then any answer set of P r is an answer set of P . Other-
wise, an answer set of P is an answer set of P r ∪C where C
is a minimal subset of P c such that P r ∪ {H(r) ← B(r) |
H(r) +← B(r) ∈ C} is consistent.
Example 1. Consider the program P = (P r, P c) where

P r = {s← . ← not p,not q.}
and P c = {r1 : p

+← not r. r2 : q
+← not r.}

P r is inconsistent. P has two answer sets {p, s} and {q, s},
which are obtained by adding {r1} or {r2} to P r corre-
spondingly.

Although adding {r1, r2} to P r also creates a consistent
program, its answer set {p, q, s} is not considered as an an-
swer set of P since the set {r1, r2} is not a minimal subset of
P c with this property. �

When multiple rules can be used in restoring the con-
sistency of a program, a preference relation in the form of
prefer(r1, r2) can be added to the program to force the ap-
plication of more preferred cr-rules in restoring the consis-
tency of the program. It is assumed that prefer is a transi-
tive and anti-symmetric relation among cr-rules of a program.

The semantics of CR-programs ensures that if prefer(r1, r2)
is specified then the rule r2 should be used in restoring the
consistency of the program only if no solution containing r1

is possible and the two rules are never used at the same time
[Balduccini, 2007]. A CR-program (P r, P c) is said to be
consistent if it has at least one answer set. For example, if
we add prefer(r1, r2) to P r then P = (P r, P c) from the
previous example will have only one answer set {p, s}.
3 Negotiation Knowledge Bases, Proposals,

and Proposal Classification

For a set of literals L, Goal(L) denotes the set of constraint
{← not l | l ∈ L}, {L +←} denotes the set of cr-rules {rl :
l

+←| l ∈ L}, and lit(L) the set {l,¬l | l ∈ L or ¬l ∈ L}. A
negotiation knowledge base is defined as follows.

Definition 1 (Negotiation KB). A negotiation knowledge
base K (or n-KB, for short) is a tuple 〈P r, P c, H, N≺〉where
• (P r, P c) is a CR-program,
• N≺ is a set of negotiated literals associated with a
strict partial order ≺ on its elements, and
• H is a set of literals (called assumptions) such that H∩
head(P r) = ∅ and {H +←} ⊆ P c.

The n-KB is consistent if (P r, P c) is consistent.

Intuitively, the program (P r, P c) serves as a means for the
agent to negotiate about a predefined objective2 where P r

consists of normal rules defining the domain-specific knowl-
edge of the agent and P c consists of cr-rules defining possible
negotiation strategies. N≺ contains literals expressing the de-
sired properties of outcome for which the n-KB is developed.
≺ represents a preference order of the agent with respect to
the negotiated literals; a≺b means that b is preferred to a. The
set of assumptions H represents information that the agent
might not have at the beginning of the negotiation and some
of this information might be known to him/her during the ne-
gotiation. Since the CR-program (P r, P c) serves as a means
for the agent to generate (counter)-supporting arguments, hy-
potheses, etc. in his/her negotiation, we will often require that
(P r, P c) is consistent, i.e., the n-KB is consistent.

We will now present two typical n-KBs, one of the seller
and one of the buyer, that we will use as running examples.
Intuitively, the seller agent will have a KB for him/her to ne-
gotiate a sale while a buyer agent will have a KB for him/her
to negotiate a purchase. The buyer will want to get the best
(lowest) price for the purchase that he/she is negotiating for
while the seller would prefer to obtain the best (highest) price
for the sale. For simplicity, we assume that the two knowl-
edge bases discuss the same product.

Example 2 (Seller n-KB). A seller agent S uses the follow-
ing n-KB in negotiating with his customers about the pos-
sible prices (of a certain product) that he can offer. KS =
〈P r

S , P c
S , HS , N≺

S 〉 where3

2For generality, this objective can be specified as a parameter of
the knowledge base. This makes the notations a little more compli-
cated. To focus on the main points, we opt out of this option.

3Arithmetic predicates are written in infix notation.

931

• P r
S consists of the following rules:

whole sale customer ← registered.
student customer ← student.
senior customer ← age ≥ 65.

sale ← sale price.
← not sale.

prefer(r1, ri) ← (for i > 1)
prefer(ri, r5) ← (for i ∈ {2, 3, 4})

where sale price ∈ {high pr, low pr, lowest pr} and
the set of facts {made in L, maker A, ¬maker C,
¬maker B}. Here, P r

S defines various types of customers,
the predicate sale, and the preferences among the cr-rules of
the KB. It also states some facts about the product at hand
(e.g., it is made in location L and is a product of maker A).
• HS is a set of assumptions representing information that the

seller needs to verify about his clients during the negotiation.
It is the set of literals that can be built from the atoms4

{
registered, student, age ≥ 65,
good credit, quantity ≥ 100, pay cash

}

• N≺
S is the set of atoms that the agent

should be negotiated about and is defined by
N≺

S = {high pr, low pr, lowest pr} with
≺= {lowest pr ≺ low pr ≺ high pr}. It says that
the seller prefers the high pr over low pr and lowest pr.
• P c

S consists of {HS
+←} and

r1 : high pr
+←

r2 : low pr
+← senior customer

r3 : low pr
+← student customer,

good credit.

r4 : low pr
+← student customer, pay cash.

r5 : lowest pr
+← whole sale customer,

quantity ≥ 100.

P c
S specifies different pricing scenarios. Intuitively, r1 says

that any customer who agrees to buy the product with
high pr is welcome! A senior citizen is entitled to a discount
(low pr) and the same holds for a student with good credit
history. Whole sale customers are entitled to the biggest dis-
count if they buy at least 100 units.
It is easy to see that (P r

S , P c
S) is consistent, i.e., KS is a mean-

ingful n-KB.
Finally, it is worth noting that the semantics of CR-Prolog

ensures that no answer set of (P r
S , P c

S) would contain two
possible prices, i.e., guaranteeing that the choice of a price is
unique for the seller. �

An n-KB of a buyer may look as follows.

Example 3 (Buyer n-KB). Let B be a buyer agent with the
n-KB KB = 〈P r

B , P c
B , HB , N≺

B 〉 where
• HB is the set of literals constructed from atoms in
{maker A, maker B, maker C, made in L}.
• P r

B consists of the set of facts {age = 25, student,
pay cash, ¬good credit, quantity = 1} and the following

4For a set of atoms X , {a,¬a | a ∈ X} is the set of literals that
can be built from X .

rules
purchase ← purchase price.

← not purchase.
prefer(ri, r1) ← (i > 1)
prefer(r4, ri) ← (i ∈ {2, 3})

where purchase price∈{high pr, low pr, lowest pr}.
• P c

B is the union of {HB
+←} and the following rules:

r1 : high pr
+← make A,not made in L

r2 : low pr
+← make A, made in L

r3 : low pr
+← maker B

r4 : lowest pr
+← maker C

• N≺
B ={high pr, low pr, lowest pr} with ≺= {high pr ≺

low pr ≺ lowest pr}.
The n-KB of the buyer agent is different from that of the
seller. It represents information about the buyer (e.g., a stu-
dent, age 25) and his/her goal (e.g., quantity = 1). Natu-
rally, the buyer has a different priority in its negotiated atoms:
he/she prefers to pay the lowest price.

Again, we can check that (P r
B , P c

B) is consistent, and
hence, KB is a consistent n-KB. �

We will now define various notions that will allow us to for-
malize a negotiation protocol between two agents. We start
with the notion of a proposal. Intuitively, the notion of a pro-
posal must be able to capture utterances like the following:
• (Seller) I would like to sell you this product with the

high pr.
• (Buyer) I can afford the high pr if it is made by maker A

and it is not manufactured in L (i.e., not made in L).
• (Seller) We do have the product of maker A and it is not

manufactured in L (made in L) but you need to be a stu-
dent and pay in cash to get low pr.

• etc.
Each utterance usually contains some properties of the goal
and the conditions for their acceptance. We therefore define
a proposal as follows.
Definition 2 (Proposal). Let K = 〈P r, P c, H, N≺〉 be an
n-KB of an agent, say A, and G be a set of goals G ⊆ N≺.
Let M be an answer set of (P r∪Goal(G), P c), S = M ∩H ,
and R ⊆M \H .

We call 〈G, S〉 a proposal for G by A (w.r.t. K and M) and
〈G, S,R〉 an extended proposal for G by A (w.r.t. K and M).

α(K, G) denotes the set of all possible proposals for G by
A w.r.t. K.

Intuitively, a proposal 〈G, S〉 states that the goal of A is
to negotiate for G and the reason that A proposes the goal
G is that he/she has a supporting argument for it, in which
he/she assumes S to be true. An extended proposal provides
further information supporting the goal G. We refer to G and
S as goal and support of 〈G, S〉. In the following, a proposal
(an extended proposal) for G by A w.r.t. K and M is often
shortened to a proposal (an extended proposal) for G by A
when K is clear from the context and the presence of M is
unimportant for our discussion.

Observe that the semantics of a CR-program requires that
the set of cr-rules to be used in the construction of its answer
sets is minimal. The next proposition is obvious.

932

Proposition 1. If 〈G, S〉 is a proposal w.r.t. K then there
exists no other proposal 〈G, S′〉 w.r.t. K such that S′ � S.

Example 4. For S (Exp. 2), 〈{high pr}, ∅〉 and
〈{low pr}, {age≥65}〉 are two possible propos-
als. For B (Exp. 3), two possible proposals are:
〈{lowest pr}, {maker C}〉 and 〈{low pr}, {maker B}〉.

Given an agent A and a proposal γ = 〈G, S〉 from another
agent, say B, we can see one of the following cases:
• A accepts γ: This means that γ could be a proposal of A.

In doing so, A must consider whether he/she can achieve
his/her goal by accepting γ and whether the assumptions in
S is consistent with his/her knowledge and assumptions.

• A rejects γ: This means that there is no possible way that
A can view γ as his/her proposal.

• A sees some alternative proposals for the goal of γ, yet
γ is not suitable for A, i.e., A considers γ a negotiatable
proposal.

This leads us to the following definition.

Definition 3 (Acceptable/Rejectable/Negotiatable Pro-
posal). Let K = 〈P r, P c, H, N〉 be an n-KB and γ =
〈G, S〉 be a proposal from another agent. Let Q = (P r ∪
Goal(G), P c).
• γ is acceptable w.r.t. K if Q has an answer set M such
that M ∩H = S ∩H and M ∪ S is consistent.
• γ is rejectable if Q is inconsistent.
• γ is negotiatable, otherwise.

Intuitively, Q encodes the set of possible proposals for G
by the agent with the n-KB K. Thus, if Q is inconsistent then
the proposal is rejectable. γ is acceptable if Q has an answer
set M (representing a proposal for G w.r.t. K) such that M is
consistent with S and M ∩H = S ∩H . The first condition
is needed since a negotiated item is acceptable to both parties
only if their supports are consistent. The second condition
implies that both proposals need to use the same set of shared
assumptions as well. This is necessary mainly because of the
requirement used in the definition of an answer set of CR-
programs. The third item of the definition is clear: a proposal
is negotiatable if it is neither acceptable nor rejectable.

Let K be an n-KB and Γa(K), Γn(K), and Γr(K) be
the set of proposals that are acceptable, negotiatable, and re-
jectable w.r.t. K, respectively. It is easy to see

Proposition 2. Let K be an arbitrary n-KB. Then, Γa(K),
Γu(K), and Γr(K) are pairwise disjoint. Furthermore, γ ∈
Γa(K) ∪ Γu(K) ∪ Γr(K) for every proposal γ.

We illustrate the above definitions in the next example.

Example 5. Consider KS from Example 2. We have that
• 〈{high pr}, ∅〉 is acceptable w.r.t. KS since (P r

S ∪
Goal({high pr}), P c

S) has an answer set M , M ∩HS = ∅.
• 〈{low pr}, ∅〉 is a negotiatable proposal w.r.t. KS .
There are three answer sets of (P r

S∪Goal({low pr}), P c
S):

M1 contains the set of assumptions {age ≥ 65},
M2 contains {student, good credit}, and M3 contains
{student, pay cash}. None of these answer sets satisfies
the conditions in the first Item of Definition 3.
• 〈{lowest pr}, {quantity = 1}〉 is a rejectable pro-
posal w.r.t KS . The only answer set of (P r

S ∪

Goal({lowest pr}), P c
S) contains quantity≥100 which

contradicts with quantity=1. �

4 Negotiation Using n-KBs: Keeping the Goal

We will now present a model of negotiation between two par-
ties A and B who use n-KBs KA and KB respectively in their
negotiation. We assume that (i) KA and KB , the n-KBs of A
and B, respectively, share the same language; (ii) Agents are
willing to accept new assumptions during their negotiations
as long as they do not cause inconsistency in their n-KBs. (iii)
Agents do not provide wrong assumptions as explanation for
not accepting a proposal, i.e., they are honest.

One of the most important questions that an agent has dur-
ing a negotiation is what can he/she do about a current pro-
posal, say 〈G, S〉 directed to him/her by another agent. Nat-
urally, the agent can either accepts, rejects, or responds by
putting forward a new proposal. In doing so, Definition 3
should be used. However, Definition 3 does not provide an
answer for the third case, when the agent needs to respond
by a new proposal. In the next definition, we address this
issue. As we expect that agents will negotiate in more than
one rounds and in each round, an agent, besides his/her pro-
posal, could indicate some facts, say R, that cannot be ac-
cepted by him/her. As such, a response will be defined given
an extended proposal. For a set of literals R and the n-KB
K = 〈P r, P c, H, N≺〉, by K � R we denote the n-KB
〈P r, P c, H\lit(R), N≺〉, which is obtained from K by elim-
inating the literals constructible from R from the set of as-
sumptions of K. Observe that any proposal w.r.t. K � R
cannot contain an assumption belonging to lit(R).

Definition 4 (Response). Let KA=〈P r, P c, H, N≺〉 be an
n-KB of an agent A and ωB=〈G, S,R〉 be an extended pro-
posal by B w.r.t. its n-KB KB . A response to ωB by A w.r.t.
KA is an extended proposal by A and is defined as follows.
• If 〈G, S〉 is acceptable w.r.t. KA�R, then the response
is 〈�, ∅, ∅〉, representing accept.
• If 〈G, S〉 is rejectable w.r.t. KA�R, then the response
is 〈⊥, ∅, ∅〉, representing reject.
• If 〈G, S〉 is negotiatable w.r.t. KA � R, then a re-
sponse is an extended proposal 〈G, S′, F 〉 by A w.r.t.
KA � R for which there exists an answer set M of
(P r ∪Goal(G), P c \ lit(R)) such that

- S′ = M ∩H .
- {¬l | ¬l ∈M, l ∈ S} ⊆ F ⊆ {¬l | l ∈ S \H}.

We say that the response is constructive if it is either 〈�, ∅, ∅〉,
〈⊥, ∅, ∅〉, or satisfying that F = ∅ implies that S ⊆M .

By β(KA, 〈G, S,R〉) we denote the set of all responses to
〈G, S,R〉 from A w.r.t. KA.

We assume that R contains literals that should not be con-
sidered by A. Therefore, the response is computed w.r.t. the
n-KB KA�R. Under this assumption, the first two items are
straightforward but the last item deserves some explanations.
Clearly, a response should be an extended proposal by A w.r.t.
KA�R. Furthermore, it should contain information that sup-
ports A’s new proposal and contradicts with the assumptions
made by B. This leads to the construction of 〈G, S′, F 〉 with
the proposed properties.

933

Example 6. Consider ω1
B = 〈{low pr}, {maker B}, ∅〉.

This is an acceptable proposal w.r.t. KB and is a negotiatable
proposal w.r.t. KS . The seller has three possible responses:
ω1

S=〈{low pr}, {age ≥ 65}, {¬maker B}〉
ω2

S=〈{low pr}, {student, good credit}, {¬maker B}〉
ω3

S=〈{low pr}, {student, pay cash}, {¬maker B}〉
The three responses correspond to the answer sets M1, M2,
and M3 in Example 5. Observe that ¬maker B is a fact in
KS and maker B is an assumption in ω1

B . �

We will now define the notion of a negotiation.

Definition 5 (Negotiation). Let A and B be two agents and
KA and KB be their n-KBs respectively. A negotiation be-
tween A and B for G, starting with A, is a possible infi-
nite sequence of extended proposals ω1, . . . , ωn, . . . where
ωi = 〈Gi, Si, Fi〉 and
• ω1 = 〈G, S, ∅〉 and 〈G, S〉 ∈ α(KA, G).
• ωi+1 ∈ β(Ki−1, ωi) for every i > 1 where
- K1 = KA and K2k+1 = K2k−1 � F2k for k > 0; and
- K0 = KB and K2k+2 = K2k � F2k+1 for k ≥ 0.
A negotiation ends at i if ωi is either 〈�, ∅, ∅〉 or 〈⊥, ∅, ∅〉.

A negotiation is a series of responses between two agents,
who, in alternation, takes into consideration the other’s re-
sponse and puts forward a new response, which is either
accept (〈�, ∅, ∅〉), reject (〈⊥, ∅, ∅〉), or a new proposal
with explanations why the last proposal (of the other agent)
were not acceptable to him/her.

Definition 6 (Un/Successful Negotiation). A negotiation is
successful (resp. unsuccessful) if it is finite and ends with
(K, 〈�, ∅, ∅〉). (resp. (K, 〈⊥, ∅, ∅〉)). A negotiation is con-
structive if it contains only constructive responses.

Some negotiations between the buyer B (Example 3) and
the seller S (Example 2) are given next.

Example 7. The following is an unsuccessful negotiation.
S : 〈{lowest pr}, {registered, quantity ≥ 100}, ∅〉
B : 〈{lowest pr}, {maker C}, {quantity = 1}〉
S : 〈⊥, ∅, ∅〉
This corresponds to the following:
• (Seller): I can offer you the lowest price if you register
and buy at least 100 units.
• (Buyer): How about if it is from maker C, but anyway
I would only buy one unit.
• (Seller): Sorry, I could not offer it at this time. �

Example 8. The following is a successful negotiation.
B1 : 〈{low pr}, {maker B}, ∅〉
S1 : 〈{low pr}, {age ≥ 65}, {¬maker B}〉
B2 : 〈{low pr}, {maker A, made in L}, {age = 25}〉
S2 : 〈{low pr}, {student, good credit}, ∅〉
B3 : 〈{low pr}, {maker A, made in L}, {¬good credit}〉
S3 : 〈{low pr}, {student, pay cash}, ∅〉
B4 : 〈�, ∅, ∅〉
S1 responds to B1 and indicates that he/she cannot assume
maker B (as ¬maker B is a fact in KS). The seller wants
to offer low pr to the buyer but assumes that age ≥ 65. This
assumption does not work well for the buyer as age = 25 is
true in KB . Hence, the buyer puts forwards another proposal
(B2). This time, the assumptions made by the buyer are

not conflict with KS but the seller requires a new set of
assumptions (S2). The negotiation continues until the buyer
accepts the offer and agrees to pay by cash. �

We will show next that if the agents are constructive in their
negotiation then their negotiation will eventually terminate.
Proof relies on the fact that agents accumulate assumptions
and the n-KBs are finite and is omitted to save space.

Theorem 1. Every constructive negotiation is finite.

A negotiation represents one possible way for two agents to
reach an agreement (or disagreement). In the course of reach-
ing an agreement, two agents might have different alterna-
tives. The notion of a negotiation tree, to be defined next,
will account for all possible negotiations for a goal between
two agents. We will make use of the well-known notation of
a tree. By the level of a node in a tree we mean the number of
links lying on the path connecting the root to the node. Also,
for a response ω = 〈G, S, F 〉, we use ω.G, ω.S, and ω.F to
denote G, S, and F respectively.

Definition 7 (Negotiation Tree). Let A and B be two agents
with the n-KB KA and KB respectively. A negotiation tree
between A and B for G, starting with A, is a labeled tree
TA,B,G where
• the root of TA,B,G is G;
• every child of G has the label of the form
(KA, 〈G, S, ∅〉) where 〈G, S〉 ∈ α(KA, G);
• if η = (KA, ω) is a node at level 1, then every child
of η has the label of the form (KB , ω′) where ω′ ∈
β(KB , ω);
• if η = (K, ω) is a node at level i, i ≥ 2, whose parent
has the label (K ′, ω′), then every child of η has the label
of the form (K ′ � ω.F, ω′′) where ω′′ ∈ β(K ′, ω); and
• (K, 〈�, ∅, ∅〉) and (K, 〈⊥, ∅, ∅〉) do not have children.

We classify negotiation tree as follows.

Definition 8 (Classification of Negotiation Tree). A negoti-
ation tree is finite if it has finite number of nodes; it is success-
ful if it has a leaf whose label is of the form (K, 〈�, ∅, ∅〉);
and it is unsuccessful if all of its leaves have a label of the
form (K, 〈⊥, ∅, ∅〉).

The notion of constructive negotiation is extended to nego-
tiation tree as follows.

Definition 9 (Constructive Negotiation Tree). A negotia-
tion tree is constructive if for every node η = (K, ω) at the
level i ≥ 2, whose parent has the label (K ′, ω′), the set
{ω′ | (K, ω′) is a child of η} consists of all and only con-
structive responses to 〈ω.G, ω.S〉 w.r.t. K ′ � ω.F .

We can prove the following theorem.

Theorem 2. Every constructive negotiation tree is finite.

Algorithm 1 allows us to predict whether or not a success-
ful negotiation for a goal G between A and B exists.
Using Theorems 1-2, we can show that Algorithm 1 always
terminates. This algorithm can be used in developing for
a negotiation protocol in the style presented in [Kakas and
Moraitis, 2006]. We omit this here due to space limitation.

934

5 Negotiation for the Best Possible Result

A negotiation tree details possible negotiations between two
agents who maintain their goal during the negotiation. In re-
ality, agents might change their goals during the negotiation.
As it turns out, this can be easily accommodated in our frame-
work. To do so, we only need to introduce the notion of a
relaxation (or strengthening) of a goal.

Definition 10 (Relaxation/Strengthening). Let K =
〈P r, P c, H, N≺〉 be an n-KB and G and G′ be two set of
literals G, G′ ⊆ N≺. We say that G′ is a relaxation of G (or
G is a strengthening of G′) if either G′ � G or G′ �= G and
for every l ∈ G′ \G there exists some l′ ∈ G such that l ≺ l′.

A goal change is either a relaxation or a strengthening of
the goal. With the introduction of a goal change, Definitions
4, 5, 7, and Algorithm 1 can be modified to allow for re-
sponses that take into consideration a new goal. Space limi-
tation prevents us from giving the full details of this develop-
ment but they are rather straightforward. The key idea is to
consider a change in a goal (i) as the starting of a new negotia-
tion (as in Definition 5); and (ii) only necessary if the preced-
ing negotiation leads to a rejection by either agent. Theorems
1, 2, and the termination of the modified algorithm can be
proved accordingly.

6 Discussion and Conclusion

We formalize negotiation using CR-Prolog and define the ba-
sic concepts of negotiation using answer sets. The main fea-
tures of our formalism are that it (a) includes support (as ex-
planation) in a proposal/response; (b) can deal with incom-
plete information, preference, and changes in goal; (c) com-
putes proposals/responses (and their support) on a case-by-
case basis. Proposals/responses can be computed using avail-
able implementation of CR-Prolog. We provide an algorithm
for predicting the result of a negotiation between two agents
for a given goal. One of our immediate future goals is to de-
velop a system for negotiated agents which rely on the avail-
able implementation of CR-Prolog.

Logic programming is used in [Chen et al., 2006]. In their
framework, two agents exchange answer sets to produce a
common belief set. Their goal is coordinating belief sets of
two agents, and it has no mechanism of constructing new pro-
posals. We use CR-Prolog and specify a way for computing
new proposals as part of the response to a given proposal.

Our work is similar to the work in [Sadri et al., 2002;
Sakama and Inoue, 2007] where abductive logic program-
ming (ALP) is used to model negotiation. In our framework,
the assumptions can be used in conjunction with predefined
strategies, represented in the consistency restoring rules, to
generate proposals whereas ALP uses only assumptions. The
system in [Sakama, 2008] uses induction to construct propos-
als but does not consider preferences while ours does not use
induction and considers preferences.

Finally, our work is similar in the spirit of approaches
to argumentation-based negotiation (ABN) [Amgoud et al.,
2006; Kakas and Moraitis, 2006; Rahwan et al., 2003] in
that it considers explanations as a part of a proposal/response.
The main difference between our work and ABN lies in our
use of CR-Prolog, a non-monotonic logic, and ABN’s logic

is monotonic. Our framework does not compute explana-
tions for accepting/rejecting a proposal in advance as in [Am-
goud et al., 2006] and allows negotiators to nonmonotonically
changing their belief by incoming information.

Algorithm 1 Negotiation(KA, KB , G)
Ensure: Accept/Reject

Initialize NQ := [] {Negotiation Queue}
for each 〈G, S〉 ∈ α(KA, G) do
InsertFrontQueue(NQ, (KA, 〈G, S, ∅〉, KB))

end for
while NQ is not empty do
(K1, ω, K2) := Extract(NQ) {get 1st element}
Compute Z = β(K2, ω)
if 〈�, ∅, ∅〉 ∈ Z return Accept end if
if 〈⊥, ∅, ∅〉 �∈ Z then
for each ω ∈ Z do
InsertFrontQueue(NQ, (K2, ω, K1 � ω.F)) (Deepth
First)

end for
end if

end while
return Reject

References
[Amgoud et al., 2006] L. Amgoud, Y. Dimopoulos, and P. Moraitis.

A unified and general framework for argumentation-based nego-
tiation. In AAMAS, 1018–1025.

[Balduccini and Gelfond, 2003] M. Balduccini and M. Gelfond.
Logic Programs with Consistency-Restoring Rules. AAAI Spring
Symposium, 9–18, 2003.

[Balduccini, 2007] M. Balduccini. CR-MODELS: An Inference
Engine for CR-Prolog. LPNMR 2007.

[Baral, 2003] C. Baral. Knowledge Representation, reasoning, and
declarative problem solving with Answer sets. Cambridge Uni-
versity Press, Cambridge, MA, 2003.

[Chen et al., 2006] W. Chen, M. Zhang, and N. Foo. Repeated ne-
gotiation of logic programs. In NRAC. , 2006.

[Gelfond and Leone, 2002] M. Gelfond and N. Leone. Logic pro-
gramming and knowledge representation – the A-Prolog perspec-
tive. AIJ, 138(1-2):3–38, 2002.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Clas-
sical negation in logic programs and disjunctive databases. New
Generation Computing 9:365–385, 1991.

[Kakas and Moraitis, 2006] A. Kakas and P. Moraitis. Adaptive
agent negotiation via argumentation. AAMAS.

[Meyer et al., 2004] T. Meyer, N. Foo, R. Kwok, and D. Zhang.
Logical foundation of negotiation: outcome, concession and
adaptation. In AAAI, 293–298, 2004.

[Rahwan et al., 2003] I. Rahwan, S. D. Ramchurn, N. R. Jennings,
P. Mcburney, S. Parsons, and L. Sonenberg. Argumentation-
based negotiation. KER, 18:343–375.

[Sadri et al., 2002] F. Sadri, F. Toni, and P. Torroni. An abductive
logic programming architecture for negotiating agents. In JELIA,
419–431, 2002.

[Sakama and Inoue, 2007] C. Sakama and K. Inoue. Negotiation by
abduction and relaxation. In AAMAS, 1018–1025.

[Sakama, 2008] C. Sakama. Inductive Negotiation in Answer Set
Programming. DALT’08, LNAI 5397, 143–160.

935

